
 

 
 
 
 
 
 
 

Delta phase resetting mediates non-rhythmic temporal 
prediction 

 
 

Jonathan Daumea*, Peng Wanga, Alexander Mayea, Dan Zhangb and Andreas K. Engela 

 
a Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-

Eppendorf, Hamburg, 20246, Germany 
b Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, 

100084, China 

                                                
* Correspondence: j.daume@uke.de; twitter: @jonathan_daume 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/643957doi: bioRxiv preprint 

https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract 1 

Neural oscillations adjust their phase towards the predicted onset of rhythmic stimulation 2 

to optimize the processing of relevant information. Whether such phase alignments can be 3 

observed in non-rhythmic contexts, however, remains unclear. Here, we recorded the 4 

magnetoencephalogram while healthy participants were engaged in a temporal prediction task 5 

judging the visual or crossmodal (tactile) reappearance of a uniformly moving visual stimulus 6 

after it disappeared behind an occluder. The temporal prediction conditions were contrasted 7 

with a working memory control condition to dissociate phase adjustments of endogenous 8 

neural oscillations from stimulus-driven activity. During temporal predictions, we observed 9 

stronger delta band inter-trial phase consistency (ITPC) in a network of sensory, parietal and 10 

frontal brain areas. Delta ITPC further correlated with individual prediction performance in parts 11 

of the cerebellum and in visual cortex. Our results provide evidence that phase alignments of 12 

low-frequency neural oscillations underlie temporal predictions in non-rhythmic unimodal and 13 

crossmodal contexts.  14 
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Introduction 15 

In recent years, increasing evidence has been gathered that the processing of information 16 

in the brain occurs in a rhythmic, oscillatory fashion. Extracellular local field potentials as well 17 

as the macroscopically observable magneto- and electroencephalogram (M/EEG) reflect 18 

alternating transmembrane current flows from large ensembles of synchronized neurons, 19 

oscillating with frequencies ranging from very slow (<0.1 Hz) to high gamma frequencies (>200 20 

Hz). It has been proposed that these neural oscillations reflect alternating states of higher or 21 

lower neural excitability which can modulate the efficiency with which coupled neurons engage 22 

in mutual interactions (Buzsáki, 2006; Fries, 2005). As a result, neural communication and 23 

information processing has been shown to occur in a phase-dependent manner (Engel et al., 24 

2001, 2013; Fries, 2005), reflected for example by fluctuations in perception thresholds that 25 

correlate with the phase of ongoing oscillations (VanRullen, 2016).  26 

Since they represent fluctuations in neural excitability, oscillations were also linked to 27 

temporal predictions of upcoming relevant information (Arnal and Giraud, 2012; Engel et al., 28 

2001; Rimmele et al., 2018). Environmental stimuli often entail temporal regularities that make 29 

aspects of the stimulation, such as the temporal onsets of upcoming changes, highly 30 

predictable. Studies have shown that animals can utilize these predictive aspects to optimize 31 

behavior, leading to faster reaction times (Gould et al., 2011; Lakatos et al., 2008; Rohenkohl 32 

and Nobre, 2011; Stefanics et al., 2010) or enhanced stimulus processing (Cravo et al., 2013; 33 

Wilsch et al., 2015). By means of top-down induced phase resets of neural oscillations, phases 34 

of high excitability might be adjusted towards the expected onset of relevant upcoming in order 35 

to optimize behavior. When presented with a 2 Hz isochronous rhythm, for instance, the phase 36 

of oscillations within the same frequency range (and their harmonics) might align to the 37 

stimulation rhythm in such a way that phases of high excitability optimally coincide with each 38 

recurring stimulus onset. In other words, the phase of the aligned oscillation codes for the 39 

predicted time point of each upcoming stimulus onset in the rhythm. It has been suggested 40 
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that such phase alignments could form the basis of neural mechanisms that underlie temporal 41 

predictions (Arnal and Giraud, 2012; Rimmele et al., 2018; Schroeder and Lakatos, 2009).  42 

Due to the rhythmic and therefore temporally highly predictable nature of many auditory 43 

stimuli such as speech or music, particularly in the auditory domain, many studies gathered 44 

evidence that oscillations reset and thereby adjust their phase towards rhythmic stimuli of 45 

various frequencies (Doelling and Poeppel, 2015; Giraud and Poeppel, 2012). Also in the 46 

visual domain, studies showed that neural oscillations align to rhythmic visual input (Besle et 47 

al., 2011; Cravo et al., 2013; Gomez-Ramirez et al., 2011; Herrmann, 2001; Lakatos et al., 48 

2008; Saleh et al., 2010). However, other studies investigating temporal predictions in the 49 

visual domain observed exclusive involvements of oscillations in the alpha range (8–12 Hz) 50 

rather than phase alignments of oscillations matching the low-frequency temporal structure of 51 

the stimulation (Rohenkohl and Nobre, 2011; Samaha et al., 2015), leaving the involvement of 52 

interval-matching phase alignments in visual predictions unsettled. 53 

Moreover, despite their ecological relevance, using rhythms for the investigation of an 54 

involvement of oscillations in temporal predictions entails methodological and conceptual 55 

challenges. Rhythms have the obvious methodological advantage that the temporal structure 56 

of the stimulation and therefore the frequencies of the oscillations that should align to the 57 

rhythmic stimulation are well-defined. However, rhythmic input also leads to a continuous 58 

stream of regularly bottom-up evoked potentials, which are – at least – difficult to distinguish 59 

from top-down phase adjusted endogenous neural oscillations within the same frequency 60 

(Doelling et al., 2019; Zoefel et al., 2018). In addition, using only rhythmic stimulation lacks the 61 

opportunity to link phase adjustments to a more general neural mechanism that predicts the 62 

temporal structure of any external input. If phase adjustments form the basis of tracking the 63 

temporal regularities of any relevant information, neural oscillations should align also to 64 

predictable temporal regularities that are inferred from input that does not itself comprise 65 

rhythmic components, such as, for instance, monotonic motion. Nevertheless, the vast majority 66 

of studies investigating phase adjustments in the context of temporal predictions presented 67 

participants with streams of (quasi-)rhythmic stimulation. Disentangling phase alignments of 68 
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neural oscillations from a continuous stream of event-related potentials in a non-rhythmic 69 

predictive context therefore constitute important aspects for examining the involvement of 70 

endogenous neural oscillations in temporal prediction processes. 71 

In the current study, we set out to investigate whether phase adjustments of neural 72 

oscillations can be observed for non-rhythmic, but predictable visual motion stimuli. We 73 

measured MEG while healthy participants watched a visual stimulus continuously moving 74 

across the screen until it disappeared behind an occluder. We manipulated the time for the 75 

stimulus to reappear on the other side of the occluder (on average 1.5 s). The task was to 76 

judge whether the stimulus reappeared too early or too late based on the speed of the stimulus 77 

earlier to disappearance. Hence, from the time point of disappearance behind the occluder, 78 

participants were required to temporally predict the correct time point of reappearance to be 79 

able to accomplish the task. We contrasted this condition to a control task, in which participants 80 

judged the luminance of the reappearing stimulus instead of its timing. Importantly, since 81 

physical appearance of both conditions was exactly the same in all aspects of the stimulation, 82 

any purely stimulus-related, bottom-up activity should level out between the two conditions. 83 

Moreover, since it has been shown that sensory stimulation can lead to crossmodal phase 84 

adjustments also in relevant but unstimulated other modalities (Lakatos et al., 2007; Mercier 85 

et al., 2013; ten Oever and Sack, 2015), we further introduced a third condition, in which a 86 

tactile instead of a visual stimulus was presented at reappearance. By contrasting it to the 87 

working memory control condition, we sought to determine whether phase adjustments can be 88 

observed in regions associated with tactile stimulus processing, when sensory information was 89 

in fact only provided to the visual system.  90 

We hypothesized that in the two temporal prediction tasks, as compared to working 91 

memory, we would observe stronger inter-trial phase consistency (ITPC) within time windows 92 

between disappearance and expected reappearance. Enhanced ITPC specifically in these 93 

time windows would reflect phase resets of ongoing oscillations at disappearance of the 94 

stimulus, where temporal prediction processes might be initialized. Moreover, if the phase of 95 

these oscillations indeed codes for the time point of the expected reappearance in each 96 
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participant, two further hypotheses can be formulated: (a) participants showing a more 97 

consistent judgment of reappearance timing, as represented by a steep psychometric function, 98 

should have stronger ITPC during temporal predictions than participants who performed less 99 

accurately, since a consistent timing judgment across trials should also involve a consistent 100 

phase across trials. And (b), a clustering of a specific phase within the oscillation showing the 101 

strongest ITPC in each participant should be observable at the individual subjective time points 102 

of predicted reappearance. That is, not at the actual reappearance time points of the stimulus 103 

itself but at each individual’s subjective “right on time” impression, i.e., the time point at which 104 

the reappearance is expected, a clustering of a specific (“right-on-time”) phase should be 105 

observable across participants. This time point can also be inferred from the psychometric 106 

function as the point of subjective equality.  107 

Taken together, observing enhanced ITPC during temporal prediction as well as a phase 108 

clustering at the time point of expected reappearance would provide evidence that endogenous 109 

neural oscillations align to the temporally predictive structure of external stimulation in a non-110 

rhythmic visual context. This would strongly support the hypothesis that such phase alignments 111 

form the basis of the neural mechanisms that underlie temporal prediction processes in a 112 

unimodal visual as well as crossmodal visuotactile context. 113 
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Results 114 

