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Abstract 30 

Gene regulatory networks (GRNs) have been widely used as a fundamental tool to reveal the 31 

genomic mechanisms that underlie the organism’s response to environmental and developmental 32 

cues. Standard approaches infer GRNs as holistic graphs of gene co-expression, but such 33 

graphs cannot quantify how gene-gene interactions differentiate among organisms and how 34 

they alter structurally across spatiotemporal gradients. Here, we develop a generalized 35 

framework for inferring informative, dynamic, omnidirectional, and personalized GRNs 36 

(idopGRNs) from routine transcriptional experiments. This framework is constructed by a 37 

system of quasi-dynamic ordinary differential equations (qdODEs) derived from the combination 38 

of ecological and evolutionary theories. We reconstruct idopGRNs from a clinical genomic study 39 

and illustrate how network structure and organization affect surgical response to infrainguinal 40 

vein bypass grafting and the outcome of grafting. idopGNRs may shed light on genotype-41 

phenotype relationships and provide valuable information for personalized medicine. 42 

 43 

Key words: gene regulatory network, evolutionary game theory, niche biodiversity theory, 44 

community ecology, ordinary differential equation, variable selection 45 

 46 

 47 

Introduction 48 

Gene regulatory networks (GRNs) have been thought to operate as the genomic mechanisms 49 

that guide the organism’s response to changes in their environment1,2. One promising subject 50 

of research in modern biology and translational medicine is how to infer biologically realistic 51 

and statistically robust GRNs from increasingly available transcriptional data and link them to 52 

physiological, pathological, and clinical characteristics3-5. A number of statistical approaches, 53 

such as Boolean networks6, Bayesian networks7, mutual information theory8,9, and graphical 54 

models10, have been developed for network inference, and these approaches visualize GRNs as 55 

probabilistic, undirected or unidirectional graphs, where each node represents a gene and edges 56 

depict relationships between genes. However, such graphs may not be sufficiently informative 57 

for charting the topological structure of a GRN because genes may regulate and also be regulated 58 

by other genes, with regulations in various signs and strengths and varying across time and space 59 

scales3,11.  60 
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As the time generalization of Bayesian networks, dynamic Bayesian networks (DBNs) can code 61 

cyclic, causally directed, and probabilistic interactions into networks through temporal 62 

interdependence, but they are often puzzled by the choice of granularity when time spaces vary12-63 
14. When gene networks are modeled by a system of time-derivative ordinary differential 64 

equations (ODEs), all these issues can be mostly addressed15-18. The successful use of such ODE-65 

based networks is, however, impaired by two factors: (1) parametric dynamic modeling, which is 66 

difficult to justify, given that gene expression is often stochastically fluctuated19,20 and alters 67 

across discrete regimes, such as cell/tissue types and medical treatments21, and (2) the 68 

requirement of high-density temporal expression data over a time course22. Gene networks are 69 

regarded as temporal or spatial snapshots of biological processes23, but no existing approaches 70 

can contextualize how GRNs change structurally and functionally in response to developmental 71 

and environmental cues. More importantly, most approaches can only identify an overall 72 

network from a set of cross-sectional or longitudinal data, largely limiting the use of GRNs as a 73 

personalized tool for clinical diagnosis and prediction of individual subjects in the era of 74 

precision medicine. 75 

 76 

Here, we develop a statistical framework for inferring informative, dynamic, omnidirectional, 77 

and personalized GRNs (idopGRNs) from standard genomic experiments. An informative 78 

network should encapsulate bidirectional, signed, and weighted edges that facilitate the 79 

interpretation and interrogation of gene-gene interactions. A dynamic network can monitor how 80 

the pattern of gene co-expression alters in response to environmental and developmental change. 81 

An omnidirectional network codes all possible gene interactions but ensuring its sparsity and 82 

stability. Because of different genetic backgrounds, specific individuals may develop and use 83 

their personalized networks to regulate any phenotypic change. To recover such idopGRNs, we 84 

integrate elements of distinct disciplines into a unified framework by which expression data from 85 

multiple individuals under distinct treatments, monitored at several key time points and/or across 86 

spaces, can be assembled, modeled, and analyzed. We virtualize idopGRNs as an ecological 87 

community composed of many species, in which the expression level of each gene, 88 

corresponding to the abundance of each species, is determined by its niche and niche differences 89 

collectively stabilize the whole network through gene-gene interactions in a way similar to 90 

interspecies interactions24-26. We integrate the niche theory of biodiversity and evolutionary 91 
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game theory to derive a system of quasi-dynamic ordinary differential equations that model gene 92 

networks across individuals. The implementation of variable selection helps to define and select 93 

a subset of the most significant genes that regulate a focal gene, which enables the inference of 94 

sparse but omnidirectional networks. To test and validate our approach, we analyzed genomic 95 

data of circulating monocytes from human infrainguinal vein bypass grafting, aimed at treating 96 

lower extremity arterial occlusive disease27, and reconstructed graft- and outcome-perturbed 97 

idopGRNs. The usefulness of our approach is further validated by a second vein graft experiment 98 

for rabbits28. In both cases, quantitative comparison of GRN structure and organization between 99 

different outcomes and across times provides a mechanistic understanding of vein bypass graft 100 

success vs. failure. 101 

 102 

Theory Construct 103 

The theory for reconstructing idopGRNs is interdisciplinary, founded on the seamless integration 104 

of community ecology, evolutionary biology, and network science through mathematical and 105 

statistical reasoning. Each discipline contributes its distinct elements to a unified framework of 106 

statistical inference for gene networks. 107 

 108 

Niche theory of biodiversity  109 

The concept of niche was first defined by Elton29 to describe the ecological components of a 110 

habitat related to a species' tolerance and requirement. This concept has been generalized to 111 

explain biodiversity and species coexistence patterns in ecological communities30. A gene 112 

network, residing in any biological entity, such as a cell, a tissue, or even an individual, can be 113 

viewed as an ecological community, in which the expression level of a constituent gene 114 

corresponds to the niche occupied by a species and niche differences form community diversity 115 

and stability. From a community ecology perspective, the total expression amount of all genes in 116 

