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Abstract

Many single-cell sequencing technologies are now available, but it is still difficult to apply multiple
sequencing technologies to the same single cell. In this paper, we propose an unsupervised manifold
alignment algorithm, MMD-MA, for integrating multiple measurements carried out on disjoint aliquots
of a given population of cells. Effectively, MMD-MA performs an in silico co-assay by embedding cells
measured in different ways into a learned latent space. In the MMD-MA algorithm, single-cell data
points from multiple domains are aligned by optimizing an objective function with three components: (1)
a maximum mean discrepancy (MMD) term to encourage the differently measured points to have similar
distributions in the latent space, (2) a distortion term to preserve the structure of the data between the
input space and the latent space, and (3) a penalty term to avoid collapse to a trivial solution. Notably,
MMD-MA does not require any correspondence information across data modalities, either between the
cells or between the features. Furthermore, MMD-MA’s weak distributional requirements for the domains
to be aligned allow the algorithm to integrate heterogeneous types of single cell measures, such as gene
expression, DNA accessibility, chromatin organization, methylation, and imaging data. We demonstrate
the utility of MMD-MA in simulation experiments and using a real data set involving single-cell gene
expression and methylation data.

1 Introduction

Next-generation sequencing has enabled high-throughput interrogation of many different physical properties
of the genome, including the primary DNA sequence but also the expression of messenger RNAs, localized
binding of specific factors, histone modifications, nucleosome occupancy, chromatin accessibility, etc. Most
of these sequencing assays have been performed on populations of cells. However, such bulk measurements
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do not allow for easy characterization of systematic or stochastic variations in physical properties of the
genome among cells within a given population. Over the past several years, a variety of genomic assays have
been modified to allow characterization of single cells. These modifications sometimes involve physically
segregating individual cells prior to sequencing, or alternatively involve successive rounds of DNA bar-coding
to identify reads derived from single cells. Examples of single-cell genomics assays include single-cell RNA-
seq (scRNA-seq) for gene expression [14], single-cell ATAC-seq (scATAC-seq) for chromatin accessibility [3],
single-cell Hi-C (scHi-C) for 3D genome organization [10] and single-cell methylation analysis (scMethyl-seq)
[13]. In each case, the result is a data set that, compared to a standard, bulk genomic assay, has an additional
dimension corresponding to the cells in the sample population.

Single-cell measurements are valuable because they permit a view of the cell-to-cell variation of a given
type of physical measurement of the genome. However, such measurements would be even more valuable
if multiple different measurements could be obtained from the same individual cell. Such co-assays are
feasible, albeit challenging and lower throughput, for pairs of assays, such as scRNA-seq and scATAC-seq
[4] or scRNA-seq and scMethyl-seq [2], that measure orthogonal physical properties. However, other pairs
of single-cell assays, such as scATAC-seq and scHi-C cannot be paired even in principle, because each assay
operates on (and cleaves) the genomic DNA.

In this paper, we propose a manifold alignment algorithm based on the maximum mean discrepancy
(MMD) measure, called MMD-MA, which can integrate different types of single-cell measurements. Our
MMD-MA algorithm assumes that the cells are drawn from the same initial population—e.g., cells of the
same type or a distribution of cell types from the same experimental conditions—but the algorithm does not
require any correspondence information either among samples or among the features in different domains.
The algorithm makes no parametric assumptions about the forms of the distributions underlying the var-
ious measurements. The only assumption is that the distributions share a latent structure with sufficient
variability that the MMD term in the optimization can align the distributions. For example, if both un-
derlying distributions are simple isotropic Gaussian distributions, then it will not be possible to reconstruct
the relative orientation of the alignment. In practice, visualization of many different single-cell data sets
using dimensionality reduction methods such as PCA, t-SNE or UMAP suggest that they commonly exhibit
complex structure that, we hypothesize, should allow for alignment across data modalities. In particular,
MMD-MA can be applied to many heterogeneous types of single cell measures, including gene expression,
DNA accessibility, chromatin organization, methylation, and imaging data. Thus, the algorithm allows us, in
principle, to obtain the insights offered by a single-cell co-assay by computationally integrating two or more
separate sets of single-cell measurements derived from the same or similar populations of cells. We demon-
strate the performance of the algorithm on three simulated data set as well as one real data set consisting
of gene expression and methylation profiles of single cells.

