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Abstract 

Identification of proteins that are synthesized de novo in response to specific 

microenvironmental cues is critical to understanding the molecular mechanisms that underpin 

key physiological processes and pathologies. Here we report that a brief period of pulsed 

SILAC diet (Stable Isotope Labelling by Amino acids in Cell culture) enables determination 

of biological functions corresponding to actively translating proteins in the mouse brain. Our 

data demonstrate that the hippocampus, cortex and cerebellum are highly active sites of protein 

synthesis, rapidly expressing key mediators of nutrient sensing and lipid metabolism, as well 

as critical regulators of synaptic function, axon guidance, and circadian entrainment. Together, 

these findings confirm that protein metabolic activity varies significantly between brain regions 

in vivo and indicate that pSILAC-based approaches can identify specific anatomical sites and 

biological pathways likely to be suitable for drug targeting in neurodegenerative disorders. 
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Introduction 

Rapid changes in cellular proteome are required to support key biological processes including 

proliferation, differentiation, and migration. Under normal physiological conditions, rates of 

protein synthesis, modification and degradation are tightly regulated and vary significantly 

between the cell type, tissue, and molecule in question. In contrast, disruption of normal 

proteome dynamics is thought to be a key component of the aging process, as well as being 

implicated in abnormal tissue development(Medina-Cano et al., 2018), and diseases(Steklov 

et al., 2018) such as inflammation(Yin et al., 2019), Alzheimer disease(Xia, 2019), skeleton 

dysplasia, cancer and fibrosis(Stegen et al., 2019) . However, our current understanding of how 

protein expression patterns are modified over time and how this varies between different body 

compartments is extremely limited. 

In the brain, regulation of spatiotemporal change in the proteome is critically required for a 

wide range of normal biological functions including neuron growth, learning and memory 

formation (Sutton and Schuman, 2006, McClatchy et al., 2007, Gold, 2008, Hernandez and 

Abel, 2008, McClatchy et al., 2012, Jarome and Helmstetter, 2014). Previous studies have 

attempted to assess brain protein turnover in vitro using a novel ‘stable isotope labelling by 

amino acids in cell culture’ (SILAC) approach, conducted in parallel with various in vivo 

experiments (Price et al., 2010, Cohen et al., 2013, Dörrbaum et al., 2018). Using an innovative 

approach of feeding mice with N15-labelled blue-green algae prior to conducting mass spec 

analysis of brain tissues, Pierce et al. were able to determine turnover rates for 1010 proteins 

at the whole organ level (Price et al., 2010), while Cohen et al. discerned the half-life of 2802 

different brain proteins via proteomic analysis of cortical cultures (Cohen et al., 2013), and 

Dörrbaum et al. used mass spectrometry to assess the stability of >5100 proteins in cultures of 

rat hippocampus tissue (Dörrbaum et al., 2018). These studies have provided important new 

insight into protein stability in the brain, but it remains unclear how specific cellular signals 

trigger active changes in protein translation within different brain regions. Indeed, brain cells 

interact with their local environment and neighbouring cells via a complex network of 

signalling pathways that can modify patterns of protein translation, modification and 

degradation, leading to significant effects on overall organ function. De novo protein synthesis 

in response to a specific stimulus thereby allows rapid generation and transduction of 

appropriate signalling events that directly influence downstream physiological processes. 

Consequently, current understanding of the molecular events that regulate key organ functions 
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is limited by our inability to profile actively translating proteins and determine their 

modification status at specific anatomical sites in vivo.  

In recent years, SILAC-based labelling has emerged as a powerful method of protein labelling 

and quantification in vivo (Kruger et al., 2008, McClatchy et al., 2015), but current protocols 

require that animals are fed an expensive isotype-tagged diet for at least two generations prior 

to conducting experiments (Zanivan et al., 2012). Subsequent development of neutron-encoded 

(NeuCode) stable isotope metabolic labelling later reduced the minimum feeding period to just 

3-4 weeks before investigators were able to perform multiplex analyses of proteome dynamics. 