Behavioral results 115 

Participants did not receive feedback about the correctness of their response. This 116 

ensured that participants relied on their individual and subjective “right on time” (ROT) 117 

impression in the temporal prediction and “point of subjective equivalence” (PSE) in the 118 

working memory condition. Across participants, there was no statistically significant bias 119 

towards “too early/darker” or “too late/brighter” responses in the visual temporal prediction (Dt 120 

(ROTV) = 13.15 ± 155.20 ms; t(22) = .41; p = .69) or in the working memory task (DRGB (PSE) 121 

= -1.29 ± 4.54 RGB; t(22) = -1.36; p = .19), respectively (Figure 1B). In the tactile temporal 122 

prediction task, participants showed a significant bias towards “too early” responses (Dt (ROTT) 123 

= 99.80 ± 150.00 ms; t(22) = 3.19; p = .004). 124 

Participants responded significantly faster in each of the temporal prediction tasks as 125 

compared to the working memory task (visual prediction: t(22) = -2.55; p = .02; temporal 126 

prediction: t(22) = -4.29; p < .001). To assess whether reaction times were dependent on the 127 

timing of the reappearing stimulus (Figure 1C), we averaged across all luminance differences 128 

and fitted a linear model to reaction time data in each condition. Since reaction times should 129 

be slowest for timing differences around 0 ms, where ambiguity for the timing of the 130 

reappearing stimulus was strongest, we expected reaction times to follow an inverted U-shape 131 

in the temporal prediction tasks. Therefore, we used a second-order polynomial regression 132 

with timing difference as predictor and tested each participant’s coefficients against zero. 133 

Reaction times were significantly predicted by timing difference in all, the visual prediction 134 

(first-order coefficient: -7.77 x 10-4  ± 5.27 x 10-4, t(22) = -7.08, p < .001; second-order 135 

coefficient: -1.42 x 10-6  ± 1.20 x 10-6, t(22) = -5.68, p < .001), the tactile prediction (first-order 136 

coefficient: -2.88 x 10-4  ± 4.43 x 10-4, t(22) = -3.12, p = .005; second-order coefficient: -1.26 x 137 

10-6  ± 1.10 x 10-6, t(22) = -5.50, p < .001) as well as in the working memory task (first-order 138 

coefficient: -1.60 x 10-4  ± 1.44 x 10-4, t(22) = -5.31, p < .001; second-order coefficient: 2.75 x 139 

10-7 ± 3.51 x 10-7, t(22) = 3.76, p = .001). Hence, although the timing of the stimulus was not 140 
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relevant in the working memory task, reaction times in that condition were (in part) also 141 

dependent on the timing of the reappearing stimulus and faster the later the stimulus 142 

reappeared. 143 

 
 

Figure 1. Experimental design and behavioral results. (A) Trial structure used in all three conditions. A stimulus 144 
was moving from the periphery towards the center of the screen until it disappeared behind an occluder. The time 145 
of the stimulus moving behind the occluder was manipulated. Task was to judge whether the stimulus reappeared 146 
too early or too late. In the working memory (control) condition, task was to judge whether the luminance became 147 
brighter or darker at reappearance of the visual stimulus. Importantly, physical stimulation was exactly the same 148 
as in the visual prediction task. In the tactile temporal prediction task, at reappearance a tactile stimulus was 149 
presented to the index finger contralateral to the disappearance of the visual stimulus. For clarity of presentation, 150 
the contrast of the occluder in this figure was increased. (B) Psychometric functions of the three conditions 151 
averaged across all participants and individual ROT/PSE estimates. A timing difference of 0 refers to the 152 
objectively correct reappearance of the stimulus after 1,500 ms. Analogously, a luminance difference of 0 refers 153 
to equal luminance after reappearance provided in RGB values (see Methods). For better comparability, individual 154 
ROT and PSE estimates are provided in frames (1 frame = 17 ms) and RGB. Colored areas around psychometric 155 
functions depict standard errors of the mean (SEM). (C) Log-transformed and standardized reaction times in all 156 
three conditions for all timing differences (mean ± SEM). Reaction times were averaged across all luminance 157 
differences. P = proportion; WM = working memory; t = time; l = luminance; RGB = red-green-blue. 158 
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Temporal prediction was associated with reduced beta power in sensory regions 159 

Analyzing the neural data, we were first interested in investigating which frequency bands 160 

showed modulated spectral power during windows of temporal predictions. To determine 161 

frequency bands of interest, we tested an average of spectral power across all sensors and 162 

conditions against a pre-stimulus baseline window. Although we were most interested in time 163 

windows of temporal prediction, i.e., around disappearance of the stimulus, we first obtained 164 

a general overview of power modulations at each event in the experimental paradigm by 165 

computing cluster-based permutations statistics in three separate time windows centered on: 166 

(a) the onset of the moving stimulus (“Movement”), (b) disappearance of the stimulus behind 167 

the occluder (“Disappearance”), and (c) reappearance of the stimulus (“Reappearance”). All 168 

windows were normalized with a pre-movement baseline window (Figure 2A). 169 

In time bins around movement onset as well as reappearance of the stimulus, clusters of 170 

frequencies in the theta and delta range showed a statistically significant increase of spectral 171 

power as compared to the baseline window. All time windows further depicted a significant 172 

decrease of spectral power in frequencies within the beta to lower gamma range, which 173 

extended into the higher gamma range at the end of the occluder window or the beginning of 174 

the reappearance window, respectively (all cluster p-values < .008). Importantly, even with 175 

using a liberal cluster alpha level of .05 (one-sided), we did not find a statistically significant 176 

modulation of delta power during the disappearance window. This was also not the case when 177 

reducing the test to sensors from occipital regions only (see Figure S1).  178 

Since we were most interested in examining power modulations associated with temporal 179 

predictions, i.e., during the disappearance window, we compared spectral power estimates 180 

between the temporal prediction tasks and the working memory task in all sensors within the 181 

disappearance window. We restricted our analysis to the classical beta band ranging from 13 182 

to 30 Hz, showing significant decreases as compared to baseline. Cluster-based permutation 183 

statistics revealed reduced beta power during visual temporal prediction in comparison to 184 

working memory in occipital sensors during all time-bins of the disappearance window (cluster-185 
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p = .01). Source level statistics on the average across all time bins showing significant 186 

differences on sensor level revealed a statistically significant decrease of beta power in a 187 

cluster of bilateral occipital voxels (cluster-p = .01). A comparison between the tactile prediction 188 

task and the working memory task showed that beta power was reduced during tactile 189 

prediction in a cluster of occipital as well as left lateralized frontocentral sensors (cluster-p = 190 

.002). In occipital sensors, beta power was reduced during all time bins, whereas the more 191 

anterior power reduction evolved first in left frontal sensors during stimulus disappearance and 192 

shifted towards more left-lateralized central sensors with ongoing disappearance time. At 193 

source level, a significant power reduction in the beta band was most strongly apparent in parts 194 

of bilateral visual as well as left-lateralized somatosensory cortex in an average across the 195 

whole time window (cluster-p = .01; see Figure S2 for condition-specific beta modulations as 196 

compared to baseline).  197 
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Figure 2. Power modulations during temporal prediction. (A) Spectral power for all time-frequency bins averaged 198 
across sensors, conditions, and participants. Each window was centered on the different events within the paradigm 199 
and normalized with pre-stimulus baseline. Time 0 refers to the onset of each event. Cluster-based permutation 200 
statistics were utilized to reveal significant power modulations as compared to baseline (unmasked colors). See 201 
also Figure S1. (B,C) Difference between the visual or tactile prediction and the working memory task, 202 
respectively, within the beta band (13 – 30 Hz) in time bins around stimulus disappearance. Marked sensors refer 203 
to the cluster of sensors that revealed statistically significant differences between the conditions. At source level, 204 
time bins were averaged across all bins showing significant differences at sensor level. Cluster-based permutation 205 
statistics were then employed to reveal cluster of voxels showing significant differences between the conditions 206 
(colored voxels). See also Figures S2 and S3. WM = working memory.  207 
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Inter-trial phase consistency in the delta band was stronger during temporal prediction 208 

than working memory 209 

For the analysis of ITPC, we followed a similar approach as for the analysis of spectral 210 

power. First, we tested ITPC differences as compared to baseline in the three time windows 211 

for an average across all sensors and conditions by cluster-based permutation statistics. ITPC 212 

was significantly increased across a range of different frequencies in time bins around 213 

movement onset, disappearance and reappearance of the stimulus as compared to baseline 214 