2 Methods

2.1 The unsupervised manifold alignment problem

Our goal is to automatically discover a manifold structure that is shared among two or more sets of points
that have been measured in different ways, i.e., which mathematically live in different spaces. For simplicity,
we describe the case where we have just two types of measurements, though the approach generalizes to

any number of input domains. Let the two sets of points be X(1) =
(
x
(1)
1 , x

(1)
2 , ..., x

(1)
n1

)
from X (1) and

X(2) =
(
x
(2)
1 , x

(2)
2 , ..., x
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)
from X (2). The numbers of data points in the two domains are n1 and n2,

respectively. We do not require any correspondence information regarding the measurements across different
domains or regarding the samples from different domains. Instead, we assume that both sets of points share
a manifold structure, which we aim to discover in an unsupervised fashion.

To ensure the generality of our approach, we frame the optimization using kernels. Hence, we assume
that we have a way of calculating similarities between pairs of entities from the same domain, using positive
definite kernel functions kI : X (I) ×X (I) → R for I = 1, 2. The resulting kernel Gram matrices are denoted

by K1 ∈ Rn1×n1 and K2 ∈ Rn2×n2 , where [KI ]ij = kI

(
x
(I)
i , x

(I)
j

)
for I = 1, 2 and 1 ≤ i, j ≤ nI . As long

as both kernel functions are positive definite, then we are guaranteed that each kernel corresponds to the
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scalar product operation in some induced feature space, and that there exists a space of functions HI , called
a reproducing kernel Hilbert space (RKHS), mapping X (I) to R endowed with a Hilbert space structure.
For example, if the input space X is a vector space and we take the linear kernel k(x, x′) = x>x′, then the
RKHS is made of linear functions of the form f(x) = w>x, endowed with the norm ||f || = ||w||. If we take a
nonlinear kernel such as the Gaussian RBF kernel k(x, x′) = exp

(
−||x− x′||2/(2σ2)

)
with bandwidth σ > 0,

then the RKHS contains nonlinear functions. The use of kernels allows the MMD-MA algorithm to operate
in principal on any type of entity—vector, graph, string, etc.— for which a kernel function can be defined.

In order to find a shared structure between the points in X (1) and X (2), we propose to learn two mappings
φ1 : X (1) → Rp and φ2 : X (2) → Rp, so that input data in different spaces are all mapped to the same p-
dimensional space Rp and can be compared in that space. For each I = 1, 2, we consider each coordinate

of φI in the RKHS HI of the corresponding kernel kI , i.e., φI =
(
φ
(I)
1 , . . . , φ

(I)
p

)
∈ HpI . We then consider

each function φ
(I)
j ∈ HI of the form φ

(I)
j (x) =

∑nI

`=1 α
(I)
`j kI(x

(I)
` , x), for any x ∈ X (I). This parametrization

of φ
(I)
j in terms of α

(I)
`j ’s always exists by the representer theorem, provided we regularize the optimization

problem with the RKHS norm of φ
(I)
j , as we explain below. Now, if we denote by αi the ni × p matrix with

entries α
(I)
`j , then KIαI is the nI×p matrix where the j-th row (for j = 1, . . . , nI) is the p-dimensional image

of x
(I)
j by the mapping φI . In addition, α>I KIαI is the p× p matrix of inner products in the RKHS of the

p functions φ
(I)
1 , . . . , φ

(I)
p , which is for example equal to the p× p identity matrix Ip when φI is a projection

onto a subspace of dimension p in the RKHS. In order to define MMD-MA, we now discuss the criteria to
optimize for α1 and α2 in order to discover shared structures between the two views.