Both lysyl endopeptidase (Lys-C) and high resolution MS1 spectra (≥240,000 resolving 

power @ m/z 400) are required in NeuCode labelling protocol. NeuCode labelling protocol 

assuming the equal label incorporated efficiency across all isotopologues and taking advantage 

of direct comparing labelled-to-labelled samples does not required 100% incorporation thereby 

shorter the feeding time (Baughman et al., 2016, Overmyer et al., 2018). In the current report, 

with same assumption as NeuCode, we describe a new protocol termed ‘pulsed-SILAC in vivo 

labelling in mouse’ (pSIVOM) that facilitates analysis of actively translating proteins after just 

2 days provision of SILAC diet containing 13C-L-Lysine. Proteomic profiling of tissues from 

these animals by LC-MS/MS enabled robust and reproducible identification of 945 actively 

translating protein groups in healthy brain from C57BL6/J mice. These highly synthesized 

proteins were predominantly expressed within the hippocampus, cortex and cerebellum, 

indicating the capacity of our method to yield site-specific data from within an individual organ 

system. Our study therefore demonstrates that pSIVOM is a cost-effective and time saving new 

protocol that supports efficient analysis of proteome dynamics within specific tissues, and will 

shed important new light on how protein expression profiles change in response to specific 

stimuli encountered at different body sites. 
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Results 

Efficiently labelled of mouse brain proteins with just 2 days pulsed feeding with 

SILAC diet  

Since changing patterns of protein synthesis provide important insight into biological function, 

we developed a new protocol termed ‘pulsed-SILAC in vivo labelling in mouse’ (pSIVOM) 

that facilitates analysis of actively translating proteins after brief provision of a 13C-L-Lysine-

labelled diet. For this protocol, male C57BL6/J mice were fasted for 16hrs then transferred 

onto a SILAC diet with free access to drinking water for 48h thereafter (Supplementary Fig. 

S1A). Mouse body weight and food consumption were monitored daily (Supplementary Table 

S1B), and average SILAC diet intake was determined as 0.15±0.01g per mouse per day 

(Supplementary Table S1 and Fig. S1B). After SILAC pulsing, the mice were euthanized and 

brain tissues were excised for total protein extraction and proteomics sample preparation either 

by in-solution digestion (samples Brain1, Brain2, and Brain3) followed with HPLC tryptic 

peptide fractionation or protein fractionation using SDS-PAGE and in-gel trypsin digestion 

(Brain4). The extracted and fractioned peptides obtained were then injected into a Q-Exactive 

LC-MS/MS system for further analysis.  

We identified a total of 7569 protein groups in one or more of the biological samples tested, 

with 4019 being detected in all 4 mouse brains analysed with false discovery rate (FDR) <1% 

for both peptides and proteins, minimum unique high confident peptide threshold set to 1). 

Within these datasets, average 13C-L-Lysine incorporation was 4.7% at the peptide group level 

and 23.5% at the protein group level (Table 1), with 1890 individual protein groups being 

heavy-labelled across all four data sets, representing 432 quantifiable protein groups 

(Supplementary Tables S2 and S3). In these groups, heavy/light chain abundance ratio (after 

normalization with all peptides) ranged from 0.055-100, with correlation values 0.72-0.94 

between biological replicates (Supplementary Table S3 and Fig. 2A-F). These data confirmed 

that pSIVOM supports efficient identification of brain proteins that are being actively 

translated in vivo after only a short duration SILAC diet. 

 

Hippocampus, Cortex and Cerebellum are the most active protein translating 

region in mouse brain  
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We next focused on datasets corresponding to brain samples 1-3 which had each been 

processed using an identical protocol. In this subgroup, we identified a total of 5464 protein 

groups across all three datasets, including 945 distinct groups found to be both heavy-labelled 

and quantifiable with biological correlation >0.86 (FDR <1% for both peptides and proteins, 

minimum unique peptide threshold set to 1). We then further narrow down our candidate list 

by additional filtering factor, “Abundances grouped standard error in percent”. Total of 823 

protein groups were selected with both light and heavy abundance grouped standard error 

<40%.  These candidate protein groups’ biological correlations are >0.93 (Table2 and Fig. 3A-

D) and their technical replicate correlations are all ≥0.90 (Supplementary Table S4, Fig. S2). 

As shown in Fig. 4, we found that these 823 protein groups’ average heavy/light abundance 

ratio(log2) were distributed between -0.5 to 1, suggesting moderate de novo expression within 

the tissue of origin.  We then performed DAVID gene clustering analysis on these 823 protein 

groups (or 808 genes) (EASE cut-off value 0.01), which revealed that the newly synthesized 

proteins were predominantly expressed in the hippocampus (32.7%), cortex (14.9%), and 

cerebellum (12.9%) (Table 3A). Based on mean values, protein groups clustering in the visual 

cortex and Corpora quadrigemina were found to be more actively produced than those 

associated with other regions (Fig. 5, Table 3B). When further assessed according to cellular 

composition and/or reported function, the actively translating proteins were found to be are 

mainly located in the cytoplasm (65.8%) followed by the outer membrane (53.0%), and 

extracellular exosomes (51.4%), with only a minority conferring to nuclear contents (40.5%) 

(Table 4A). Crucially, several protein subsets were observed to be directly related to key brain 

cell functions, including myelin sheath biology (13.8%) and neuron projection (11.4%), as well 

as components of the neuronal cell body (10.9%), axons (9.2%) and dendrites (8.9%). 