the network reflects the carrying capacity of the entity to sustain indefinitely these genes and 117 

supply them with essential resources or energy for their function31, which are a mixture of many 118 

unknown factors. We define the total expression level of all genes on an entity as the expression 119 

index (EI) of this entity. This concept, similar to environmental index coined to describe the 120 

overall quality of site in terms of the accumulative growth of all plants32,33, can describe the 121 

overall occupation of all genes to the entity. By aligning EI values in an ascending order, we can 122 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644070doi: bioRxiv preprint 

https://doi.org/10.1101/644070


5 
 

convert discrete entities to a series of continuous variables that help establish a system of 123 

ordinary differential equations (ODEs). 124 

 125 

In an ecological habitat, each organism needs to respond to the distribution of resources and 126 

competitors and it in turn alters those same factors34. For example, an organism would grow fast 127 

when resources are abundant, or when predators or parasites are scarce, and may limit access to 128 

resources by other organisms or provide a food source for predators. The types and numbers of 129 

environmental variables constituting the dimensions of a habitat vary from one species to another 130 

and the relative importance of particular environmental variables for a species may vary 131 

according to the geographic and biotic contexts35. Thus, based on the niche theory of 132 

biodiversity, the relationship of the abundance of a particular species (part) with the total 133 

abundance of all species (whole) across graded habitats can potentially describe and predict the 134 

inherent compositional structure of an ecological community and its response to environmental 135 

change. This part-whole relationship, governed by the power scaling theory, has been observed 136 

to pervade biology; For example, the power equation can well explain how total leaf biomass 137 

scales allometrically with whole-plant biomass across different plants36,37 and how brain size of 138 

animals scales with whole-body mass across animals38,39. We introduce this power scaling theory 139 

to model how the expression of individual genes (part) scales with the total expression of all 140 

genes across EIs through a system of ODEs. 141 

 142 

Evolutionary game theory of gene expression 143 

In an ecological community where many species coexist, a species may adopt a cooperative or 144 

competitive decision to maximize its chance to access to resources40. This phenomenon has also 145 

been well recognized at the cell level in both humans and rats41,42, by which a cell determines a 146 

goal-directed decision-making based on its accrued knowledge of the environment. In an elegant 147 

study of stress impact, Friedman et al.43 identified the cells and networks that enable a rodent to 148 

choose an appropriate strategy of responsiveness after evaluating possible costs and benefits. 149 

Such rational choice reasoning may also guide how genes, located in the same cell, promote or 150 

inhibit each other in a complex network. In other words, gene-gene interactions can be modeled 151 

as a game in which one player may choose to compete or cooperate with its opponents in a quest 152 

to maximize its payoff. Classic game theory, pioneered by mathematical economists44, suggests 153 
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that such choices are not arbitrary, but rather include a rational judgement based on a gene’s own 154 

strategy and the strategies of other genes.  However, it is extremely difficult or impossible to 155 

interrogate the rationality of genes, making a direct application of classic game theory to gene 156 

network inference infeasible. To address this issue, we introduce evolutionary game theory, a 157 

combination theory of game theory and evolutionary biology45, which does not rely on the 158 

rationality assumption when it is used to study community dynamics and evolution. In an 159 

evolving population, any strategy used by an individual to maximize its payoff would be 160 

constrained by strategies of other individuals that also strive to maximize their own payoffs and, 161 

ultimately, this process through natural selection would optimize the structure and organization 162 

of the population, making it reach maximum (best response) payoff45.  163 

 164 

Mathematical integration of evolutionary game theory and niche biodiversity theory 165 

Suppose we initiate a standard genomic experiment (Fig. 1A) involving S treatments, each with 166 

ns (s = 1, …, S) subjects, measured for m genes and p phenotypic traits at a series of time points 167 

(t0, t1, …, tT), where t0 denotes pre-treatment and t1, …, tT denote post-treatment. We call a 168 

subject from a treatment measured at a time point a “sample.” Thus, we have a total of = ( +169 1)  samples, where = ∑  is the total number of subjects from all treatments. Let  170 

denote the expression level of gene j (j = 1, …, m) on sample i (i = 1, …, N). The EI of sample i 171 

is defined as = ∑ . We line up the N samples in the ascending order of EI, which allows 172 

us to construct a system of ODEs, expressed as 173 = ( ): Θ + | ( ): Θ |, , = 1,… , ; = 1,… , 										(1) 
where the change rate of the expression of gene j per Ei, Mji(Ei), at a given sample i, is 174 

decomposed into the independent expression component, gj(⋅), specified by unknown parameters 175 

Θj, and the dependent expression component, gj|j′(⋅), specified by unknown parameters Θj|j′. The 176 

independent component of gene j occurs if this gene is assumed to be expressed in an isolated 177 

environment, and it is determined by this gene’s intrinsic property. The dependent component of 178 

gene j is the aggregated effect of all possible other genes j′ (j′ = 1, …, m; j′ ≠ j) on this gene. 179 

General speaking, the independent expression of a gene is determined by its endogenous 180 

encoding capacity, whereas its dependent expression is under the exogenous control. The 181 
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structure of ODEs in Eq 1 is similar to the generalized Lotka-Volterra equations46 with the 182 

community matrix replaced by the functions | (∙) and the time derivative replaced by the EI 183 

derivative. Since they are not time based, such ODEs are called quasi-dynamic ODEs (qdODEs). 184 

It is straightforward to derive example equations of this type from the multi-gene replicator 185 

dynamics. Identifying these functions is a primary focus of research with a secondary effort 186 

being in interpretation and analysis of the resulting dynamical system. 187 

 188 

Inferring gene networks 189 

In practice, the number of genes for network reconstruction is commonly very large (e.g., 103–190 