2.2 Characterizing the distribution distance in the shared space

Although we do not assume we know the individual correspondence between points in the two domains, or
even that such a 1-to-1 mapping exists, we do assume that the two distributions of points are similar in the
shared space. Thus, the optimal mapping matrices α1 and α2 should make the two mapped sets of points
in the shared space, namely K1α1 and K2α2, as similar as possible. To specify the distance between the
two mapped manifolds in the shared space, we use an MMD term MMD(K1α1,K2α2)2, which is a general,
differentiable measure of how similar two clouds of points are [7]. Formally, MMD is defined through a
positive definite kernel KM over Rp through the formula

MMD2
({
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j ) ,

where we denote u
(I)
i = φI(x

(I)
i ) to simplify notation. In this work, we use a Gaussian RBF kernel for KM ,

where the bandwidth parameter σ is a user-specified parameter.
Chwialkowski et al. [5] propose two fast methods (with complexity linear in n1 +n2) to estimate MMD2,

both of which are differentiable with respect to the positions of the points. Because the MMD is small when
the distributions are similar, MMD-MA aims to minimize MMD2 with respect to the embeddings.

2.3 The MMD-MA algorithm

Unfortunately, simply minimizing MMD between the two kernels is insufficient. Most notably, we need to
ensure that the relationships among data points in the input space is preserved to some extent in the feature
space; otherwise, the method may learn very complicated mappings that completely modify the relative
positions of cells in order to have them aligned between the two views. For that purpose we introduce a
distortion term dis(αI) = ||KI −KIαIα

>
I K

>
I ||2, which quantifies how the matrix of inner products between

points in the original space (quantified by the kernel matrix Ki) differs from the matrix of inner products
after mapping in the p-dimensional space. Penalizing dis(αI) ensures that the distortion between the data in
the original space and the data mapped to the low-dimensional space should be small. In addition, we may
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wish to ensure that the mappings to Rp are (almost) projections from the high-dimensional RKHS, which
we obtain by adding a penalty term pen(αI) = ||α>I K>I α− Ip||2.

Thus, MMD-MA optimizes, with respect to α1 and α2, the following objective function:

min
α1,α2

MMD(K1α1,K2α2)2 + λ1(pen(α1) + pen(α2)) + λ2(dis(α1) + dis(α2)) . (1)

where
pen(αI) = ||α>I K>I α− Ip||22 , (2)

and
dis(αI) = ||KI −KIαIα

>
I K

>
I ||22. (3)

2.4 Solving the optimization problem

To find a stationary point of (1) we use a simple gradient descent scheme, and use Adam [9] to adjust
the learning rate. Since the optimization problem is not convex, only a local minimum can be expected.
Therefore, for a given data set we run the optimization procedure with 100 different random seed values and
keep the solution which provides the lowest objective function value.

In practice, solving the optimization requires specifying several hyperparameters. These include the
dimensionality p of the shared space, any parameters of the kernel functions K1, K2 and KM , and the
tradeoff parameters λ1 and λ2. In this work, we assume that p and the kernel parameters are user-specified,
and we investigate the performance of the algorithm as we vary λ1 and λ2.

3 Related work

We are aware of three other methods that address the unsupervised manifold alignment problem, which we
briefly review here.

3.1 The joint Laplacian manifold alignment (JLMA) algorithm

The joint Laplacian manifold alignment (JLMA) algorithm [15] performs manifold alignment by constructing
a joint Laplacian across multiple domains and then performing eigenvalue decomposition to find the optimal
solution. The joint Laplacian formulation can also be interpreted as preserving similarities within each
view and correspondence information about instances across views, which is captured by the joint Laplacian
matrix. The loss function is C(F ) =

∑
i,j ||F(i, .)−F(j, .)||2W(i, j), where the summation is over all pairs of

instances from all views. F is the unified representation of all instances, and the output of the algorithm is
the joint adjacency matrix W. To avoid trivial solutions (i.e., mapping all instances to zero), JLMA includes
a constraint F′DF = I where I is an identity matrix. Let F = [f1, f2, . . . , fd]. The optimization problem
then becomes

argmin
F:F′DF=1

C(F) = argmin
f1,...,fd

∑
i

f ′iLfi + λi(1− f ′iDfi). (4)