Reflecting the highly dynamic proteomic regulation of these brain cell compartments, the top 

5 functions identified among heavy-labelled proteins were biomolecule transport, 

phosphorylation, oxidation-reduction events, cell-cell adhesion/binding, and protein 

translation (Table 4B and C). Both the biological processes and molecular functions identified 

by these clustering analyses suggested that actively synthesized brain proteins are primarily 

mediators of biomolecule transport and translation. 

 

Metabolic related protein and Synaptic functional related proteins are the most 

heavy labelled protein clusters 
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Consistent with the fact that the brain exhibits the highest energy consumption rates in the body, 

the majority of newly synthesized proteins detected were found to be involved in various 

metabolic pathways (Table 4D). We also detected active expression of proteins known to 

participate in various synaptic processes including signalling via the dopaminergic / cholinergic 

/ glutamatergic / GABAergic pathways, as well as vesicle cycling, long-term potential, short 

term depression, and the cGMP-PKG (cGMP-dependent protein kinase or Protein Kinase G) 

cascade. Indeed, when these findings were compared with the synaptic protein database 

provided on SynSysNet, we were able to confirm that 322 out of these 808 genes (39.8%) were 

matched with the genes provided (Table 4E). SynSysNet 

(http://bioinformatics.charite.de/synsys/) is “A European expertise Network on building the 

synapse” and providing downloadable synaptic protein database. Their database contains 1028 

genes that adequate defined pre- and post-synaptic proteins as well as proteins present in sub-

domains of the synapse such as synaptic vesicle and associated proteins, lipid rafts and 

postsynaptic density.  This indicating 31.3% synaptic functional related genes from the 

database are found to be active translating proteins in our study. Less prominent features of the 

heavy-labelled proteins were circadian entrainment signalling (2.1%), neurotrophin signalling 

(2.7%), and sphingolipid / axon guidance signalling (2.5%). Intriguingly, we were also able to 

identify a protein cluster previously implicated in multiple different brain disorders including 

Alzheimer’s (4.3%), Huntington’s (4.2%), and Parkinson’s disease (3.6%).  

 

Brain cholesterol homeostasis key enzymes are found to be highly heavy labelled  

In addition to high energy use, the brain is also the most lipid-rich organ in the body (Dietschy, 

2009), and employs distinct lipid/lipoprotein metabolic pathways in order to cope with 

segregation from other tissues behind the impermeable blood-brain barrier (Zlokovic, 2008). 

Brain lipids consist of glycerophospholipids, sphingolipids and cholesterol (Korade and 

Kenworthy, 2008), with previous studies suggesting that almost all cholesterol in the 

CNS(central nervous system) is synthesized de novo and exhibits a half-life of 0.5-5 years 

(compared with just a few days for blood plasma cholesterol). Adult brain is also known to 

contain ~20-25% of total cholesterol in the body (Bjorkhem and Meaney, 2004, Dietschy, 

2009), with majority of this being unesterified content within the oligodendrocytes of myelin 

sheaths, as well as the plasma membranes of astrocytes and neurons(Snipes and Suter, 1997, 

Dietschy and Turley, 2004). Steady-state maintenance of constant cholesterol levels in the 
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brain is therefore essential for normal morphology and function, hence disruption of cholesterol 

homeostasis in this organ is linked to several neurodegenerative disorders including 

Alzheimer’s, Parkinson’s, Smith-Lemli-Opitz syndrome and Nienman-Pick type C 

disease(Martin et al., 2014). As showed on Table2, it is interesting to found several heavily 

labelled enzymes are those crucial for brain cholesterol homeostasis, including (1) cholesterol 

synthesis: Hmgcs1(3-Hydroxy-3-Methylglutaryl-CoA Synthase 1) which display average 

heavy/light abundance ratio 7.3±1.1 and emPAI value of 4.1±1.8; (2) cholesterol ester : 

ACAT1(Acyl-CoA cholesterol acyltransferase1) with average heavy/light abundance ratio 

0.5±0, emPAI value 13641±418.7; (3) intercellular cholesterol trafficking: Apoa1, Apoa4, 