(all cluster-p < .001; Figure 3A). Significant ITPC changes were broadband for the time 215 

windows centered on movement onset as well as reappearance of the stimulus with strongest 216 

increases in the delta to alpha range. At disappearance of the stimulus, significant ITPC 217 

differences to baseline were observed up to the low beta range with strongest increases in the 218 

delta and theta band.  219 

The delta band showed strongest increases in ITPC but no increase in power as compared 220 

to baseline for an average across all conditions (see Figures 2A, 3A, and S1). Therefore, we 221 

restricted our further statistical analyses to frequencies between 0.5 to 3 Hz and time bins 222 

around disappearance of the stimulus. Differences between the two temporal prediction tasks 223 

and the working memory task were examined by computing cluster-based permutation 224 

statistics across all sensors for an average in this frequency band. For a better estimation of 225 

when differences in ITPC between the conditions became apparent, we enlarged the analysis 226 

of ITPC to time bins ranging from -1,900 ms to 1,900 ms centered on the disappearance of the 227 

stimulus. Note that in this enlarged analysis window the timing of the movement onset as well 228 

as the reappearance of the stimulus strongly jittered across trials. The effect of these events 229 

on ITPC estimates were thus strongly reduced (in comparison to the time windows that were 230 

centered on these events; see Figure S4).  231 

By comparing the visual temporal prediction task to the working memory task, we found 232 

two clusters that showed significantly stronger ITPC during temporal predictions (Figure 3B; 233 

for clarity of presentation, only every second time bin, i.e. 200 ms, of the cluster was plotted). 234 
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One cluster included sensors from right temporal, frontal and occipital regions in time bins from 235 

-400 to 1,900 ms (cluster p < .001). The second cluster included left frontotemporal sensors in 236 

time bins ranging from 0 to 1,900 ms (cluster p = .01) Source level analysis revealed that for 237 

an average of the time window from -400 to 1,900 ms, ITPC differences between the two 238 

conditions were strongest in right-lateralized central and inferior frontal voxels (cluster p < 239 

.001).  240 

For the contrast of tactile temporal prediction to working memory, we found a similar 241 

pattern of significant ITPC differences as for the contrast of visual prediction to working 242 

memory (Figure 3C). ITPC was also significantly enhanced in bilateral temporal sensors, 243 

evolving around -400 ms in right temporal sensors and shifting towards left hemisphere with 244 

ongoing disappearance time (cluster p < .001). In this contrast, however, differences in ITPC 245 

were more strongly apparent also in frontal and central sensors. Besides strongest differences 246 

in ITPC again in right superior parietal and inferior frontal voxels, source level analysis also 247 

revealed strong differences in bilateral somatosensory voxels for the contrast of tactile 248 

prediction to working memory (cluster p < .001).  249 

Figure 3D depicts absolute ITPC estimates for all three conditions in the enlarged 250 

disappearance time window. ITPC was averaged across participants and all the sensors that 251 

exhibited the top 20% of t values in the ITPC contrast between visual temporal prediction and 252 

working memory between 0 and 1,500 ms (see Figure 3B; similar results were obtained for 253 

sensors showing the top 10% or 5% of t values, see Figure S4D). ITPC also increased in the 254 

working memory condition around disappearance of the stimulus, but dropped down to 255 

stimulus movement level shortly afterwards. ITPC in the visual as well as tactile temporal 256 

prediction tasks also decreased after an initial overshoot, but stayed elevated throughout the 257 

entire disappearance window. Importantly, enhanced ITPC estimates during temporal 258 

predictions became apparent roughly at around disappearance of the stimulus and did not 259 

exist during baseline or early movement time windows. 260 
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Figure 3. Delta ITPC was enhanced as compared to working memory during temporal prediction. (A) ITPC 261 
estimates for all time-frequency bins averaged across sensors, conditions, and participants. Masked colors refer to 262 
non-significant ITPC modulations as compared to pre-stimulus baseline revealed by cluster-based permutation 263 
statistics. (B,C) Difference in ITPC between the visual or tactile prediction and the working memory task, 264 
respectively, within the delta band. Marked sensors refer to the cluster of sensors that revealed significant 265 
differences between the conditions in an enlarged analysis window around stimulus disappearance (-1,900 to 1,900 266 
ms; only every second time bin was plotted). On source level, time bins were averaged across all bins showing 267 
significant differences on sensor level and cluster-based permutation statistics were employed to reveal clusters of 268 
voxels showing significant differences between the conditions (colored voxels). See also Figures S4 and S5. (D) 269 
Time course of absolute ITPC estimates within each condition for time bins centered around disappearance of the 270 
stimulus (time 0; mean ± SEM). ITPC estimates were averaged across channels that showed the top 20% of t-271 
values for the comparison of the visual prediction with the working memory task (see topography). WM = working 272 
memory. 273 
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Inter-trial phase consistency predicts individual behavioral performance 274 

If the phase of neural oscillations was indeed associated with temporal predictions, a 275 

participant who judged the reappearance of the stimulus within her individual subjectively 276 

correct ROT framework in a consistent manner should exhibit stronger ITPC during temporal 277 

predictions than a participant who performed less consistently, as a consistent timing 278 

judgement across trials should involve a similar phase across trials. The consistency of 279 

judgements can be inferred from the steepness of the psychometric function. That is, the 280 

steeper the psychometric function, the more consistent the answers of the participant. To 281 

examine the relationship between individual ITPC estimates and the steepness of the 282 

psychometric functions, we computed Pearson correlations of source level delta ITPC with the 283 

steepness of the psychometric function in all voxels of the 5,003 voxels grid across 284 

participants. Using cluster-based permutation statistics, we found statistically significant 285 

positive correlations in the visual (cluster p = .003) as well as in the tactile temporal prediction 286 

task (cluster p = .002; Figure 4). Strongest correlations were found in the cerebellum and right 287 

lateralized early visual areas in both tasks. No clusters showing significant positive or negative 288 

correlations were observed in the working memory task (all cluster p > .1).  289 
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Figure 4. Correlation analysis between delta ITPC and the steepness of the psychometric function. (A,B) 290 
Correlation of individual ITPC estimates with the individual steepness of the psychometric function within all 291 
voxels, shown in (A) for the visual prediction, and in (B) for the tactile prediction condition. ITPC estimates were 292 
averaged within the delta band and time windows of 0 to 1,000 ms centered on the disappearance of the stimulus. 293 
Only the clusters of voxels showing significant correlations are colored. Each dot in the scatter plots represents 294 
one participant. ITPC estimates were averaged across all voxels within the clusters of significant correlations. 295 
There was no significant correlation observed for the working memory condition.  296 
 
 
 
Delta phase clusters at individually predicted reappearance time points 297 

One of our main interests in this study was to examine whether the phase of slow 298 

oscillations codes for the predicted time point of reappearance of the stimulus, i.e., whether a 299 

clustering of a specific low-frequency phase can be observed at each individual’s ROT. In 300 

order to test that, we extracted the mean phase of that delta frequency that showed the 301 

strongest ITPC within each temporal prediction task as compared to the working memory task 302 

at ROT in each participant. In case there was no relationship between delta phase and 303 

individual ROTs, all phases extracted at ROT should be randomly distributed across the unit 304 

circle. That is, even if delta oscillations showed a phase reset at disappearance but this phase 305 

reset was not relevant for temporal predictions, the phases extracted at ROT should strongly 306 
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differ across participants, since individual ROTs strongly differed across participants as well 307 

(see Figure 1B). Moreover, if the frequency showing strongest ITPC within the frequency band 308 

of 0.5 to 3 Hz was further not related to temporal predictions, the phase extracted at ROT for 309 

these various frequencies should also vary strongly across participants.  310 

For this analysis, we again used the sensors that showed the strongest statistical 311 

differences in ITPC for the contrasts of each prediction task to the working memory (see Figure 312 

3B and C). Moreover, only trials in which the stimulus actually reappeared later than each 313 

individuals ROT were considered, so that stimulus onset related brain activity would not distort 314 

phase estimates at ROT. Mean phases extracted at ROT from each channel and all 315 

participants were then plotted into a histogram for each condition (Figure 5, upper row). We 316 

quantified the distance of the observed distribution to a uniform distribution by means of the 317 

modulation index (MI; Tort et al., 2010). In the working memory condition, we used individual 318 

ROTs from the visual prediction task (which employed identical stimulation) and extracted the 319 

phase from the frequency that showed the strongest ITPC as compared to the visual prediction 320 

task.  321 

To test whether the observed MI was significantly stronger than a random distribution 322 

obtained from surrogate MIs, we repeated the analysis 10,000 times using a randomly chosen 323 

frequency from the same delta band for each participant in each repetition. We found that for 324 

both, the visual prediction (p = .03) as well as the tactile prediction task (p = 0), the observed 325 

MI was significantly stronger than the surrogate MIs. Phases at ROT from both tasks clustered 326 

roughly around ±90°. In the working memory task, no significant clustering at a specific phase 327 

was found (p = .96).  328 
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Figure 5. Delta band phase clusters at individual ROT. In each condition, the mean phase observed at individual 329 
ROT for each participant was extracted from the top 20% of channels (see Figure 2 and topographies) and from 330 
the delta frequency showing the strongest differences in ITPC to working memory. All phases were plotted into a 331 
histogram (upper panels) and the modulation index was computed from that distribution (colored line in lower 332 
panels). Permutations (n = 10,000) were generated by extracting the phase from random frequencies within the 333 
delta band (as opposed to the frequency with strongest ITPC) and computing the MI for each permutation 334 
(distribution in lower panels). WM = working memory; WM (V) = data from working memory condition but 335 
frequencies determined within the visual prediction condition (see main text); MI = modulation index.  336 