104), thus if the expression of each gene involves the effects of all other genes, ODEs in Eq 1 191 

will quickly become intractable. Indeed, it is unlikely that each gene performs an interaction with 192 

every other gene in the network. By regressing the expression of each gene j on the expression of 193 

all other genes j′ (j′ = 1, …, m; j′ ≠ j), we formulate a multiple regression model across samples 194 

for variable selection. We implement adaptive LASSO to detect a small set of the most 195 

significant genes that affect a focal gene j (incoming links), but posing no constraint on the 196 

number of genes affected by the focal gene (outgoing links). This procedure enables the 197 

reconstruction of a high-dimensional but sparse and stable GRN under the convex optimization 198 

formulation (see Online Methods). These GRNs are regarded as idopGRNs (Fig. 1B) because of 199 

their following five major features: 200 

 201 

(i) Bidirectional, signed, and weighted: Let (∙) and | (∙) denote integrals of (∙) and 202 

| (∙) that constitute the system of qdODEs in Eq 1, respectively. Note that, for a focal gene j, 203 

the number of its incoming links is dj (<< m) after variable selection. The estimate of | (∙) can 204 

help judge in which way gene j′ affects gene j. If it is positive, negative, or zero, then this 205 

suggests that gene j′ promotes, inhibits, or is neutral to, gene j, respectively. The value of the 206 

estimate can quantify the strength of promotion or inhibition. By comparing | (∙) and | (∙) , 207 

we can determine whether these two genes reciprocally trigger impacts on each other. Further, 208 

we reconstruct a bidirectional, signed, and weighted graph as the gene network of the sample 209 

by considering all possible gene pairs detected from variable selection. The estimate of (∙) 210 

represents how much amount of expression a given gene j may intrinsically release, and its value 211 
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is proportional to the size of a node in the graph. 212 

 213 

(ii) Dynamic: The amount of dependent expression | (∙) is a function of Ei, suggesting that 214 

the dependent amount of gene j affected by gene j′ can be estimated at any given EI. Thus, we 215 

can reconstruct a series of “dynamic” networks across samples. These networks allow geneticists 216 

to test how GRNs alter structurally and functionally in response to environmental and 217 

developmental cues. These tests can be made locally, i.e., testing how networks differ between 218 

two time points of interest under the same treatment or between different treatments at the same 219 

time point. 220 

 221 

(iii) Omnidirectional but sparse: If the number of genes for network reconstruction is large, we 222 

should build a high-dimensional set of ODEs that can specify the whole picture of gene 223 

interactions in the network. The implementation of variable selection can detect the most 224 

significant links to construct a sparse network but still allows all possible realistically existing 225 

links to be encapsulated as a whole that underlie the behavior of gene networks. This dimension 226 

reduction procedure will become even more valuable since more and more studies attempt to 227 

reconstruct regulatory networks from genomic, proteomic, and metabolomics data. A more fine-228 

grained network inferred from these omics data at different levels or through different pathways 229 

can reveal previously hidden contributions of gene interactions to cellular processes. 230 

 231 

(iv) Personalized: The most noticeable advantage of our approach is the ability to pack steady-232 

state expression data into highly informative networks that can currently be inferred only from 233 

high-density temporal data. As a function of Ei, the independent and dependent expression values 234 

of genes can be calculated for any sample from Gj(⋅) and Gj|j′(⋅), respectively. These values 235 

enable the inference of sample-specific networks from which to compare how networks differ 236 

among entities (e.g., subjects, tissue types, or cell types), treatment levels, and times (Fig. 1B).  237 

 238 

The main merit of a mathematical model is its ability to make a prediction for the future. The 239 

qdODEs allow the independent and dependent expression levels of genes to be calculated as long 240 

as EI is provided. Thus, for those samples that are not included in our network reconstruction, we 241 

can interpolate or extrapolate gene networks based on their EIs. Individualized networks are 242 
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likely to be associated with clinical and disease phenotypes and, therefore, can be potentially 243 

useful for predicting health risk. 244 

 245 

(v) Biologically meaningful and socially interpretable: Because of bidirectional and signed 246 

features, the network can discern distinct patterns of gene interactions (Fig. 1B). If two genes 247 

facilitate each other by producing factors that promote both parties, then synergism occurs. In 248 

contrast, an antagonism occurs if two genes inhibit each other. Commensalism results if one 249 

gene promotes its partner but the latter does not affect the former (neutral), while amensalism 250 

occurs if one gene inhibits the other and the other is neutral. If one gene inhibits the other but the 251 

latter promotes the former, then the former exerts parasitism to the latter. Conversely, one gene 252 

promotes the other but the latter inhibits the former, then the former offers altruism to the latter. 253 

A lack of any interaction, then, is when two genes coexist and are neutral to each other. These 254 

interaction patterns contain the underlying mass, energetic, or signal basis of gene interactions 255 

and, therefore, they are more biologically meaningful than the traditional descriptions of genetic 256 

epistasis based on statistical tests. A gene may actively manipulate other genes (by promoting or 257 

inhibiting the latter) but, meanwhile, may also be passively manipulated by other genes. In 258 

networks reconstructed from our approach, one can identify the numbers of such active links and 259 

passive links for each gene. If a gene has more active links than passive links, it is regarded as a 260 

social gene. If a gene’s active links are more than the average of all genes (i.e., connectivity), 261 

then this gene is a core gene that is believed to play a pivotal role in maintaining gene networks. 262 

If a gene has less links, including active and passive, than the average, it is a solitary gene. 263 

 264 

Results 265 

Human vein bypass grafting 266 

Rehfuss et al.27 reported a genomic study of infrainguinal vein bypass grafting involving 48 267 

patients, among whom 35 succeeded and 13 failed. To investigate the genomic mechanism 268 

underlying graft outcome, transcriptomes of circulating monocytes from patients of success and 269 

failure were monitored at pre-operation and at days 1, 7, and 28 post-operation. We selected a 270 

subset of genes measured (1,870) that change significantly as a function of time per ANOVA (P 271 

< 0.05) for idopGRN reconstruction. Four time points of gene monitoring for 48 patients form 272 

4×48 = 192 samples.  273 
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By plotting the expression of individual genes against EI across these samples, we found that 274 

each gene’s EI-varying expression is broadly in agreement with the part-whole relationship 275 

theory. In Fig. 2, we chose four representative genes for their fitness to the power equation (13). 276 

The expression of ADAM9 and LCN2 increases with EI, but the former displays a greater slope 277 

of increase (Fig. 2A) than does the latter (Fig. 2B). In contrast, the expression of PLXNA4 (Fig. 278 