The optimal solution is the d smallest nonzero eigenvectors from the generalized eigen decomposition problem.
JLMA can be used in an unsupervised or supervised fashion. In supervised mode, the Laplacian L is given

as input. In the unsupervised setting, the key step is to construct the cross-domain Laplacian submatrix
of L. Wang et al. use k-NN graphs to characterize local geometry and use the minimum distances from
scaled permutated k-NN graphs to construct a cross-view Laplacian submatrix of L. Thereafter, the rest
of the algorithm is the same as the standard JLMA algorithm. Unfortunately, the computational cost of
this initial step is quite high, even for small k values. To deal with this problem, Pe et al. use a B-spline
curve to fit the local geometry and calculate cross-view matching scores from the curves [11]. Thus, in both
cases, unsupervised manifold alignment is done via two steps: computing a cross-domain matching score,
and identifying the correspondence via Equation 4.
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3.2 The generalized unsupervised manifold alignment (GUMA) algorithm

The generalized unsupervised manifold alignment (GUMA) algorithm [6] is another method that does not
require any correspondence information a priori. The approach assumes that instances in the two domains
(e.g., in our case, two cells measured using different techniques) can be matched to one another in a one-
to-one fashion. In particular, the algorithm formulates an optimization problem whose objective function
includes a geometry matching term Es across different domains, a feature matching term Ef , and a geometry
preserving term Ep, subject to a 0-1 correspondence matrix F and feature projections Pi for each domain (i.e.
domain i). The optimization is performed using alternating minimization, alternating between optimizing F
and Pi with the other fixed. The algorithm outputs both the instance correspondence between the domains
and the feature mapping functions between the domains.

3.3 The manifold alignment generalized adversarial network (MAGAN) algo-
rithm

MAGAN [1] consists of two GANs that learn reciprocal mappings between two domains; i.e., GAN1 learns
the mapping from domain 1 to domain 2, and GAN2 learns the mapping from domain 2 to domain 1.
Each GAN’s generator takes input in one domain and outputs in the other domain, with the hope that the
discriminator in the other domain cannot distinguish the fake samples from true samples. The loss function
of the generators consists of three terms. The reconstruction loss term Lr captures the difference between a
sample and itself after being mapped to the different domain and then mapped back to the original domain.
The discriminator loss term Ld makes sure that the mapped sample in the other domain has a high likelihood
to fool the discriminator in that domain. And the correspondence loss Lc forces the learned mapping to
agree with some prior correspondence, either “unsupervised correspondence” (e.g., some variables are shared
between two domains) or “semi-supervised correspondence” (e.g., some labeled pairs cross two domains).
The paper empirically demonstrates that the inclusion of correspondence information greatly improves the
performance of the manifold alignment.

3.4 Comparison of these three algorithms with our algorithm

The MMD term in our formulation only ensures that the two distributions agree globally in the latent space,
whereas both JLMA and GUMA have a term that ensures, for each instance, that the local geometry is
preserved between domains. This is the difference between manifold superimposing [18, 17, 8] and manifold
alignment discussed in the MAGAN paper [1]. Furthermore, GUMA’s assumption that individual cells can
be matched 1-to-1 between the two input domains is not generally true, most obviously when n1 6= n2.
MAGAN [1] itself does not include a component for identifying a correspondence in an unsupervised fashion,
and empirical results from the MAGAN paper suggest that the algorithm may not be useful if there is no
known correspondence information between the two domains. When more than three domains must be
aligned, the JLMA, GUMA, and our MMD-MA algorithms can be easily extended, whereas the formulation
of MAGAN makes such an extension difficult.