 

Our reaction time analysis revealed that also in the working memory task, participants had 337 

a certain expectation about the temporal reappearance of the stimulus. Therefore, we 338 

hypothesized that the phase of the frequency that showed the strongest ITPC during the visual 339 

prediction task might also code for the timing of the reappearing stimulus in the working 340 

memory task, since physical stimulation was identical in both tasks. We repeated the above 341 

described analysis for the working memory condition, now using the same frequencies as 342 

obtained from the visual prediction condition and again tested the observed MI against 10,000 343 

repetitions with randomly chosen frequencies (Figure 5, Panel 4: WM (V)). With frequencies 344 

obtained from the visual prediction task, the MI observed for the working memory task was 345 

significantly stronger than MIs obtained from the random repetitions (p = .02).  346 
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ITPC estimates during temporal predictions do not correlate with eye movements 347 

 One potential explanation for the observed effects in ITPC could be that participants 348 

tracked the moving stimulus with their eyes to be able to judge the correct time point of 349 

reappearance. Thus, consistent horizontal eye movements with the speed of the stimulus 350 

might lead to enhanced ITPC in the delta band. To make sure that differences in eye 351 

movements do not explain the observed differences in ITPC between the conditions, we 352 

analyzed horizontal eye movements recorded by an eye tracker (ET) during the MEG 353 

measurement. Figure 6A depicts condition-wise horizontal eye positions averaged across all 354 

participants and centered on the disappearance of the stimulus, showing no systematic 355 

differences between the conditions. Moreover, if horizontal eye movements would explain the 356 

effects in ITPC, we should observe the same effects between the conditions when we compute 357 

ITPC for the ET data. Differences in ITPC between the two temporal prediction conditions and 358 

the working memory condition are depicted Figure 6B and C. Using cluster-based permutation 359 

statistics, we did not observe any time-frequency cluster that revealed significant differences 360 

between the conditions (all cluster p > .1). 361 

Further, we tested whether there are any significant correlations between individual ITPC 362 

values obtained from the MEG data and from the ET data. We averaged ITPC values from a 363 

time window of 0 to 1.500 ms and again used the top 20% of channels showing the strongest 364 

effect for ITPC for the MEG data (for channels see Figure 3D). Correlations between the data 365 

from the two measuring devices are depicted in Figure 6D. Again, we did not observe 366 

significant correlations between the ITPC values obtained from MEG and ET data. The 367 

strongest, albeit not significant correlation was found in the working memory condition, which 368 

confirms that the ITPC differences found in the MEG data cannot be explained by horizontal 369 

eye movements during temporal predictions.  370 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/643957doi: bioRxiv preprint 

https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/


 20 

 
 

Figure 6. Analysis of horizontal eye movements. (A) Condition-wise eye positions centered on stimulus 371 
disappearance (time 0 s) and averaged across all participants. A visual angle of 0° refers to the fixation dot (1° 372 
visual angle roughly corresponds to 1 cm on the screen). Colored areas depict SEM. (B,C) Differences in ITPC 373 
between (B) the visual prediction and (C) the tactile prediction condition to the working memory condition in low 374 
frequencies and time bins around disappearance of the stimulus (time 0 s). Utilizing cluster-permutation statistics, 375 
no clusters of significant differences were observed between the conditions. (D) Condition-wise correlations 376 
between ITPC estimates obtained from the eye tracker data and the MEG sensors across all participants. ET = eye 377 
tracker. 378 
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Discussion 379 

Our results support the idea that phase adjustments of ongoing neural oscillations could 380 

form the neuronal basis of temporal predictions and suggest that this framework can be 381 

extended to temporal predictions inferred from stimulation that does not itself comprise 382 

rhythmic components. Our task design enabled us to disentangle the phase reset of ongoing 383 

neural oscillations from evoked event related potentials and showed that phase adjustments 384 

are stronger in the context of temporal predictions than in tasks where temporal structure is 385 

less relevant. The strength of the observed phase adjustments correlated with the ability to 386 

consistently judge the temporal reappearance of the stimulus across participants. Moreover, 387 

the phase of individual delta oscillations clustered at around 90° at each participant’s predicted 388 

time point of reappearance, possibly indicating an optimal phase of neural oscillations in the 389 

context of temporal prediction.  390 

 

Cross-modal temporal predictions are reflected by a beta power reduction in both 391 

sensory systems 392 

It has been suggested that temporal predictions of upcoming events might be mediated 393 

by neuronal oscillations in the delta and beta frequency range (Arnal and Giraud, 2012). The 394 

enhanced phase consistency of delta oscillations as well as the power modulations in the beta 395 

band observed in the current study are in line with this hypothesis. However, earlier reports on 396 

beta power modulations during temporal predictions are inconsistent. In a study by Fujioka et 397 

al. (2012), after an initial reduction in power, beta oscillations transiently re-synchronized to 398 

reach a maximum at the time point of the expected subsequent stimulus in a rhythm, increasing 399 

differentially as a function of the utilized frequency of the rhythmic stimulation. Other studies 400 

found that beta power was even increased shortly before the onset of the expected stimulus 401 

in auditory (Arnal et al., 2015; Gulberti et al., 2015) and visual rhythmic stimulation (Saleh et 402 

al., 2010). On the other hand, van Ede et al. (2011) found that predicting the onset of a tactile 403 

stimulus was specifically associated with a reduction of beta power in contralateral tactile areas 404 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/643957doi: bioRxiv preprint 

https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/


 22 

and accompanied by faster reaction times. The authors suggest that a reduction in beta power 405 

might signal preparatory processes in the sensory system that expects the upcoming event. 406 

The observed decrease in beta power in task-relevant sensory regions in the current study 407 

largely match the results reported by van Ede et al. (2011). During visual temporal predictions, 408 

beta band power was reduced in visual sensory regions as compared to the visual control 409 

condition during the entire disappearance time. During crossmodal predictions, in which 410 

temporal information was provided to the visual system, but reappearance was expected in 411 

the tactile domain, beta band power was decreased in both, visual as well as tactile regions.  412 

Since also in the working memory condition participants expected to perceive a visual 413 

stimulus, preparatory processes alone cannot explain this reduction in beta power. This is 414 

especially the case in the crossmodal condition, in which no visual stimulus was expected, but 415 

stronger decreases in beta were also observed in visual areas. Moreover, since we observed 416 

beta decreases also in tactile regions at the time of visual stimulus disappearance, the 417 

decrease could not solely be an effect of external stimulation.  418 

One could argue that potential working memory maintenance processes associated with 419 

beta power increases in visual regions (Daume et al., 2017b, 2017a) could in fact explain the 420 

stronger decrease in beta power during temporal predictions. The lack of a beta modulation 421 

relative to the pre-stimulus baseline in the working memory condition would be in line with this 422 

explanation, since working memory maintenance (reflected by a beta power increase) 423 

combined with processes related to preparation (reflected by a beta power decrease) would 424 

level out beta modulations in early visual areas (see Figure S2). This could, however, not 425 

explain the observed beta power reduction in visual areas during the tactile temporal prediction 426 

condition, since no visual stimulation was expected here.  427 

Beta decreases observed during temporal predictions might therefore relate to more than 428 

only to preparatory processes to an upcoming stimulus. Cross-modal decreases in beta band 429 

activity in both the temporal information providing visual as well as the stimulation expecting 430 

tactile system might reflect that both sensory modalities are continuously involved in temporal 431 
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prediction processes, not only in processes preparing for the upcoming stimulation. We found 432 

no significant increases in beta power during temporal predictions, even if the time window 433 

was centered on the time point of predicted reappearance (ROT) in each participant in either 434 

of the two prediction conditions (see Figure S3). Whether decreases in beta power are 435 

associated with non-rhythmic temporal predictions while increases might reflect temporal 436 

predictions during rhythmic stimulation, remains subject to future research. 437 

 

Neural oscillations at low frequencies adapt to the temporal structure of visual moving 438 

stimuli 439 

Seminal work by Lakatos et al. (2008) showed that the phase of delta oscillations in visual 440 

area V1 of monkeys followed the attended regular stream of either visual or auditory rhythmic 441 

stimulation. Moreover, reaction times towards a target stimulus varied as a function of the 442 

phase of delta oscillations. Such phase alignments could form the basis for temporal prediction 443 

processes to facilitate processing of predictive upcoming stimulation (Arnal and Giraud, 2012; 444 

Schroeder and Lakatos, 2009). Similar results have also been found in studies of the human 445 

brain (Besle et al., 2011; Gomez-Ramirez et al., 2011).  446 

Phase entrainment of neural oscillations does not only occur in the delta band but can 447 

flexibly adapt to the frequency of the external input also at higher frequencies such as the theta 448 

or the alpha band. Doelling and Poeppel (2015) presented participants with rhythmic, musical 449 

stimuli composed of peak note rates varying from 0.5 to 8 notes per second and found neural 450 

oscillations with frequencies matching the different peak note rates to show increased phase 451 

entrainment to the stimuli. Moreover, multiple rhythmic streams presented at different 452 

frequencies can be simultaneously tracked by neural oscillations in different frequency bands, 453 

and behavior is especially enhanced when the phases from both rhythms coincide (Henry et 454 

al., 2014). This is specifically important in speech processing, where neural oscillations can 455 

track the complex spectrum of spoken language (Giraud and Poeppel, 2012). Accordingly, it 456 
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has been shown that the frequency of the entrained rhythm can modulate the comprehension 457 

of spoken words (Kösem et al., 2018).  458 

To serve as a potential mechanism to temporally predict the onset of relevant upcoming 459 

information, the entrainment of neural oscillations from different frequencies is crucial in order 460 

to flexibly adapt to the naturally occurring temporal regularities. However, in the visual system, 461 

evidence for the tracking of temporally predictive input by neural oscillations from different 462 

frequency bands is not as clear. On the one hand, studies showed that the phase of delta 463 

oscillations is involved in temporal predictions of visual input (Cravo et al., 2013; Saleh et al., 464 