2C) and NSUN7 (Fig. 2D) decreases with EI, but with different slopes. We used Kim et al.’s 279 

functional clustering47 to categorize all genes considered into 145 modules each with a distinct 280 

EI-varying pattern.  281 

 282 

We randomly choose one successful patient (#125) and one failed patient (#205) and compare 283 

how they respond to grafting through network alterations. GRNs that specify the alterations of 284 

gene co-expression across environmental change are called environment-perturbed GRNs. Figure 285 

3 illustrates graft-perturbed idopGRNs at the module level from pre-operation to days 1 (A), 7 286 

(B), and 28 (C) post-operation, respectively, for #205 (upper panel) and #125 (lower panel). The 287 

two patients display some commonalities and differences in terms of their network structure and 288 

sparsity. For example, module 53 is a hub that actively regulate many other modules in both 289 

success and failure graft-perturbed GRNs. This module only contains an antisense lncRNA gene, 290 

C5orf26/EPB41L4A-AS1, located in the 5q22.2 region of the genome [99]. This gene plays a 291 

role in the development, activation, and effector functions of immune cells [100]. However, the 292 

two networks are remarkably different in many aspects. First, the success network contains more 293 

links than the failure network at the early and middle stage of recovery after grafting, but this 294 

difference disappears at the late stage of recovery, suggesting that the successful patient can 295 

more quickly establish a stable network than the failed patient. Second, the success network from 296 

pre-operation to day 1 post-operation is framed by multiple hubs (including not only 53 but also 297 

5, 86, and 109), each displaying strong links with many other modules, but the failure network is 298 

only dominated by hub 53 with relatively weak links to other modules. Third, graft-perturbed 299 

networks alter more dramatically in topological structure across time for the failed patient than 300 

the successful patient.  301 

 302 

We reconstructed outcome-perturbed networks between successful and failed outcomes at 303 

different stages of operation (Fig. 4). We argue that if networks are not associated with graft 304 
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outcomes, outcome-perturbed networks should be similar structurally preoperatively and post-305 

operation. The outcome-perturbed network prior to operation is dominated primarily by hub 306 

module 53, followed by module 124 (Fig. 4A), but the outcome-perturbed network at day 1 post-307 

operation involves hubs 53, 124, 109, 59, and 5 (Fig. 4B). Module 53 drives the prior network 308 

purely through inhibiting other modules, whereas much of its role in the post network is played 309 

by promotion. Outcome-perturbed networks at days 7(Fig. 4C) and 29 post-operation (Fig. 4D) 310 

differ not only from that prior to operation in terms of the number and type of hub modules, but 311 

also are sharply contrast to those at day 1 post-operation. Taken together, the genomic 312 

mechanisms driving outcome difference can be interrogated by the topology of graft- and 313 

outcome-perturbed idopGRNs reconstructed by our approaches. 314 

 315 

How much a gene is expressed across dynamic networks is determined by its endogenous 316 

encoding force and the exogenous influence by other genes. Our approach can dissect the overall 317 

expression level of each gene into its independent and dependent expression components. The 318 

sign and size of the dependent components can explain how each gene is regulated by other 319 

genes in the networks. Four representative modules 20, 27, 118, and 135 exhibit distinct 320 

expression patterns across samples, whose underpinnings can be illustrated by drawing the 321 

independent and dependent expression curves (Fig. 5). The independent expression of each 322 

module increases exponentially with EI, but the slopes of increase vary depending on module 323 

type. Modules 20 and 27 are each promoted by other modules, 109, 1, 59 and 115 for the former 324 

(Fig. 5A) and 5, 53, and 13 for the latter (Fig. 5B), both listed in the order of promotion degree. 325 

These modules produce accumulative positive dependent effects on the expression of modules 20 326 

and 27, leading the observed expression level of these two focal modules to be higher than their 327 

independent expression level across EI gradients. By contrast, the independent expression level 328 

of modules 118 and 135 is downshifted by a set of eight modules for the former (Fig. 5C) and a 329 

set of four modules for the latter (Fig. 5D). These two sets of modules inhibit the expression of 330 

modules 118 and 135, respectively, producing accumulative negative dependent effects on the 331 

focal modules. 332 

 333 

Rabbit vein bypass graft 334 

We analyzed a second data set of gene expression to validate the usefulness of our approach. The  335 
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data of microarray genes was collected from a rabbit bilateral vein graft construct28. New 336 

Zealand white rabbits (weighing 3.0–3.5 kg) of high genetic similarity were treated by bilateral 337 

jugular vein interposition grafting and unilateral distal carotid artery branch ligation to create two 338 

6-fold different blood flows. Thousands of genes were monitored on vein grafts, harvested at 2 339 

hours, 1, 3, 7, 14, 30, 90 and 180 days after implantation, under both conditions, high flow and 340 

low flow. Each outcome involves three to six rabbits at each time point, which totalize 73 341 

samples. We chose a set of differentially expressed genes (1,395) for idopGRN reconstruction. 342 

We calculated the EI of each sample with these genes and plotted the expression of individual 343 

genes against EI. EI-varying expression profiles, fitted by a power function (Fig. S1), were 344 

clustered into 50 modules (Fig. S1). 345 

 346 

We reconstructed module-based idopGRNs of gene co-expression altered from time 2 hours to 1 347 

(A), 30 (B), and 180 days (C) after implantation under high and low flows (Fig. S2). These 348 

networks change strikingly in the structure and connectivity across times under both flow 349 

conditions. Also, at the same time, idopGRNs differ between high and low flows. Flow-350 

perturbed networks are structurally simple at time 2 hours, but show increasing complexities 351 

with time (Fig. S3), suggesting that high and low flows need a time to display their differences.  352 

Figure S4 illustrates how the expression of four modules is determined by their endogenous 353 

capacity and the exogenous influence of other modules. The overall expression of modules 3 (A), 354 

45 (B), and 38 (D) was observed to be higher than their independent expression because of 355 

positive influences exerted by other modules, but module 20 (C) is negatively affected by other 356 

modules, making its overall expression lower than independent expression. Taken together, 357 

results from the rabbit grafting study support the usefulness of our network inference approach. 358 