Apoe, ApoJ/Clu, Lrp1(Low density lipoprotein receptor-related protein 1), which will be 

described more detail later; (4) cholesterol excretion: Cyp46a1 (Cholesterol-24-hydroxylase, 

average heavy/light abundance ratio 3.9±0.3, emPAI value 5.6±2.4) which is a key enzyme for 

brain-specific cholesterol export form, the 24-HC (24(S)-hydroxycholesterol) production. Few 

others essential enzymes for cholesterol homeostasis in brain, such as HMG-CoA (3-hydroxy-

3-methylglutarly-coenzyme A), HMG-CoA reductase, DHCR24 (lanosterol-converting 

enzymes-24-dehudrocholesterol reductase), CYP51 (lanosterol 14-alpha demethulase), ATP-

binding cassette transporters(ABCA1, ABCG1, ABCG4) etc, indicating these enzymes are 

either has much lower turnover rate or the expression is relatively too low for quantification.   

 

Discussion 

ApoA1, ApoA4, ApoE and ApoJ are the most active translating apolipoprotein in 

mouse brain 

Apos (Apolipoproteins) play pivotal roles in the transport and metabolism of lipids within the 

CNS, where trafficking is mediated specialized ‘high density lipoprotein (HDL)-like particles’ 

enriched in ApoE/ApoA1(Demeester et al., 2000, Koch et al., 2001, Balazs et al., 2004). 

Among the apolipoproteins identified to date, nine of 22 have previously been detected at 

mRNA and/or protein level in the CNS (ApoC1, ApoC2, ApoD, ApoE, Clu/ApoJ, ApoL2, 

ApoL3, and ApoA4)(Elliott et al., 2010). In the current study, we observed active synthesis of 

ApoA4, ApoA1, ApoE and ApoJ/Clusterin in healthy mouse brain, with each of these 

molecules displaying biological triplicates average Heavy/Light abundance ratio all >10 (log2 

value>12) (Table2). Intriguingly, Apoa4 has previously been suggested to be expressed at 

lower levels than other apolipoproteins in the Sprague-Dawley rat brain (Liu et al., 2001, Shen 
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et al., 2008), but here we detected higher levels of heavy labelling in this protein than were 

observed for other family members (average Heavy/Light abundance ratio=28.7±1.5, average 

emPAI=1.4±0.5, 3 biological replicates). ApoA4 synthesis is typically thought to be confined 

to the intestine, although low-level expression has also been reported in the hypothalamus or 

prefrontal cortex (Liu et al., 2001, Shen et al., 2008, Elliott et al., 2010). The primary function 

of these molecules in lipid metabolism remain somewhat unclear, but roles in satiety and 

appetite regulation as well as anti-oxidant and anti-atherogenic properties have been identified 

in rodent models (Okumura et al., 1994, Tso et al., 1995, Duverger et al., 1996, Tso et al., 

1999, Ostos et al., 2001, Recalde et al., 2004, Wong et al., 2004). Polymorphisms in the ApoA4 

gene have also been reported to enhance activation of LCAT (Lecithin:cholesterol 

acyltransferase) and potentially increase Alzeimers’ disease risk(Csaszar et al., 1997). Our data 

now suggest that ApoA4 likely plays an important role in the CNS that depends on active 

synthesis and rapid degradation to maintain low-level expression in the healthy brain.  

Another key member of the apolipoprotein family is ApoA1 which is the major protein 

constituent of plasma HDL. In addition to high expression in several peripheral tissues 

including the liver and intestine, ApoA1 is also one of the most abundant apolipoproteins in 

CSF(cerebrospinal fluid)(Roheim et al., 1979, Pitas et al., 1987, Harr et al., 1996) and also 

serves as an important cofactor on LCAT activation (Sorci-Thomas et al., 2009, Cooke et al., 

2018). Indeed, our data indicated that ApoA1 is far more abundant than ApoA4 in the murine 

brain (emPAI value 33.8±13.1) while still displaying a high level of heavy labelling by 

pSIVOM analysis (average heavy/light abundance ratio 16.9±1.5). An earlier study has linked 

early onset Alzeimers’ disease with a polymorphism (-75A/G) in the promoter region of the 