2010; Wilsch et al., 2015). On the other hand, studies suggested that temporal predictions in 465 

the visual system were specific to the alpha band. Rohenkohl and Nobre (2011), for instance, 466 

used rhythmically presented visual stimuli at 2.5 and 1.25 Hz moving across the screen until it 467 

disappeared behind an occluder. Neural oscillations exclusively from the alpha band showed 468 

modulated activity associated with temporal predictions during the disappearance time. They 469 

found no phase locking of oscillations in lower frequencies. Moreover, results reported by 470 

Samaha et al. (2015) suggest that specifically the phase of alpha oscillations is modulated to 471 

predict the onset of a visual stimulus.  472 

In the current study, we provide further evidence that neural oscillations from the delta 473 

band show enhanced phase alignment during a window of explicit visual temporal predictions 474 

across trials. In order to adapt to the temporal regularity of the presented visual stimulus, delta 475 

frequencies in a wide network of parietal and frontal brain areas exerted more consistent phase 476 

resets at around the time point of disappearance of a visual stimulus as compared to a working 477 

memory control condition. The strength of this phase adjustment in each participant correlated 478 

with the consistency in judging a reappearance of the visual stimulus as too early or too late. 479 

This was the case only in the temporal prediction tasks, which underlines the behavioral 480 

relevance of the observed phase adjustments for temporal predictions.  481 

Moreover, by providing no feedback about the correctness of their response, we made 482 

sure that participants used individual time points at which they subjectively expected the 483 

stimulus to reappear. Within each participant’s neural oscillation that showed the strongest 484 
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ITPC during temporal predictions, we found a clustering of phases roughly around ±90° at 485 

each participant’s ROT. This was not the case when using the frequencies showing the 486 

strongest ITPC in the working memory condition, where timing was not as important. That is, 487 

within each individual’s subjective temporal framework, neural oscillations adjusted their phase 488 

to the external stimulation such that a phase of 90° eventually coincided with each individual’s 489 

predicted time point of reappearance. This provides strong support for the notion that in the 490 

context of temporal predictions the phase of delta oscillations adjusts to the temporal structure 491 

of the stimulation to code for the timing of the predicted reappearance. Our results are in line 492 

with results reported by Cravo et al. (2013), who showed that contrast sensitivity was a function 493 

of the phase of entrained delta oscillations. In their study, the strongest contrast sensitivity for 494 

visual stimuli was also observed at a delta phase around 90°. This phase range might therefore 495 

indicate an optimal phase for processes related to temporal prediction. 496 

Only when using the frequencies that exposed the strongest ITPC in the visual prediction 497 

task also for the analysis of phase clustering in the working memory task, we observed a 498 

significant phase clustering across all participants again roughly around ±90° as well. The 499 

results of the behavioral data suggest that the temporal structure of the stimulation was not 500 

totally irrelevant to the control task (see Figure 1C). Therefore, phase adjustments in neural 501 

oscillations related to the temporal structure might have also occurred within this task (see 502 

Figure S5 for condition specific ITPC), but they were less consistent than the phase 503 

adjustments observed in the temporal prediction tasks. 504 

Importantly, our study suggests that the mechanism of phase adjustments for temporal 505 

predictions can be extended to external stimulation that does not as such involve rhythms. We 506 

found that low-frequency oscillations can adjust their phase also to the temporal structure of 507 

external stimulation that had to be inferred from motion. Many natural stimuli are composed of 508 

highly predictable regularities, but not all of them are intrinsically rhythmic. Our results 509 

therefore indicate that the framework of phase adjustments during temporal predictions might 510 

be generalized to all forms of predictive stimulation.  511 
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Enhanced ITPC during temporal predictions is associated with phase adjustments in 512 

endogenous neural oscillations 513 

In earlier investigations of phase adjustments to external stimulation participants were 514 

mostly presented with streams of rhythmic input. An undeniable advantage of using rhythms 515 

is the well-defined frequency range of interest for analyzing the recorded brain activity. 516 

However, rhythmic input also causes evoked brain activity within the same frequency range, 517 

which makes it difficult to disentangle streams of evoked activity from entrained endogenous 518 

neural oscillations (Doelling et al., 2019; Zoefel et al., 2018).  519 

Our results provide further evidence that phase resets of low-frequency oscillations 520 

observed during temporal predictions cannot solely be explained by stimulus-evoked, bottom-521 

up brain activity (see also, Doelling et al., 2019; Kösem et al., 2018; ten Oever et al., 2017). In 522 

the current study, we aimed at reducing such brain responses to a minimum by presenting 523 

participants with a continuously moving stimulus instead of several discrete stimuli. We were 524 

particularly interested in the time point at which the stimulus transiently disappeared behind an 525 

occluder (as opposed to sharp onsets and offsets in rhythms). At disappearance, we did not 526 

observe an increase in low-frequency power as compared to pre-stimulus baseline in any of 527 

the conditions studies, which could have been associated with stimulus-evoked brain activity. 528 

Moreover, by introducing a control condition in which physical stimulation was exactly the same 529 

as during temporal predictions, we further aimed at controlling for brain responses that were 530 

not specific to temporal predictions. Importantly, delta power was not stronger during temporal 531 

predictions as compared to the working memory task (see Figure S1).  532 

We observed enhanced ITPC during temporal predictions as compared to the working 533 

memory condition as well as to the pre-stimulus baseline window at the time point of 534 

disappearance. This strongly favors the notion that ongoing, endogenous neural oscillations 535 

underwent a phase reset around the time point of disappearance, which was more consistent 536 

during temporal predictions than during working memory processes. These phase resets can 537 
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therefore not be solely related to brain responses evoked by the offset of the visual movement, 538 

since we did not observe power differences at low frequencies.  539 

Furthermore, we introduced a crossmodal temporal prediction task, in which a visual 540 

stimulus disappeared behind the occluder, while participants had to judge the timing of an 541 

upcoming tactile stimulus. In this condition, we observed enhanced ITPC in somatosensory 542 

areas at around the time point of disappearance of the visual stimulus. Since stimulation was 543 

purely visual at that time, evoked brain activity could not explain the observed effects in ITPC. 544 

However, we did not observe enhanced ITPC in early visual areas at any time point during 545 

temporal predictions as compared to the working memory control condition (discussed further 546 

below).  547 

 

Phase resets occurred in a network of frontoparietal and sensory brain areas 548 

We observed enhanced ITPC values in a network of mostly frontal and parietal brain areas 549 

during visual as well as crossmodal temporal predictions. Strongest ITPC values were 550 

observed in superior parietal and inferior frontal cortex contralateral to stimulus disappearance 551 

during both, visual as well as crossmodal temporal predictions. During tactile temporal 552 

predictions, strong ITPC values were also observed in bilateral somatosensory as well as in 553 

inferior parietal cortex contralateral to the predicted tactile stimulation. Similarly, Besle et al. 554 

(2011) observed significant phase entrainment to audiovisual stimulation in a wide network of 555 

distributed areas including parietal and inferior frontal areas. These observations support the 556 

notion that brain areas involved in temporal predictions may constitute a frontoparietal timing 557 

network (Coull and Nobre, 2008; Rimmele et al., 2018; Wiener et al., 2010). 558 

The fact that strong ITPC differences were not only observed in areas contralateral to the 559 

disappearance, but also in areas contralateral to the predicted reappearance of the stimulus 560 

in the opposite hemifield suggests that phase adjustments might not only reflect processes of 561 

temporal, but also processes of spatial predictions. Similarly, we observed enhanced ITPC 562 

values also in early somatosensory areas contralateral to the disappearance of the purely 563 
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visual stimulus during crossmodal temporal predictions, despite the fact that prediction-564 

relevant information was provided only by a moving visual stimulus. This supports evidence 565 

reported earlier showing that stimulation within one modality can crossmodally reset the phase 566 

of ongoing low-frequency in other modalities, which might be an important mechanism for 567 

multisensory integration processes (Lakatos et al., 2007; Mercier et al., 2013; ten Oever and 568 