 359 

Computer simulation 360 

We will perform computer simulation studies to examine the stability, robustness, and sensitivity 361 

of our approach under different scenarios of different sample sizes and measurement errors. We 362 

simulated the expression data of m genes, = ( ( ), … , ( ))		( = 1,… , ), across N 363 

samples, with ( ) varying with 	( = 1,… , ). The EI-varying expression change of gene j 364 

is specified by an arbitrary form of endogenous expression curve and the sum of arbitrary forms 365 

of exogenous curves determined by a set of other genes, plus the residual error of gene j in 366 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644070doi: bioRxiv preprint 

https://doi.org/10.1101/644070


13 
 

sample i, following a multivariate normal distribution with the mean vector 0 and covariance 367 

matrix  whose structure following the AR(1) model. We design different scenarios by changing 368 

the number of samples, variance and covariance.  369 

 370 

Suppose the expression data of 50 genes across 50, 100, and 200 samples are simulated, 371 

respectively. Each gene interacts with a specific set of genes across samples, which are specified 372 

by a system of EI-varying qdODEs in Eq. 4. The residual variances and correlation coefficient of 373 

gene expression are set as j
2 = 0.01 or 0.1 and ρ = 0 or 0.3, respectively. The statistical efficacy 374 

of the new approach in terms of gene-gene interaction detection was evaluated by several 375 

conventional criteria, including true positive (TP), false positive (FP), true negative (TN), and 376 

false negative (FN), from which true positive rates (TPR) and false positive rates (FPR) are 377 

calculated by TPR = TP/(TP+FN) and FPR = FP/(FP+TN). In addition, the area under the curve 378 

(AUC) of the receiver operating characteristic curve (ROC) was calculated from the coordinates 379 

of TPR and FPR. Table S1 gives the results from our simulation studies under different 380 

parameter combinations. FPR is very low in every case, suggesting that the approach can be 381 

safely used in practice. In general, TPR is reasonably good, but depending on sample size and 382 

measurement error. If a small sample size (say 50) is used, we need to improve gene 383 

measurement precision to obtain good interaction detection power (say 0.75). If the measurement 384 

precision cannot be assured, sample size should be large enough. AUC performs quite well 385 

although it also depends on sample size and measurement error. 386 

 387 

Discussion 388 

The past two decades have witnessed countless transcriptional experiments initiated to explore 389 

the genomic mechanisms underlying high-order phenotypes for a wide range of organisms. 390 

These experiments were designed to monitor gene expression profiles of biological entities under 391 

contrast conditions and/or across developmental times. By various comparative analysis and 392 

tests, genes expressed differentially under different conditions or over times are identified as 393 

biomarkers of phenotypic variation. Cluster analysis was also used to detect distinct patterns of 394 

gene expression, facilitating the interpretation of the genomic control over phenotypic or 395 

developmental plasticity28. However, these widely used standard genomic experiments have not 396 

purported to reconstruct gene regulatory networks (GRNs), although these networks play a major 397 
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role in linking genotype to phenotype1,2. The inference of informative GRNs critically relies 398 

upon more expensive experiments that are specially designed to produce either perturbed 399 

expression data or high-density temporal expression data (Huynh-Thu and Sanguinetti 2018). 400 

 401 

In this article, we represent an interdisciplinary approach for reconstructing biologically 402 

meaningful GRNs from standard gene expression experiments. How much a gene is expressed in 403 

a biological entity is determined by multiple endogenous and exogenous factors. These factors 404 

together form the “ecological” component of the entity related to the gene’s overall expression 405 

within a network, which can be virtualized as the niche of the gene according to ecology 406 

theory30. While niche differences maintain the stability of gene networks, the sum of gene-407 

specific niches on an entity reflects the entity’s capacity to supply energy and material for all 408 

genes to be expressed. We define the total expression amount of all genes on an entity as the 409 

niche index (NI) of the entity. We integrate and contextualize the niche theory of biodiversity 410 

(describing how genes are expressed differently across entities) and evolutionary game theory 411 

(describing how genes are co-expressed differently across entities) to derive a system of quasi-412 

dynamic ordinary differential equations (qdODEs) with the NI derivative. Such qdODEs specify 413 

gene interdependence and interconnection, constructed from any transcriptional experiments 414 

involving multiple entities under different treatments, monitored at several key stages and/or 415 

across spaces. The optimization solution of these ODEs, through the implementation of variable 416 

selection, enables the inference and recovery of informative (encapsulating bidirectional, signed, 417 

and weighed links), dynamic (tracing network alterations across spatiotemporal gradients), 418 

omnidirectional (capturing all possible links but maintaining the sparsity of networks), and 419 

personalized (individualizing networks for each entity) GRNs (idopGRNs). 420 

 421 

We incorporate community ecology theory to interpret the biological relevance of idopGRNs. 422 

Like the pattern of species-species interaction as a function of resource availability48, how one 423 

gene interacts with others depends on signal transduction and information flow. The same gene 424 

may form a synergistic coexistence with the second gene through cooperation, but may establish 425 

an antagonistic relationship with the third gene through competition. The biological 426 

underpinnings causing each interaction can be speculated by ecological principles. 427 

 428 
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We validated the utility of our approach by analyzing gene expression data from surgical 429 

patients. Vein bypass grafting is an essential treatment for lower extremity arterial occlusive 430 

disease, but only with 30 – 50% success rate27. The biological mechanisms underlying the 431 

outcome of grafts include cue-induced differentiation of gene expression. We used our approach 432 

to reconstruct graft- and outcome-perturbed idopGRNs from 1,870 differentially expressed genes 433 

and identified identify key genes and key interactions that cause success vs. failure. As an 434 

antisense lncRNA gene, located in the 5q22.2 region of the genome, C5orf26/EPB41L4A-AS1 435 

plays a leadership role in regulating other genes within networks (99). How many genes it 436 

regulates, how differently it regulate these genes, and how its regulation responds to grafting and 437 

recovery are all potentially important for patients to cure. Based on previous functional studies 438 