ApoA1 gene which conferred a modest increase in plasma levels of this protein, however 

increase of ApoA1 level in CSF of Alzeimers’ disease and dementia patients are still 

controversy. (Jeenah et al., 1990, Tuteja et al., 1992, Angotti et al., 1994, Harr et al., 1996, Juo 

et al., 1999, Demeester et al., 2000, Vollbach et al., 2005). These findings suggest that analysis 

of proteome dynamics in the brain, and apolipoprotein biology in particular, could lead to new 

insight into the molecular basis of major neurological disorders. Indeed, our study also detected 

high CNS expression of ApoE which serves as the major transport protein for extracellular 

cholesterol and other lipids in this compartment. Since there is known to be no exchange of 

ApoE between the brain and peripheral pools (Linton et al., 1991), we can be confident that 

the heavy-labelled protein detected here was newly synthesized locally in the brain. In healthy 

adult brain, nascent ApoE lipoprotein synthesis occurs mainly in astrocytes, cholesterol is then 
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transferred to ApoE to form a mature lipidated ApoE-containing lipoprotein particle that can 

be uptake by surrounding neurons via binding to lipoprotein receptors (Elshourbagy et al., 1985, 

Pitas et al., 1987, Wahrle et al., 2004, Kim et al., 2007). Under physiological conditions, ApoE 

protein levels are relatively stable and mediate dynamic transfer of lipids between brain cells 

in the CNS, whereas detrimental events such as injury can lead to dramatic increases in 

glial/neuronal levels of ApoE up to 150 folds (Ignatius et al., 1986, Snipes et al., 1986). In our 

study, ApoE displayed similar abundance levels and synthesis rates to ApoA1 (average 

heavy/light abundance ratio 12.6±1.3, emPAI value 31.1±6.7), confirming that multiple 

apolipoproteins are rapidly expressed in the murine brain. Indeed, while present at markedly 

lower levels, the alternative family member ApoJ/Clu also displayed a heavy labelling profile 

consistent with active synthesis (average heavy/light abundance ratio 10.4±1.4, emPAI value 

4.2±0.8). ApoJ/Clu is more widely distributed around the body than ApoA1, ApoA4 and ApoE, 

being expressed in multiple peripheral organs as well as the brain. Within the CNS, ApoJ is 

primarily produced by astrocytes, but this protein can also be detected in pyramidal neurons of 

the hippocampus and Purkinje neurons in the cerebellum(Garden et al., 1991, Pasinetti et al., 

1994). Previous studies have identified that neuronal expression of ApoJ/Clu can be 

significantly upregulated by stresses including cytotoxic insult and cellular injury(Dragunow 

et al., 1995, Klimaschewski et al., 2001, Iwata et al., 2005). Together, these data confirm that 

the dynamics and distribution of apolipoprotein expression in the brain are key components of 

healthy brain function, and that dysregulation of this biology is highly likely to confer disease. 

Indeed, both ApoE and ApoJ have been identified as genetic risk factors for development of 

late-onset Alzheimer’s disease due to their crucial role in mediating degradation and clearance 

of App(Amyloid-β precursor/A4 protein) in the brain(DeMattos et al., 2004, Harold et al., 2009, 

Lambert et al., 2009). Consistent with these data, App also displayed marked heavy 

labelling/active synthesis in healthy mouse brain tissues subjected to pSIVOM analysis 

(Heavy/Light ratio: 10.0±0.3, emPAI value: 3.8±1.0). 

 

Critical enzymes involved in App proteins processing and stability are fast 

turnover rate proteins in mouse brain

- and -secretases mediate App cleavage at the amino-terminus and carboxyl-terminus 

respectively, thereby generating the amyloid-intracellular domain(AICD), soluble ectodomains 

sAPP and -amyloid peptides (A) and enabling extracellular deposition of A, which is a 
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key event in the formation of -amyloid plaques/senile plaques. Multiple studies have now 

reported that different isoforms of ApoE (E2, E3 and E4) in human not only exhibit differential 

binding affinity for App(Strittmatter et al., 1993, Holtzman et al., 2000), but their relative 

expression levels can also confer increase risk of neurodegenerative disorders and 

stroke(Slooter et al., 1997, Jha et al., 2008). Expression of a mutated form of human App 

precursor protein in a transgenic mouse model leads to significant App deposition in the brain, 

but these deposits are substantially reduced by performing the same experiment in mice with 

an ApoE knockout background (Berul et al., 1999, Fagan et al., 2002). ApoE4 is the single 

largest genetic risk factor for sporadic AD and promotes disease pathology by seeding Aβ 

aggregation in the brain, but recent data indicate that AD risk can be reversed by loss of the 

neuronal receptor Lrp1 (Tachibana et al., 2019) which was identified in our experiments as 

undergoing active synthesis in murine brain (average heavy/light ratio: 4.9±0.2, average 

emPAI value: 1.8±0.2). These data indicate that pSIVOM can provide novel insight into the 

biology of human ApoE isoforms through study of human ApoEs knock in mouse brain 

proteomics, which is central to AD pathology in human patients. 