4 Results

4.1 Three simulations

To validate the performance of MMD-MA, we generated three simulated data sets, each from a different
d-dimensional manifold. The first manifold exhibits a branching structure in two-dimensional space (i.e.,
d = 2) to mimic a branching differentiation situation (first column of Figure 1). The second manifold
structure is a nonlinear mapping of the first structure. The branching structure is mapped onto a Swiss
roll manifold (second column of Figure 1). Samples in the first domain are mapped from the 2D space of
simulation 1 into 3D space such that the three dimensions are [x1cos(3x1), x2, x1sin(3x1)], while samples
in the second domain are mapped into 3D space by [x1sin(2x1), x2, x1cos(2x1)]. The third manifold is a
circular frustum in three-dimensional space (i.e., d = 3), which aims to mimic the cell cycle superimposed
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Figure 1: Three simulation experiments. The first two rows show the MDS projection of the data
points in domain 1 and domain 2, separately. The third row shows the projection of the data points in the
shared embedding space. The last row plots the fraction of samples closer than the true match as MMD-MA
iterates. Points are included from JLMA when k=5 and k=6.
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Table 1: Running time of MMD-MA and JLMA. Times are provided for the three simulation experi-
ments and the real single cell application.

Sim 1 Sim 2 Sim 3 Methyl-Expr
MMD-MA 0:53 0:58 0:59 0:10
JLMA, k = 5 4:06 4:07 4:20 1:27
JLMA, k = 6 26:11 25:56 32:16 2:16

on a linear differentiation process (third column of Figure 1). From each of these d-dimensional manifolds,
we simulated n = 300 data points, and we refer to the corresponding n× d data matrix as Z.

For each manifold, we assume that we have two domains, and we generate a d × p1 mapping matrix T1
and a d × p2 mapping matrix T2. Each element in the two mapping matrices is sampled from a standard
Gaussian distribution. We set the observed data matrix from domain 1 to be ZT1 and the observed data
matrix from domain 2 to be ZT2. For example, we set p1 = 1000 and p2 = 2000. We also add Gaussian
noise (σ = 0.05) to each element of the covariates. For all of the simulations, we set the kernel matrices
K1 and K2 to be the inner product of the z−normalized observed data matrices. For each simulation, we
intentionally mis-specify, as input to MMD-MA, the dimensionality of the latent space as p = 5, to simulate
the scenario in which the true latent dimensionality is unknown a priori.

For all three numerical simulations, we plot the data points in the projected space, namely K1α
(o)
1 and

K2α
(o)
2 (Figure 1). In all three cases, the two domains appear to be aligned correctly in the latent space.

To quantify this alignment, we use the known correspondence between points in the two domains as follows.
For each point x in one domain, we identify its (true) nearest neighbor in the other domain. We then
rank all data points in the learned latent space by their distance from x, and we compute the fraction of
points that are closer than the true nearest neighbor. Averaging this fraction across all data points in both
domains yields the “average fraction of samples closer than the true match,” where perfect recovery of the
true manifold structure yields values close to zero. In all three simulations, the observed fraction of samples
closer than the true match decreases monotonically and approaches zero as the MMD-MA algorithm iterates.

Finally, we attempted to compare the performance of other algorithms on the same simulated data
sets. Unfortunately, we had difficulty running the GUMA algorithm using the implementation shared by
the authors; hence, we leave GUMA out of our comparison. Similarly, we could not include the MAGAN
algorithm because it requires some initial correspondence information, which we are assuming is not available.
Consequently, we only compare to the JLMA algorithm as a baseline, using k = 5 (the default value) and
k = 6. We find that, in all three simulations, our MMD-MA algorithm outperforms the baseline JLMA
(bottom row of Figure 1).

The running time of MMD-MA is much lower than JLMA using either k = 5 or k = 6. Timings on an
Intel Xeon Gold 6136 CPU at 3.00GHz (Table 1) show that MMD-MA runs under one minute, considerably
faster than JLMA.