Sack, 2015). Similarly, during crossmodal predictions we observed enhanced ITPC also in 569 

somatosensory areas contralateral to the expected tactile stimulation. Phase adjustments in a 570 

distributed network of areas might therefore reflect temporal as well as spatial or crossmodal 571 

predictions in areas that are relevant for providing as well as receiving the predictable 572 

information.  573 

Along the same line, we expected to find enhanced ITPC during temporal predictions in 574 

early visual areas, especially as the visual system was the only modality explicitly confronted 575 

with the external temporal information. In fact, strong ITPC estimates was also observed in 576 

occipital sensors as compared to baseline in each condition (see Figure S5), but they were not 577 

different between the conditions. One reason for this could be that processes not related to 578 

temporal prediction and therefore equal in all conditions could have overshadowed effects in 579 

the visual system. However, we found that voxels in early visual areas showed strong 580 

correlations between individual ITPC estimates and the steepness of the psychometric function 581 

in both temporal prediction tasks, but not in the working memory task. This suggests that 582 

consistent phase resets of delta oscillations within visual areas might have supported 583 

consistent timing judgments with the participants’ subjective timing frameworks. This indicates 584 

a critical involvement of the visual system also in processes related to temporal prediction.  585 

Moreover, we observed strong correlations between ITPC and behavior in the cerebellum, 586 

supporting earlier reports on a involvement of the cerebellum in temporal prediction processes 587 

(Breska and Ivry, 2016; Ivry and Keele, 1989). Roth and coworkers (2013), for instance, found 588 

that cerebellar patients were significantly impaired in recalibrating sensory temporal 589 

predictions of a reappearing visual stimulus. This finding is of particular interest as we adapted 590 

the authors’ experimental paradigm for the use in the current study. Theirs and our results 591 
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therefore indicate that the cerebellum might be crucially involved in accurate and consistent 592 

judgments of temporal regularities deployed in perceiving object motion. 593 

 

Conclusions 594 

We provide evidence that the phase of neural oscillations can adjust to the temporal 595 

regularities of external stimulation. Such phase alignments could provide a key mechanism 596 

that predicts the onset of upcoming events in order to optimize processing of relevant 597 

information and thereby adapt behavior. Our results further reveal that this concept of phase 598 

adjustments during temporal predictions can be extended to non-rhythmic, but predictable 599 

visual motion stimuli, which suggests that phase adjustments could be a general mechanism 600 

for temporal prediction processes. In a crossmodal setting, we show that temporal information 601 

provided to one modality leads to phase adjustments in another modality when crossmodal 602 

temporal predictions are necessary. Such crossmodal phase resets could be the neuronal 603 

basis of multisensory integration processes. Moreover, by introducing a physically matched 604 

control condition, our results support the notion that phase alignments observed during 605 

temporal predictions are based on phase resets in ongoing neural oscillations and do not arise 606 

as a byproduct of bottom-up stimulus processing. Importantly, we observed that these phase 607 

adjustments occurred on an individual level to match each individual’s subjective temporal 608 

predictions time points. Additionally, the more consistent a participant was in estimating the 609 

time of reappearance of the stimulus, the higher the phase alignment was across trials. Taken 610 

together, our results provide important insights into the neural mechanisms that might be 611 

utilized by the brain to predict the temporal and spatial onsets of upcoming events.   612 
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Methods 613 

Participants 614 

Twenty-three healthy volunteers (mean age ± standard deviation (SD): 27.13 ± 4.30 years; 615 

20 females; all right-handed) took part in the study. They gave informed written consent and 616 

were monetarily compensated with 13 €/hour for participation. All volunteers had normal or 617 

corrected-to-normal vision, normal touch, as well as no background of psychiatric or 618 

neurological disorder. The ethics committee of the Medical Association Hamburg approved the 619 

study protocol (PV5073), and the experiment was carried out in accordance with the approved 620 

guidelines and regulations. 621 

 

Experimental procedure 622 

The experimental paradigm used in the current study was adopted from an earlier report 623 

investigating visual temporal predictions in cerebellar patients (Roth et al., 2013). Our 624 

experiment consisted of three conditions: a visual temporal prediction task, a crossmodal 625 

(tactile) temporal prediction task, and a working memory (control) task. The trials of all 626 

conditions started with the presentation of a randomly generated, white noise occluder (size: 627 

7.5° x 11.3° (h x w)) that was smoothed with a Gaussian filter (imgaussfilt.m in MATLAB) and 628 

presented in the middle of the screen against a grey background screen (luminance: 44 cd/m2; 629 

corresponds to 115 red-green-blue (RGB) values in our setting; see Figure 1A). At the center 630 

of the occluder, a red fixation dot was presented. We instructed participants to fixate this dot 631 

throughout the entire trial. After 1500 ms, an oval stimulus (size: 3.5° x 1.0°) set on in the 632 

periphery of the screen, moving towards the occluder with a speed of 6.9 °/s. The luminance 633 

of the stimulus differed in all trials between 120 to 161 cd/m2 (6 steps, counterbalanced, 634 

corresponds to 170 to 220 RGB). For half of the participants, the stimulus started on the left 635 

side of the occluder and moved from left side towards the right side. For the other half, the 636 

stimulus started on the right side and moved from right to left. The direction of movement was 637 
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kept constant for each participant throughout the entire experiment. In each trial, the starting 638 

point of the stimulus differed such that the stimulus took 1,000 to 1,500 ms to disappear 639 

completely behind the occluder from starting point, randomly jittered with 100 ms 640 

(counterbalanced). The size of the occluder and the speed of the stimulus were chosen so that 641 

the stimulus would need exactly 1,500 ms to reappear on the other side of the occluder. 642 

However, we manipulated the timing and the luminance of the reappearing stimulus. In each 643 

trial, the reappearance of the stimulus differed between ±17 to ±467 ms (randomly jittered, but 644 

counterbalanced in steps of 50 ms; corresponds to ±1 to ±28 frames with a jitter of 3 frames 645 

at 60 Hz) from the correct reappearance time of 1,500 ms. Hence, the stimulus was covered 646 

by the occluder for 1,033 to 1,967 ms and was reappearing at 20 different time points. In the 647 

visual prediction task as well as in the working memory task, we also manipulated the 648 

luminance of the reappearing stimulus relative the luminance the stimulus had before 649 

disappearance in each trial (jittered, but counterbalanced between ±1 to ±40 cd/m2, also using 650 

20 different values; corresponds to ±1 to ± 28 RGB in steps of 3 RGB to make it similar to the 651 

timing manipulation). After reappearance, the stimulus moved to the other side of the screen 652 

for 500 ms with the same speed until it set off the screen. The occluder was presented 653 

throughout the entire trial. 654 

By manipulating the timing as well as the luminance in both conditions, we made sure that 655 

both, the visual temporal prediction as well as the working memory task had the exact equal 656 

physical appearance throughout all trials. They only differed in their cognitive set. In the visual 657 

temporal prediction task, we asked participants to judge whether the stimulus was reappearing 658 

too early or too late based on the speed the stimulus had earlier to the occluder (which was 659 

kept constant throughout the entire experiment). In the working memory task, participants were 660 

asked to judge whether the luminance of the reappearing visual stimulus became brighter or 661 

darker as compared to the stimulus earlier to disappearance. Participants answered by 662 

pressing one of two buttons with their index or middle finger of the hand contralateral to the 663 

reappearing stimulus.  664 
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The tactile temporal prediction task was equal to the visual temporal prediction task, with 665 

the only difference that a tactile stimulus instead of a visual was presented at the time of 666 

reappearance to the right or left index finger (depending on which side the stimulus was 667 

expected to reappear behind the occluder). The tactile stimulus was presented by means of a 668 

Braille piezostimulator (QuaeroSys, Stuttgart, Germany; 2 x 4 pins, each 1 mm in diameter 669 

with a spacing of 2.5 mm), pushing up all eight pins for 200 ms. At that time, nothing happened 670 

on the screen. Participants gave their answer with the same hand as in the other two conditions 671 

(i.e., with the hand that was not stimulated by the Braille stimulator). Response mapping of the 672 

two buttons was counterbalanced across all participants. As soon as participants gave their 673 

answer, the fixation dot turned dark grey for 100 ms to indicate that the response was 674 

registered. However, participants did not receive trial-wise feedback about the correctness of 675 

their response. After a short delay of 200 ms, the white-noise occluder was randomly re-676 

shuffled to signal the start of a new trial. 677 

All three conditions were presented block-wise. At the beginning of each block, 678 

participants were informed about the current task. The order of presentation of the conditions 679 

was kept constant for each participant, but was randomized across participants 680 

(counterbalanced). At the end of each block, they were informed about the overall accuracy of 681 

their answers within the last block and were allowed to rest as long as they wanted. Each 682 

participant performed two sessions at two different recording days. The experimental 683 

procedure was kept constant across both sessions, i.e., movement direction, response 684 

mapping, as well as condition order did not change in the second session for individual 685 

participants. Each session comprised twelve blocks, i.e., four blocks per condition. Each block 686 

consisted of 60 trials, resulting in a total number of 480 trials per condition or 1,440 trials in 687 

total. Due to technical difficulties, for one participant we only acquired data from one session 688 

with a total number of 720 trials.   689 

At the beginning of each recording day, participants performed a short training of all 690 

conditions to get familiar with the overall experimental procedure and the stimulus material. 691 

This training took part in the same environment as the subsequent recording session. At the 692 
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end of the second recording day, participants filled a questionnaire asking for any specific 693 

strategy they might have used for the temporal prediction task.   694 

We used MATLAB R2014b (MathWorks, Natick, USA; RRID: SCR_001622) and 695 

Psychtoolbox (Brainard, 1997; RRID: SCR_002881) on a Dell Precision T5500 with Ubuntu 696 