Other -amyloid binding proteins were also prevalent in our datasets, including Apbb1, Apba2 

and Itm2b which contribute to App processing and protein stability.  Apbb1 (Amyloid beta A4 

prevursor protein-binding family B member 1) is an adaptor protein that localized in the 

nucleus and can interacts with App, low-density lipoprotein receptor and transcription factors. 

It can form a complex with the -secretase-derived App intracellular domain and modulated 

App turnover and processing(Chow et al., 2015), suggesting a potential role for this protein in 

the pathogenesis of AD. However, our analyses also identified active synthesis of 

Apba2/Mint2/X11, which instead stabilizes App and inhibits production of proteolytic 

fragments including the A peptide that is characteristically deposited in brain tissues from AD 

patients(Yoon et al., 2007, Saito et al., 2008). Similarly, the C-terminal ectodomain of 

Itm2b/BRI2 can undergo a series of processing events that ultimately generate the soluble 

peptide BRI2C, which can inhibit App aggregation and fibril deposition(Matsuda et al., 2005, 

Kim et al., 2008) . These data confirmed that our approach can not only be used to elucidate 

the molecular basis of neurological diseases, but also the mechanisms that protect against brain 

pathology. Indeed, proteasome-mediated proteolysis is known to be crucial for synaptic 

plasticity in both mice and humans (reviewed (Hegde, 2010)) , and our analyses identified a 

wide range of different subunits and interacting partners of this complex (Table2). In particular, 

proteasome 26S subunit ATPase 4 (Psmc4) displayed high abundance (average emPAI value 
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40.3 ± 5.9) and was the only protein found to exhibit 100% incorporation of heavy lysine after 

just 2 days SILAC diet and detected consistently across all 4 biological replicates. These data 

indicate that Psmc4 has an extremely high turnover rate in healthy brain and suggests that 

proteasome components may themselves be degraded via the ubiquitin proteasome pathway. 

The results indicated that these actively translating proteins were critically important in 

maintaining brain proteostasis, and any perturbation and imbalance in these protein translation 

can potentially lead to proteinopathy and neurodegeneration.  

 

Ndrg4, Qki, Rasgrf1, Atxn10 and Nedd4 are highly dynamic proteins involved in 

neuronal development processes 

An additional subset of extensively heavy-labelled proteins in our dataset were related to 

processes of neuronal development (Table 4B), including Ndrg4, Qki, Rasgrf1, Atxn10 and 

Nedd4. Cytoplasmic protein Ndrg4 (NDRG4/N-myc downstream-regulated gene 4 protein) is 

known to contribute to steady-state maintenance of intracerebral BDNF(brain-derived 

neurotropic factor) levels, which is critical for spatial learning and resistance to neuronal cell 

death during ischemia (Yamamoto et al., 2011). Qki (KH domain containing RNA binding) is 

a RNA-binding protein that influences glial cell fate and development(Hardy, 1998), but also 

plays an essential role in myelinisation processes, since spontaneous mutations in this protein 

result in hypomyelinization of the central and peripheral nervous systems (Hardy et al., 1996, 

Lu et al., 2003, Larocque and Richard, 2005). Rasgrf1 (Ras protein-specific gunine nucleotide-

releasing factor1) is a guanine nucleotide exchange factor (GEF) that promotes dissociation of 

GDP from RAS protein in the brain in response to Ca2+ influx, muscarinic receptor signalling, 

or activation of the G protein beta-gamma subunit, and appears crucial for long-term memory 

formation in mouse model systems(Drake et al., 2011, Barman et al., 2014, Manyes et al., 

2018). Atxn10 (Ataxin 10) is a cytoplasmic protein required for neuron survival, differentiation 

and neuritogenesis via activation of mitogen-activated protein kinase cascade(Marz et al., 2004, 

Waragai et al., 2006). Lastly, Nedd4(Neuronal precursor cell-expressed developmentally 

downregulated 4) is an E3 ubiquitin ligase enzyme that promotes endocytosis and proteasomal 

degradation of various ion channels and membrane transporters , thereby contributing to the 

formation of neuronal dendrites, neuromuscular junctions, cranial neural crest cells, motor 

neurons, and axons(reviewed(Donovan and Poronnik, 2013)). Importantly, the critical roles 

played by Nedd4 is not limited to neurological functions alone, as it is  also been implicated in 
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tumorigenesis(Bergeron et al., 2010, Zou et al., 2015, Yang et al., 2018). The potential 

applications of pSIVOM therefore extend beyond the study of neurodegenerative pathologies 

and could also be used to shed light on the pathogenesis of various cancers. 