(100), we postulate that the role of C5orf26/EPB41L4A-AS1 in mediating and activating the 439 

gene networks toward cure may be executed through its effects on the development, activation, 440 

and effector functions of immune cells. We found more links in the networks of successes than 441 

those of failures at the early and middle stage of recovery after grafting. Previous ecological 442 

studies show that the number of links, which is usually defined as the complexity of a network49, 443 

is positively correlated with the stability of the network50-52. This thus suggest that the successful 444 

patient can more quickly establish a stable network than the failed patient. In conjunction with 445 

results from the rabbit vein grafting study, it is suggested that idopGRNs determine grafting 446 

outcome by their key genes, structure, complexity, and organization. 447 

 448 

Given that complex phenotypes form, develop and alter through genetic networks, computational 449 

methods for detecting putative functional relationships between genes are clearly needed. 450 

Although extensive efforts have been made to reconstruct various GRNs, most network inference 451 

methods cannot provide an omnidirectional and quantitative assessment of network structure and 452 

organization. Our approach presented in this article has well resolved these issues, additionally 453 

equipping the network reconstruction with biologically meaningful interpretations. Our 454 

idopGRNs potentially provide powerful tools to explore various omics data, generate 455 

mechanistic hypotheses, and guide further experiments, model development, and analyses. By 456 

validating or invalidating various hypotheses experimentally, new scientific discoveries can be 457 

made, new insights gained, and new network models revised. Our approach can be refined to 458 

accommodate the data features of single cell analysis53, which enables idopGRNs to explore an 459 
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in-depth mechanisms that drive remote biochemical, developmental, and physiological 460 

transitions from genotype to phenotype. 461 
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Online Methods 597 

Here, we describe a statistical procedure for solving a system of qdODEs in Eq 1. By obtaining 598 

the maximum likelihood estimates of independent and dependent expression amounts of each 599 

gene, idopGRNs can be reconstructed. 600 

 601 

Variable selection for interacting genes 602 

Let yj = (yj(E1), …, yj(EN)) denote a vector of observed expression values for gene j (j = 1, …, m) 603 

over all samples. The observed expression of gene j at sample i is expressed as 604 

              yj(Ei) = Mj(Ei) + ej(Ei)  605 

= ( ): Θ + | ( ): Θ |, + ( )																																	(2A) 
= 	 ( ) + ( ) + ( ),																																																																																					(2B) 606 

where the overall expression level of focal gene j, Mj(Ei), includes its independent expression 607 

component, μj(Ei) = Gj(⋅) and dependent expression component accumulatively determined by all 608 

other genes, ( ) = ∑ | (), ; the derivatives of Gj(⋅) and Gj|j′(⋅) are gj(⋅) and gj|j′(⋅) 609 

of ODEs in Eq 1, respectively; and ej(Ei) is the measurement error at sample i, assumed to be iid 610 

with mean zero and variance 2
iσ . Note that  is the vector containing m – 1 unities and bj(Ei) = 611 

(bj|1(Ei), …, bj|m(Ei)) is a vector of the dependent expression of gene j determined by all genes, 612 

except for gene j. 613 

 614 

Many nonparametric functions, such as B-spline, regression B-spline, penalized B-spline, local 615 

polynomials, or Legendre orthogonal polynomials (LOP), can be used to model independent 616 

expression curves, μj(Ei), and dependent expression curves, bj(Ei). Chen et al.12 have proved 617 

statistical properties of B-spline variable selection for solving ODEs. Here, we implement B-618 

spline to fit μj(Ei) and bj(Ei) in Eq 2B, allowing orders of nonparametric functions to be gene-619 

dependent and also differ between independent and dependent expression curves. For any gene j 620 

as a response, there are (m – 1) predictors, each of which contributes to the dependent expression 621 

of this focal gene through unknown nonparametric dependent parameters βj = (βj|1,…,βj|(j–622 

1),βi|(j+1),…,βj|m). Thus, we have m – 1 groups of dependent parameters that reflects the regulation 623 

of other genes for the focal gene. We implemented group LASSO54 to select those nonzero 624 
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groups. The group LASSO estimators of dependent parameters, denoted as  = (βj|1, …, βj|(j–1), 625 

βj|(j+1), …, | ), where dj (<< m) is the number of the most significant genes that interact with 626 

gene j, can be obtained by minimizing the following penalized weighted least-square criterion, 627 	 ( , ) = − − − − + ∑ |, ,                    (3)  628 

where yj = (yj(E1), …, yj(EN)), yj = (yj(E1), …, yj(EN)), μj = (μj(E1), …, μj(EN)), and bj = (bj(E1), 629 

…, bj(EN)); λ1i is a penalty parameter determined by BIC or extended BIC; and Zj = diag{zj(E1), 630 

…, zj(EN)} where zj(Ei) is a prescribed nonnegative weight function on [E1, EN] with boundary 631 

conditions zj(E1) = zj(EN) = 0. This weight function is used to speed up the rate of convergence.  632 

 633 

Optimizing the topological structure of gene co-expression networks 634 

Through variable selection, we detect the most significant incoming links (dj << m) for each gene 635 

j that constitutes the qdODEs of Eq 1. By replacing m by dj, these ODEs are modified as 636 

= ( ): Θ + | ( ): Θ |, , = 1,… , ; = 1,… , ,														(4) 
which are a sparse version that represents the full model of incoming links for each gene, but 637 

with no constraint on the number of outgoing links and, therefore, the dimension of the network. 638 

We formulate a likelihood approach to estimate the modified ODEs. Let  = ( ; ) ∈  denote 639 

all model parameters. The likelihood function of  given these data is written as 640 ℒ( ; ) = f( 		 | 		  ),                                                  (5)  641 

where f(⋅) is the N-dimensional m-variate normal distribution for m gene across N samples with 642 

mean vector , 643 = ( ;… ; ) = ( ), … , ( ); … ; ( ), … , ( ) ,																									(6) 
 644 

and covariance matrix , 645 

Σ	 Σ ⋯ Σ⋮ ⋱ ⋮Σ ⋯ Σ .																																																									(7)  646 

 647 

In Eq 6, μj(Ei), the mean value of the expression of gene j at sample i, whose derivative contains 648 

gj(⋅) and gj|j′(⋅) specified by the modified qdODEs in Eq 4, is modeled by B-spline function and 649 
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estimated by standard fourth-order Runge-Kutta algorithms. Since B-spline nonparametric 650 

functions are intergrable, we can calculate Gj(⋅) and Gj|j′(⋅). In Eq 7,  is the sample-dependent 651 

covariance matrix of gene j, and  is the sample-dependent covariance matrix between genes j 652 

and j′. We assume that the residual errors of gene expression are independent among samples 653 

and that the residual variance of each gene is constant across samples. Thus,  and  are 654 

structured as 		  and 		 , respectively, where  is the residual variance of gene j 655 

at the same sample,  is the residual covariance of genes j and j′ at the same sample, and In is 656 

the identity matrix. However, we implement the first-order autoregressive (AR(1)) model to fit 657 

the residual covariances of gene expression among different time points at the same individual55. 658 