64-bit operating system (Version: 16.04.5 LTS) for stimulus presentation. The visual stimuli 697 

were projected onto a matte backprojection screen at 60 Hz with a resolution of 1,920 × 1,080 698 

pixels positioned 65 cm in front of participants. To mask the sound of the Braille stimulator 699 

during tactile stimulation, we presented participants with auditory pink noise at sampling rate 700 

of 48 kHz and volume of 85 dB using MEG-compatible in-ear headphones (SRM-252S, STAX 701 

Limited, Fujimi, Japan) during all experimental blocks.  702 

 

Data acquisition and pre-processing 703 

MEG was recorded at a sampling rate of 1,200 Hz using a 275-channel whole-head 704 

system (CTF MEG International Services LP, Coquitlam, Canada) situated in a dimly lit, sound 705 

attenuated and magnetically shielded chamber. We additionally recorded electrical eye, 706 

muscle and cardiac activity with Ag/AgCl-electrodes in order to have a better estimate for 707 

endogenous artefacts. Online head localizations (Stolk et al., 2013) were used to navigate 708 

participants back to their original head position prior to the onset of a new experimental block 709 

if their movements exceeded five mm from their initial position. The initial head position from 710 

the first recording day was saved so that participants could be navigated back to their initial 711 

head position also during the second recording day. This assured comparable head positions 712 

of each participant across sessions. Five malfunctioning channels were either not recorded or 713 

excluded from further analysis for all participants. To further control for eye movement artifacts, 714 

eye movements were tracked with an MEG-compatible EyeLink 1000 Long Range Mount 715 

system (SR Research, Osgoode, Canada). 716 

We analyzed reaction time data using R (R Core Team, 2014; RRID: SCR_001905) and 717 

RStudio (RStudio Inc., Boston, USA; RRID: SCR_000432). Trials with reaction times longer 718 
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than three standard deviations were excluded from analysis. Due to the right-skewed nature 719 

of reaction times, reaction time data were first log-transformed and then standardized across 720 

all trials from each participant.  721 

All other data were analyzed using MATLAB R2016b with FieldTrip (Oostenveld et al., 722 

2011; RRID: SCR_004849), the MEG and EEG Toolbox Hamburg (METH, Guido Nolte; RRID: 723 

SCR_016104), or custom made scripts. The physiological continuous recording of each 724 

session was first cut into epochs of variable length. Each trial was cut 1,250 ms earlier to 725 

stimulus movement onset and 1,250 ms after offset of the reappeared stimulus. Trial length 726 

therefore varied between 4,717 and 6,183 ms. To prevent that the timing in a given trial was 727 

not exactly as intended, e.g., by short movement interruptions of the stimulus, we removed 728 

trials which contained MEG marker timings that differed from the intended timing of the moving 729 

stimulus in the trial by at least one frame (17 ms). Thus, we excluded on average 1.2 trials in 730 

each participant and each session (range: 0 – 24 trials).  731 

Moreover, trials containing strong muscle artifacts or jumps were detected by semi-732 

automatic procedures implemented in FieldTrip and excluded from analysis. The remaining 733 

trials were filtered with a high-pass filter at 0.5 Hz, a low-pass filter at 170 Hz, and three band-734 

stop filters at 49.5–50.5 Hz, 99.5–100.5 Hz and 149.5–150.5 Hz and subsequently down-735 

sampled to 400 Hz.  736 

We performed an independent component analysis (infomax algorithm) to remove 737 

components containing eye-movements, muscle, and cardiac artefacts. Components were 738 

identified by visual inspection of their time course, variance across samples, power spectrum, 739 

and topography (Hipp and Siegel, 2013). On average, 25.7 ± 8.6 components were rejected in 740 

each participant and each session. All trials were again visually inspected and trials containing 741 

artefacts that were not detected by the previous steps were removed.  742 

As a final step, using procedures described by Stolk et al. (2013) and online 743 

(http://www.fieldtriptoolbox.org/example/how_to_incorporate_head_movements_in_MEG_an744 

alysis/) we identified trials in which the head position of the participant differed by 5 mm from 745 
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the mean circumcenter of the head position from the whole session (on average: 2.6 trials per 746 

participant and session, range: 0 – 86 trials) and excluded them from further analysis. 670.2 ± 747 

26.7 trials of the total of 720 trials remained from pre-processing on average per participant in 748 

each session. 749 

 

Quantification and statistical analysis 750 

In the current experiment, we introduced a control condition that was physically identical 751 

to our temporal prediction tasks (until reappearance in the tactile condition) in order to account 752 

for processes that are not directly related temporal predictions. Hence, for most of our 753 

statistical analyses, we were interested in comparing the two temporal prediction tasks with 754 

the working memory control task, respectively, and not in comparing the two temporal 755 

prediction tasks with each other. Therefore, instead of computing an analysis of variance 756 

across all three conditions, we directly computed two separate t-tests for the comparison of 757 

the visual or the tactile temporal prediction with the working memory task, respectively, and 758 

accounted for multiple comparisons by adjusting the alpha level.  759 

 

Psychometric curve  760 

We did not provide participants with feedback about the correctness of their response. 761 

Hence, participants responded within their individual framework of a “subjectively correct” 762 

reappearance timing or a “subjectively equal” luminance of the stimulus, respectively. To 763 

obtain these subjective points of “right-on-time” (ROT) in the temporal prediction tasks or the 764 

“points of subjective equality” (PSE) in the working memory task, we fitted a psychometric 765 

curve to the behavioral data of each participant from all trials in each condition. First, for each 766 

timing difference or luminance difference, respectively, we computed the proportion of “too 767 

late” or “brighter” answers for each participant. Then, we fitted a binomial logistic regression 768 

(psychometric curve) using the glmfit.m and gmlval.m functions provided in MATLAB. The 769 

fitted timing or luminance difference value at 50% proportion “too late” or “brighter” answers 770 
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was determined as ROT or PSE for each participant, respectively. To test for a significant bias 771 

towards one of the answers, we tested the ROT or PSE from all participants against zero using 772 

one-sample t-tests (α = .05 / 3 = .017). The steepness of the psychometric function was 773 

computed as the reciprocal of the difference between fitted timing or luminance difference 774 

values at 75% and 25% proportion “too late” or “brighter” answers, respectively.  775 

 

Linear model  776 

To test whether reaction times were dependent on the timing difference of the reappearing 777 

stimulus in each task, we averaged across all luminance differences within each timing 778 

difference bin in each condition. We then utilized a second-order (quadratic) polynomial 779 

regression model with timing difference as predictor for reaction times and computed the first- 780 

and second-order coefficients for each participant in each condition. The coefficients from all 781 

participants were then tested against zero using one-sample t-tests in all conditions (α = .05 / 782 

3 = .017).   783 

 

Spectral power 784 

We decomposed the MEG recordings into time-frequency representations by convolving 785 

the data with complex Morlet’s wavelets (Cohen, 2014). The recording of each trial and 786 

channel was convoluted with 40 complex wavelets, logarithmically spaced between 0.5 to 100 787 

Hz. With increasing frequency, the number of cycles for each wavelet logarithmically increased 788 

from two to ten cycles. For all analyses of the MEG data, we considered subjectively correct 789 

trials only, i.e., trials in which participants answered correctly based on their individual ROT. 790 

To correct for trial count differences between the tasks, we stratified the number of trials for 791 

each participant for the three different conditions by randomly selecting as many trials for each 792 

condition as the number available from the condition with lowest trial count. 793 

Since the temporal dependencies between the movement onset, disappearance behind 794 

the occluder and reappearance of the stimulus varied strongly between trials, averaging across 795 
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trials would heavily smear the power estimates of the different stages within each trial. To 796 

obtain an estimate of spectral power modulations related to the different events in our 797 

experimental paradigm, we cut each trial further into four separate, partly overlapping windows 798 

(see Figure 2A): a “Baseline” window from -550 to -50 ms earlier to movement onset; a 799 

“Movement” window from -50 to 950 ms relative to the movement onset; a “Disappearance” 800 

window from -350 to 950 ms relative to complete disappearance of the stimulus behind the 801 

occluder; and a “Reappearance” window from -350 to 450 ms relative to the (first frame) 802 

reappearance of the stimulus. Spectral power estimates were then averaged across all trials 803 

belonging to the same condition in each window and binned into time windows 100 ms 804 

(centered on each full deci-second). All power estimates were normalized using the pre-805 

stimulus baseline window from -500 to -200 ms earlier to movement onset.  806 

For all statistical analyses on sensor level, we first flipped all sensors of participants, who 807 

saw the stimulus moving from right to left, at the sagittal midline, i.e., the anterior-posterior 808 

axis. This made sure that lateralized activity due to the lateralized stimulation was comparable 809 

across groups. From this on, we considered all participants as if for everyone the stimulus was 810 

moving from the left to the right side. Channels that did not have a counterpart on the opposite 811 

site were excluded from further analyses. In order to obtain an overview of the spectral power 812 

modulations related to the different events within the trials, we then averaged the power 813 

estimates across all channels and conditions (grand average) and tested each time-frequency 814 

pair of the Movement, Disappearance and Reappearance windows against the pre-stimulus 815 

baseline using paired-sample t-tests. We controlled for multiple comparisons by employing 816 

cluster-based permutation statistics as implemented in FieldTrip (Maris and Oostenveld, 817 