Our study presents an optimised protocol for studying protein dynamics in vivo that allows the 

molecular mechanisms underlying various pathologies to be investigated in a cost-effective 

and time-efficient manner. In the current report, we applied this approach to determine relative 

rates of protein turnover in different regions of the mouse brain, thus paving the way for future 

studies of how these dynamics are influenced by site-specific stimuli. It will be possible to use 

pSIVOM by altering feeding time points and sampling specific tissue regions to generate a 

highly detailed picture of proteomic regulation in the brain. Improving our understanding of 

protein physiology in the healthy brain will subsequently lead to advances in our knowledge 

of the mechanisms underpin dementia disorders. For example, pSIVOM could potentially be 

used to perform direct comparisons of different age groups of male and female mice to help 

clarify why the clinicopathologic features of dementia vary between genders in human patients, 

eventually leading to tailored therapies for different cohorts. 

 

Materials and Methods 

Animal housing and in vivo protein labelling 

C57BL6/J mice aged 7-8 weeks were obtained from InVivos and housed in groups of three 

animals per cage. After 2-3 week adaptation to their new environment with provision of normal 

mouse chow (Altromin), the mice were fasted for 16h and transferred onto scaled SILAC diet 

(13C L-Lysine, SILANTET) with sterilized drinking water provided ad libitum for 2 days. Food 

intake, drinking water consumption, and body weight were monitored daily. All the 

experimental protocols were performed in accordance with the guidelines established by NTU 

Institutional Animal Care and Use Committee (NTU-IACUC), and all the methods were 

approved by the committee (IACUC protocol # ARF-SBS/NIE-A18018)      

   

Brain tissue processing 

Mice were sacrificed with CO2 and immediately follow by cardiac puncture blood collection 

before brain tissues were excised, dissected, and immediately snap-frozen in liquid nitrogen or 
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on dry ice. For total protein extraction, brain tissues were disaggregated using a liquid nitrogen 

cooled pulverizer (BioSpec) and 100mg of the resultant sample was re-suspended in 100mM 

ammonium bicarbonate (ABB, Sigma) lysing buffer containing 2% SDS together with protease 

inhibitor cocktail (Merck). The tissue suspension was then further homogenized using 1mm 

magnetic beads (Next Advance) in a bullet blender homogenizer (BioFrontier Technology) 

under high intensity at 4oC for 5min. The tissue homogenates were subsequently centrifuged 

at 10,000 x g, 4°C for 10min and the supernatants collected. Further rounds of homogenization 

were performed as required until no visible pellet remained. The collected supernatants were 

then combined, quantified and processed for in-gel digestion or precipitated with acetone 

(Fisher Chemical) prior to in-solution digestion. Acetone precipitation was perform for 4h at -

20°C, follow by centrifugation at 5000xg, 4°C for 5min. The pellets were then air-dried and 

resolved in 100mM ABB buffer containing 8M urea and protease inhibitor cocktail. 

 

In-gel tryptic digestion 

A total of 200g brain protein per mouse was separated on 10% SDS-PAGE gels and the lanes 

were then cut into 8 separate bands and subjected to in-gel digestion. Each gel bands were 

further cut into approximately 1-2mm2 pieces and washed several times with 25mM ABB 

follow by 25mM ABB containing 50% acetonitrile (ACN, Fisher Chemical) until gel pieces 

are completely destain. The destained gel pieces were dehydrate with ACN and speedVac for 

5-10mins.  These gels  pieces were reduced with freshly prepare 10mM Dithiothreitol(DTT, 

Sigma), 25mM ABB  for 1hr at 60°C and then alkylated with 55mM Iodocetamide (IAA, 

Sigma), 25mM ABB in the dark at room temperature for 1hr. Gel pieces were dehydrated using 

ACN and subjected to overnight digestion with sequencing grade modified trypsin(Promega) 

at 37°C. Peptides were extracted with 50% ACN, 5% acetic acid (Merck), and dried using 

SpeedVac (Eppendorf), and then stored at -20°C until use. 