 659 

All model parameters  can obtain their optimal solution by maximizing the likelihood in Eq 5, 660 

expressed as 661 ∈ 	 arg	max∈ ℒ( , ) .																																																																	(8) 
Intuitively, this maximum likelihood optimization implies an optimal topological structure and 662 

organization in which genes interact with each other to maximize the expression level of all 663 

genes as a whole. This solution of Eq 8 establishes the mathematical formulation of Smith and 664 

Price’s evolutionary game theory45. 665 

 666 

Significance test of gene interactions 667 

One important issue for network reconstruction is how to statistically test the significance of 668 

edges as the measure of associations between nodes. We propose a likelihood ratio approach for 669 

network test. Under the null hypothesis that all microbes are independent from each other, the 670 

rate of expression change for each gene can be formulated by a reduced system of ODEs, 671 

expressed as 672 = ( ): Θ , = 1,… , ; = 1,… , 																																		(9) 
which is contrasted to the full system of ODEs in Eq 4 as the alternative hypothesis stating that at 673 

least one gene interaction in the network is significant. We calculate the likelihood values under 674 

the null and alternative hypotheses and their log-likelihood ratio (LR) as a test statistic. A 675 

network-wise critical threshold can be determined by permutation tests. This procedure includes 676 
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(i) shuffling sample-varying expression data among genes to make a new data, (ii) calculating 677 

the LR value based on this new data, (iii) repeating (i) and (ii) many times (say 1000), and (iv) 678 

detecting the 95% percentile of these 1000 LR values which is the cutoff for the significance test 679 

of networks. 680 

 681 

Environment-perturbed networks 682 

Genetic networks may be activated when the organism experiences environmental change. 683 

Suppose that gene co-expression changes from one sample (say i1) to next (say i2) due to 684 

differences in the internal environment of samples. The amount of this change can be estimated 685 

by integrating the dependent expression component of qdODEs in Eq 4 from  to , 686 

expressed as 687 Δ | = | ( ): Θ | ,																																													(9) 
which quantifies the expression difference of gene j regulated by gene j′  by assuming that  688 

sample transport virtually from i1 to i2. GRNs reconstructed from Δ |  (j ≠ j′ = 1, …, m) reflect 689 

the alterations of gene co-expression in response to environmental change, which are called 690 

environment-perturbed GRNs. Based on this definition, we can reconstruct treatment-, outcome-, 691 

development, or signal-perturbed networks to better understand the genomic mechanisms 692 

underlying cellular, physiological, and ecological processes. 693 

 694 
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Figure Legends 705 

 706 

Figure 1. (A) Diagram of a standard genomic study including multiple entities under two levels 707 

of treatment, I and II. Transcriptomic profiles are monitored at key time points including one 708 

before treatment (t0) and several others at early (t1), middle (t2), and late stages (t3) of response 709 

after treatment. (B) Illustration of informative, dynamic, omnidirectional, and personalized gene 710 

regulatory networks (idopGRNs) among six hypothetical genes from the standard genomic study. 711 

idopGRNs vary structurally among samples. For example, genes 1 and 2 are slightly antagonistic 712 

in sample 1, moderately antagonistic in sample 2, mutualistic in sample N, and parasitic/altruistic 713 

in a predicted sample. The commensalism of gene 5 to gene 1 is strong in samples 1 and N, but 714 

weak in sample 2. Because outgoing links are more than incoming links, gene 5 is a social gene 715 

in all samples, but the degree of its sociality is different across samples.  716 

 717 

Figure 2. The fitness of a power equation as a function of expression index (EI) (green line) to 718 

the observed expression levels of four genes, ADAM9 (A), LCN2 (B), PLXNA4 (C), and 719 

NSUN7 (D), chosen from the genomic study of human infrainguinal vein bypass grafting, across 720 

samples. Samples involve 48 patients, i.e., 35 successes (plus) and 13 failures (circle), multiplied 721 

by four time points (including day 0 pre-operation and days 1, 7, and 28 post-operation). Ticks 722 

on the x-axis represent the positions of each sample in terms of its EI. 723 

 724 

Figure 3. Graft-perturbed networks that code how different gene modules are co-expressed for a 725 

failed patient (upper panel) and a successful patient (lower panel) in response to physiological 726 

changes from pre-operation to day 1 (A), 7 (B), and 28 (C) post-operation. Numbers in small 727 

circles (each denoted as a node of the graph) represent module IDs. Red and blue arrows denote 728 

the direction by a gene promotes and inhibits other genes, respectively, and the thickness of an 729 

arrowed line is proportional to the strength of promotion or inhibition. A proportion of modules 730 

are unlinked, suggesting that they are neutral to each other and other linked genes. Dark red 731 

circles denote hub modules with higher connectivity than the average number of links among all 732 

modules. 733 
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Figure 4. Outcome-perturbed networks that code how different gene modules are co-expressed 735 

in response to successful vs. failed patients prior to operation (A) and day 1 (B), 7 (C), and 28 736 

(D) post-operation. Numbers in small circles (each denoted as a node of the graph) represent 737 

module IDs. Red and blue arrows denote the direction by a gene promotes and inhibits other 738 

genes, respectively, and the thickness of an arrowed line is proportional to the strength of 739 

promotion or inhibition. A proportion of modules are unlinked, suggesting that they are neutral 740 

to each other and other linked genes. Dark red circles denote hub modules with higher 741 

connectivity than the average number of links among all modules. 742 

 743 

Figure 5. Overall fitted curves of gene expression (orange line) from modules 20 (A), 27 (B), 744 