2007). In this procedure, neighboring time-frequency bins with an uncorrected p-value below 818 

0.05 are combined into clusters, for which the sum of t-values is computed. A null-distribution 819 

is created through permutations of data across participants (n = 1,000 permutations), which 820 

defines the maximum cluster-level test statistics and corrected p-values for each cluster. For 821 

each window, a separate cluster-permutation test was performed (α = .05; liberally chosen to 822 

observe all ongoing power modulations; see Results section). 823 
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Since we were most interested in differences between the conditions during the 824 

disappearance time, we subsequently compared the spectral power estimates averaged within 825 

the beta range (13–30 Hz; see Results section) at each time point within the disappearance 826 

window and all channels from the visual or tactile temporal prediction task with the working 827 

memory task. We again employed cluster-permutation statistics, this time by clustering 828 

neighboring channels and time points. We used a one-sided α = .025 / 2 = .0125, since 829 

negative and positive clusters were tested separately, and to adjust for the two separate 830 

comparisons between the conditions (used throughout the study unless stated differently).  831 

To estimate spectral power in source space, we computed separate leadfields for each 832 

recording session and participant based on each participant’s mean head position in each 833 

session and individual magnetic resonance images. We used the single-shell volume 834 

conductor model (Nolte, 2003) with a 5,003 voxel grid that was aligned to the MNI152 template 835 

brain (Montreal Neurological Institute, MNI; http://www.mni.mcgill.ca) as implemented in the 836 

METH toolbox. Cross-spectral density (CSD) matrices were computed from the complex 837 

wavelet convoluted data in steps of 100 ms in the same time windows as outlined above. To 838 

avoid biases in source projection, common adaptive linear spatial filters (DICS beamformer 839 

(Gross et al., 2001)) pointing into the direction of maximal variance were computed from CSD 840 

matrices averaged across all time bins and conditions for each frequency.  841 

All time-frequency resolved CSD matrices were then multiplied with the spatial filters to 842 

estimate spectral power in each of the 5,003 voxels and normalized with the pre-stimulus 843 

baseline window. Analogous to sensor space, we first flipped all voxels at the y-axis (anterior-844 

posterior axis) for the half of participants that saw the stimulus moving from right to left earlier 845 

to further statistical analysis. We then averaged across all time bins within the disappearance 846 

window and utilized cluster-based permutation statistics to identify clusters of voxels that show 847 

statistical difference in beta power between each of the temporal prediction tasks and the 848 

working memory task. 849 
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Inter-trial phase consistency 850 

We computed ITPC estimates from the complex time-frequency representations obtained 851 

from the wavelet convolution as described in the Spectral power section above. In each time 852 

sample and trial, the phase of the complex data was extracted (using the function angle.m in 853 

MATLAB). ITPC was then computed across all subjectively correct and stratified trials within 854 

each of the four time windows in all frequencies as 855 

𝐼𝑇𝑃𝐶%& = 	 )𝑛+,-𝑒/0123
4

56,

) 856 

where n is the number of trials and k the phase angle in trial r at time-frequency point tf 857 

(Cohen, 2014). In other words, ITPC is the length of the mean vector from all phase vectors 858 

with length 1 across all trials at a given time-frequency point. Values for ITPC can vary between 859 

0 and 1, where 0 means that at a given time-frequency point there is no phase consistency 860 

across trials at all and 1 means all trials show the exact same phase. Similar to spectral power, 861 

we averaged ITPC estimates again in bins of 100 ms and plotted all time windows averaged 862 

across all channels and conditions to obtain a general overview of ITPC estimates at all events 863 

during the trial. 864 

Since we were most interested in ITPC related to stimulus disappearance behind the 865 

occluder, we subsequently computed ITPC in a longer time window from -1,900 ms to 1,900 866 

ms centered around time of complete stimulus disappearance behind the occluder. Thus, we 867 

took advantage of the fact that the onset of other events within each trial, such as the 868 

movement onset and the reappearance of the stimulus, strongly jittered across all trials and 869 

strong contributions of these events to ITPC could thereby be reduced (see Figure S4). For 870 

statistical analysis, we first averaged ITPC estimates within a frequency band of 0.5 to 3 Hz 871 

(see Results) and then computed cluster-based permutation statistics across all 100 ms time 872 

bins within the 3,800 ms long window and all sensors between each of the temporal prediction 873 

tasks and the working memory task. 874 
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ITPC on source level was computed using the same leadfields and common beamformer 875 

filters as for spectral power (see above). The complex time-frequency representations obtained 876 

from the wavelet convolution within the 3,800 ms long window on sensor level were multiplied 877 

with the filters to obtain the time-frequency representations in each of the 5,003 voxels. ITPC 878 

was computed for each time sample and frequency and then averaged within the time window 879 

showing statistically significant difference between the temporal prediction tasks and the 880 

working memory task on sensor level and within the pre-defined frequency band of 0.5 to 3 881 

Hz. Cluster-based permutation statistics were employed to identify clusters of voxels showing 882 

statistically significant differences in ITPC between the conditions on source level. 883 

Correlations between condition-wise source level ITPC estimates and the steepness of 884 

each individual’s psychometric function were computed using Pearson correlations in each of 885 

the 5,003 voxels within the grid. For this analysis, we averaged ITPC estimates from time bins 886 

of 0 to 1,500 ms with respect to the disappearance of the stimulus within the pre-defined delta 887 

band of 0.5 to 3 Hz. Multiple comparisons were accounted for by using cluster-based 888 

permutation statistics as implemented in FieldTrip (α = .025 / 3 = .008)  889 

 

Delta phase clustering at ROT 890 

To determine whether each participant’s subjective ROT was associated with a specific 891 

phase in the delta band, we extracted the phase at each individual’s ROT from sensors 892 

showing the strongest ITPC effect and computed the distance from this distribution to a uniform 893 

distribution over all possible phases. The procedure was as follows.  894 

For this analysis, we only considered trials in which the stimulus reappeared later than 895 

each individual’s ROT and the participant answered subjectively correct. By this, we prevented 896 

possible phase distortions by the external stimulation earlier to or at ROT. Trials were again 897 

stratified across conditions. Moreover, to make sure that we reduced also activity that was 898 

related to external stimulations after each individual’s ROT, we first aligned all trials from the 899 

same condition to the time point of stimulus reappearance, computed the average across trials 900 
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(event-related field, ERF) and subtracted the ERF caused by the reappearance from all trials 901 

in that condition. Subsequently, in each trial we centered a 2,500 ms long window on each 902 

participant’s ROT, computed a complex wavelet convolution for all frequencies between 0.5 903 

and 3 Hz (14 frequencies; same procedure and frequencies as above) in all channels, and 904 

computed the mean phase angle at ROT, i.e., the center time bin, across all considered trials 905 

in each condition. This procedure is similar to computing ITPC as described above, except for 906 

extracting the angle of the mean phase vector instead of the length. Since for the working 907 

memory task we did not have an estimate of each individual’s ROT, we applied the estimate 908 

of ROT from the visual prediction task also to the working memory trials, since based on their 909 

equal physical appearance temporal predictions should also be equal.   910 

As a next step, from the result of the cluster-based permutation statistics on ITPC 911 

estimates described above, we determined the sensors that showed the strongest ITPC effect 912 

for the two contrasts between the temporal prediction tasks and the working memory task for 913 

a time window between 0 and 1,500 ms after disappearance behind the occluder. For the 914 

contrast between the visual prediction and the working memory task, we considered the 915 

sensors showing the top 20% of t-values (37 channels). To keep the number of sensors 916 

comparable, we also considered the top 37 sensors from the contrast of the tactile prediction 917 

task against working memory.  918 

Within these channels, for each individual participant we determined the frequency within 919 

the 0.5 to 3 Hz delta band, which showed the strongest ITPC for the visual or the tactile 920 

prediction as compared to the working memory task, respectively, in the same time window of 921 

0 to 1.500 ms. To determine the frequencies also for the working memory condition, we here 922 

extracted the frequencies showing the strongest estimates of ITPC in the working memory as 923 

compared to the visual temporal prediction task. For these individual frequencies, we plotted 924 

the phase angle at ROT (as described above) from all the considered channels and all 925 

participants in a histogram (in bins of 10°; see Figure 5). If there was no relationship between 926 

each individual’s phase at each individual’s ROT, this histogram would show a uniform 927 

distribution across all possible phases (-180° – 180°). Therefore, we computed the distance 928 
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from the observed phase distribution to a uniform distribution using a discrete and normalized 929 

version of the Kullback-Leibler distance, i.e., the modulation index (MI) (Tort et al., 2010).  930 

For statistical analysis, we repeated the same procedure as described above for 10,000 931 

times and randomly picked any frequency from the 14 frequencies within the 0.5 to 3 Hz band 932 

in each repetition. By that we obtained a distribution of surrogate MI estimates (but still based 933 

on real data from all individual participants), from which we computed the percentile 934 

determined by the MI that was observed using the individually strongest ITPC frequency. MI 935 

estimates above the 95th percentile were considered significantly stronger as compared to the 936 

randomly obtained surrogate MIs (p-value = 1 – percentile). 937 
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