4.2 Real world application results

In a recent study, gene expression levels and methylation rates were profiled jointly in 61 single cells [2].
We use this co-assay data to validate our method by hiding the correspondence between genes from MMD-
MA and then measuring how well the correspondence is recovered. Prior to analysis, we remove the genes
where any of the cells have a missing value for either the methylation rate or gene expression. This step
leaves, for the 61 cells, 2486 genes with both methylation rate and gene expression measured. We regard
gene expression as domain 1 and methylation rate as domain 2. We pretend that we do not know the
correspondence information, run our MMD-MA algorithm, and see how well our algorithm can align the
two manifolds and recover the cell correspondence. For calculating the similarity kernel matrices K1 and
K2, we first perform z-score normalization on the gene expression levels and the methylation rates and then
calculate the inner product for the elements in the cell-by-cell similarity matrices. As in the simulations, we
embed the two domains into a latent space of dimensionality p = 5.

We first plot the Principal Component Analysis (PCA) projection of the single cells based on their gene
expression levels and their methylation rates separately (Figure 2A). In this plot, when we connect the two
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Figure 2: Results from real world single cell applications. (A) PCA projection of single cells based
on their gene expression levels and their methylation rates separately, with dotted lines connecting the same
cell. (B) Projection of the single cells in the shared space from the MMD-MA algorithm, with dotted lines
connecting the same cell. (C) The average fraction of samples closer than the true match decreases as MMD-
MA iterates. This result is consistent across different learning rates of the optimization. (D) The fraction
of samples closer to each cell than its true match is plotted before and after MMD-MA, with the 61 cells in
sorted order along the x-axis. For each cell, the average is computed separately for each domain, and then
the two values are averaged together. The fraction is high and close to uniformly distributed before running
the MMD-MA algorithm and reduces considerably as the algorithm learns the aligned shared space.
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Table 2: Properties and hyperparameters of the experiments.
Sim 1 Sim 2 Sim 3 Methyl-Expr

number of Samples 300 300 300 61
dimension (Domain 1) 1000 1000 1000 2486
dimension (Domain 2) 2000 2000 2000 2486
λ1 1e-6 1e-9 1e-5 1e-2
λ2 1e-2 1e-7 1e-6 1e-6
σ 0.5 0.1 1.2 10000

dots corresponding to the same cell, we observe that each cell tends to be projected to two different locations
in the latent space. Accordingly, the average fraction of data points closer than the true match is 0.49. We
then run MMD-MA algorithm on this dataset and plot the PCA projection of the 61 single cells in terms of
gene expression and methylation rate in the shared space recovered by MMD-MA (Figure 2B). In the shared
space projection, we connect the two embeddings from different perspectives, and we observe that the cells
are embedded well in the shared space. Next, we calculate the fraction of samples closer to each cell that
its true match in the shared space of dimensionality p = 5. This fraction decreases as MMD-MA iterates,
reaching 0.024 in the end, and the trend is consistent across different learning rates of the optimization
(Figure 2C). An alternative visualization of the per-cell fractions before and after optimization (Figure 2D)
further illustrates that the MMD-MA algorithm successfully maps >50% of the cells closest to their true
neighbor in the other domain.

4.3 MMD-MA’s performance is robust to variations in hyperparameters

Running the MMD-MA algorithm requires specifying several hyperparameters. We investigated the robust-
ness of the learned embedding relative to variations in these hyperparameters.

As noted previously, in all of our studies the dimensionality p of the latent space has been set to 5 even
though the correct number should be p = 2 in the first two simulations, p = 3 in the third simulation, and
is unknown for the Methyl-Expr data set. We observe that MMD-MA algorithm can still align the two
manifolds even when the dimensionality parameter p is misspecified.

The trade-off parameters λ1 and λ2 determine how much the three terms contribute to the overall
objective function. In this work, we set these trade-off parameters by monitoring whether the three terms
have comparable magnitudes or whether one particular term dominates in the converged solution. We tested
eight combinations of these trade-off parameters for each data set (Supplementary Table S1). In each case, we
observe that the performance of MMD-MA is almost the same with different choices of trade-off parameters,
although some trade-off parameters may lead to a different convergence path (Supplementary Figure S1
A–D).