118 (C), and 135 (D) by a system of qdODEs as a function of expression index (EI) in the human 745 

vein grafting study. Each dot denotes a sample representing a patient with outcome success 746 

(plus) or failure (circle), measured at a time point (day 0 pre-operation and days 1, 7, and 28 747 

post-operation). The overall expression curve of each module is decomposed into its endogenous 748 

expression curve (blue line) and exogenous expression curves (green lines) exerted by a set of 749 

other modules (listed by their IDs). Exogenous expression curves are better displayed by a small 750 

plot within each large plot. Value 0 at y-axis is a cut-off point that describes how a focal module 751 

is regulated by other modules: Greater than 0 for promotion, less than 0 for inhibition, and zero 752 

for neutrality. Ticks on the x-axis represent the positions of each sample in terms of its EI. 753 
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Supplementary Figure Legends 789 

 790 

Figure S1. The fitness of a power equation as a function of expression index (EI) (green line) to 791 

the observed expression levels of four genes, BC011754 (A), AB007963 (B), BC016908 (C), 792 

and NM_005103 (D) across 73 rabbit samples. Samples include three to six rabbits under each of 793 

two blood flows, low (purple circles) and high (dark circles), measured at each of eight time 794 

points (hour 2 and days 1, 3, 7, 14, 30, 90, and 180) post-operation. Ticks on the x-axis represent 795 

the positions of each sample in terms of its EI. 796 

 797 

Figure S2. Development-perturbed networks at the module level under low flow (upper panel) 798 

and high flow (lower panel) of rabbit vein grafting experiment in response to developmental 799 

stimuli from hour 2 to day 1 (A), day 30 (B), and 180 (C) post-operation. Numbers in small 800 

circles (each denoted as a node of the graph) represent module IDs. Red and black arrows denote 801 

the direction by a gene promotes and inhibits other genes, respectively, and the thickness of an 802 

arrowed line is proportional to the strength of promotion or inhibition. A proportion of modules 803 

are unlinked, suggesting that they are neutral to each other and other linked genes. Dark red 804 

circles denote hub modules with higher connectivity than the average number of links among all 805 

modules. 806 

  807 

Figure S3. Flow-perturbed networks at the module level from slow to high flows of grafted 808 

rabbits at hour 2 (A), day 1 (B), day 30 (C), and day 180 (D) post-operation. Numbers in small 809 

circles (each denoted as a node of the graph) represent module IDs. Red and black arrows denote 810 

the direction by a gene promotes and inhibits other genes, respectively, and the thickness of an 811 

arrowed line is proportional to the strength of promotion or inhibition. A proportion of modules 812 

are unlinked, suggesting that they are neutral to each other and other linked genes. Dark red 813 

circles denote hub modules with higher connectivity than the average number of links among all 814 

modules. 815 

 816 

Figure S4. Overall fitted curves of gene expression (orange line) from modules 3 (A), 20 (B), 45 817 

(C), and 48 (D) by a system of qdODEs as a function of expression index (EI) in the rabbit vein 818 

grafting experiment. Each dot denotes a sample representing a rabbit under a blood flow, low 819 
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(purple) or high (dark), measured at a time point (hour 2 and days 1, 3, 7, 14, 30, 90, and 180) 820 

post-operation. The overall expression curve of each module is decomposed into its endogenous 821 

expression curve (blue line) and exogenous expression curves (green lines) exerted by a set of 822 

other modules (listed by IDs). Exogenous expression curves are better displayed by a small plot 823 

within each large plot. Value 0 at y-axis is a cut-off point that describes how a focal module is 824 

regulated by other modules: Greater than 0 for promotion, less than 0 for inhibition, and zero for 825 

neutrality. Ticks on the x-axis represent the positions of each sample in terms of its EI. 826 

 827 
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Table S1 Statistical properties of idopGRN reconstruction under different simulation scenarios. 829 
Numbers in parentheses are the standard deviations. 830 

 831 

Sample size 
(n) 

Var/Corr 
/  

TP FP TPR FPR AUC 

50 0.1/0.3 8.85 (0.41) 84.61 (2.41) 0.738 (0.101) 0.034 (0.007) 0.852 (0.051) 

 
0.1/0.0 8.89 (0.42) 84.58 (2.41) 0.741 (0.102) 0.034 (0.006) 0.853 (0.051) 

 
1.0/0.3 6.015 (0.33) 83.76 (2.51) 0.501 (0.097) 0.034 (0.007) 0.734 (0.049) 

 
1.0/0.0 6.03 (0.34) 83.74 (2.49) 0.503 (0.111) 0.034 (0.006) 0.734 (0.056) 

100 0.1/0.3 9.565 (0.44) 80.96 (2.34) 0.797 (0.09) 0.033 (0.006) 0.882 (0.046) 

 
0.1/0.0 9.705 (0.45) 82.73 (2.37) 0.809 (0.094) 0.033 (0.006) 0.888 (0.047) 

 
1.0/0.3 7.245 (0.37) 90.76 (2.67) 0.604 (0.102) 0.036 (0.006) 0.784 (0.051) 

 
1.0/0.0 7.18 (0.36) 90.52 (2.66) 0.598 (0.104) 0.036 (0.007) 0.781 (0.052) 

200 0.1/0.3 10.45 (0.48) 78.45 (2.29) 0.871 (0.083) 0.032 (0.005) 0.92 (0.042) 

 
0.1/0.0 10.35 (0.47) 78.36 (2.29) 0.863 (0.09) 0.031 (0.005) 0.916 (0.045) 

 
1.0/0.3 8.285 (0.39) 91.63 (2.68) 0.690 (0.092) 0.037 (0.006) 0.827 (0.046) 

 
1.0/0.0 8.31 (0.39) 91.15 (2.65) 0.693 (0.101) 0.037 (0.006) 0.828 (0.051) 

 832 

TP: true positive; FP: false positive; TN: true negative; FN: false negative (FN); TPR: true 833 
positive rates; TPR: false positive rates; AUC: area under the curve. 834 
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