The bandwidth parameter σ associated with the Gaussian kernel KM in the MMD term determines how
much each data point contributes to its neighborhood in the calculation of the MMD. The σ values used in
our experiments are shown in Table 2. We also tested different values of σ and observed that the performance
of MMD-MA is quite invariant to them (Supplementary Figure S1 E–H).

5 Discussion

In this paper, we propose an unsupervised manifold alignment algorithm, MMD-MA, for integrating multiple
types of single-cell measurements carried out on disjoint populations of single cells drawn from a common
source. The key advantage of our MMD-MA algorithm is that it does not require any correspondence in-
formation, either between the samples or between the features. In many real-world integration applications,
such correspondence information is not available. Another advantage of our MMD-MA algorithm is that
has only weak distributional requirements for the domains to be aligned, namely, that the manifolds exhibit
sufficient structure to allow for alignment. This flexibility gives MMD-MA the power to potentially integrate
many different types of single cell measures, including gene expression, DNA accessibility, chromatin orga-
nization, methylation, and imaging data. Furthermore, the MMD-MA framework can easily be extended to
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more than two domains, allowing integration of, for example, scRNA-seq, scATAC-seq, and scHi-C of single
cells. We have shown that MMD-MA works well in the presence of nonlinear mappings and is robust to the
choice of several hyperparameters, including the trade-off parameters, the parameters associated with the
MMD term, and the dimensionality of the shared space.

Currently, MMD-MA can be used to align hundreds or thousands of single cells in a reasonable running
time. The gradient descent algorithm could be parallelized to save time if multiple cores are available. For
future work, we will focus on scaling up the MMD-MA algorithm. Given decreasing sequencing costs, it is
likely we will need to apply MMD-MA to align millions of single cells in the future. Running MMD-MA
efficiently without storing large kernel matrices in memory will be a crucial issue to solve. A possible solution
may rely on random projection [12] or Nystrom approximation [16], which are approximation methods for
large-scale kernel matrices.

All of the data sets used in this study, including the original and mapped simulated data and the
Methyl-Expr data set, as well as the corresponding MMD-MA outputs, are available for download from
http://noble.gs.washington.edu/proj/mmd-ma.
Acknowledgments: This work was supported by National Institutes of Health award U54 DK107979.
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Supplement

Table S1: Trade-off hyperparameters investigated for each data set.
Sim λ1 λ2

Sim 1 1e-4 1
Sim 1 1e-4 1e-2
Sim 1 1e-4 1e-4
Sim 1 1e-6 1
Sim 1 1e-6 1e-4
Sim 1 1e-8 1
Sim 1 1e-8 1e-2
Sim 1 1e-8 1e-4
Sim 2 1e-7 1e-5
Sim 2 1e-7 1e-7
Sim 2 1e-7 1e-9
Sim 2 1e-9 1e-5
Sim 2 1e-9 1e-9
Sim 2 1e-11 1e-5
Sim 2 1e-11 1e-7
Sim 2 1e-11 1e-9
Sim 3 1e-3 1e-4
Sim 3 1e-3 1e-6
Sim 3 1e-3 1e-8
Sim 3 1e-5 1e-4
Sim 3 1e-5 1e-8
Sim 3 1e-7 1e-4
Sim 3 1e-7 1e-6
Sim 3 1e-7 1e-8

Methyl-Expr 1 1e-4
Methyl-Expr 1 1e-6
Methyl-Expr 1 1e-8
Methyl-Expr 1e-2 1e-4
Methyl-Expr 1e-2 1e-8
Methyl-Expr 1e-4 1e-4
Methyl-Expr 1e-4 1e-6
Methyl-Expr 1e-4 1e-8
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Figure S1: Testing sensitivity to hyperparameters. (A–D) The performance of MMD-MA when the
trade-off parameters λ1 and λ2 are set differently in the three numerical simulations and the one real-world
application, respectively. In each case, eight settings we chosen, and the plot only shows curves that differ
from the one produced by the selected parameters. (E–H) The performance of MMD-MA when σ is set
differently in the three numerical simulations and the one real-world application, respectively. Again, only
settings that yield results different from the selected results are shown.
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