 

In-solution tryptic digestion and HPLC fractionation 

A total mass of 600g brain protein was subjected to reduction with 10mM Tris(2-

carboxyethyl)phosphine(TCEP, Sigma) at 30°C for 2hrs and then alkylation with 20mM IAA 

containing 100mM ABB in the dark at room temperature for 30mins.  Sequencing grade 

modified trypsin was added immediately and incubate at 37°C overnight. The tryptic peptides 
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were then desalted with Sep-Pak C18 cartridge (Waters) and dried in a SpeedVac. Peptides 

were then dissolved with Buffer A (0.02% NH4OH) and subjected to high pH reversed-phase 

liquid chromatography fractionation with Buffer B (0.02% NH4OH, 80% ACN) on a C18 

column (4.6x200mm, 5um, 300 Å, Waters, USA) at a flow rate of 1.0ml/min using a HPLC. 

The established 60-min gradient is set as 97% buffer A for 3min, 3-10% buffer B for 2min,  

10-5% buffer B for 40min, 35-70% buffer B for 5min and 100% buffer B for 10min at 1ml/min 

flow rate. A total of 60 individual fractions were collected and then combined into 15 separate 

pools according to concatenation order. All fractions were subsequently SpeedVac dried and 

stored at -20°C until use. 

 

LC-MS/MS analysis 

Four independent biological replicates were performed; brain samples 1-3 were prepared by 

in-solution digestion and HPLC separation into 15 fractions, while brain sample 4 was instead 

separated into 8 individual fractions by SDS-PAGE prior to in-gel digestion (Fig. 1). Tryptic 

peptides were re-suspended in 0.1% formic acid (FA, Fisher Chemical) as reserved volume, 

and each fraction was injected 3 times (TR1, TR2, and TR3 for in-solution digested samples) 

or twice (in-gel digestion sample) as technical replicates in LC-MS/MS. The peptides were 

separated and analyzed on a Dionex Ultimate 3000 RSLCnano system coupled to a Q-Exactive 

(Thermo Fisher). Approximately 2μg peptide from each fraction was injected into an Acclaim 

peptide trap column (Thermo Fisher) via the Dionex RSLCnano autosampler. Peptides were 

separated in a Dionex EASY-Spray 75μm × 10cm column packed with PepMap C18 3μm, 100 

Å (PepMap® C18) at 35°C. Flow rate was maintained at 300nL/min. Mobile phase A (0.1% 

FA in 5% acetonitrile) and mobile phase B (0.1% FA in 90% acetonitrile) were used to establish 

a 60min gradient. Peptides were then analyzed on a Q-Exactive with EASY nanospray source 

(Thermo Fisher) at an electrospray potential of 1.5kV. A full MS scan (350–1600 m/z range) 

was acquired at a resolution of 70,000 at m/z 200 and a maximum ion accumulation time of 

100ms. Dynamic exclusion was set as 15s. The resolution of the HCD spectra was set to 35,000 

at m/z 200. The AGC settings of the full MS scan and the MS2 scan were 3E6 and 2E5, 

respectively. The 10 most intense ions above the 2000 count threshold were selected for 

fragmentation in HCD with a maximum ion accumulation time of 120ms. An isolation width 

of 2 was used for MS2. Single and unassigned charged ions were excluded from MS/MS. For 

HCD, the normalized collision energy was set to 28%. Underfill ratio was defined as 0.2%. 
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Mass spectrometric Data analyzing 

Raw data files from 11 replicates (three injections per biological replicates 1-3, plus two 

injections for biological sample 4) were analyzed as four independent experiments using 

Proteome Discoverer (PD) v2.1 (ThermoScientific) with the Uniprot mouse protein database 

(downloaded on 16 March 2017, 91089 sequences, 38788886 residues) using designed 

workflow. Briefly, this workflow includes six processing nodes numbered from 0 to 6. Node 0 

named “Spectrum Files” allows selecting raw files, Node 1 labeled as “Spectrum Selector” 

extracts, deisotopes and deconvolutes the spectra within a retention time window and precursor 

ion mass window.  Node 2 selected search engine SequestHT and Node 3 used Mascot with 

database search parameters. The parameters set were enzyme: trypsin, maximum miss 

cleavage:2, minimum peptide length:6, maximum peptide length: 6, maximum peptide length: 

144, precursor mass tolerance: 10 ppm, fragment mass tolerance: 0.02 Da, modification groups 

(from quan method): SILAC K=6[MD], dynamic modification: deamidation of N and Q, 

Oxidation(M), Static modification: Carbamidomethyl(C),   Node 4  called as “Percolator” 

where target FDR(strict) was set as 0.01, target FDR(relaxed) was set as 0.05.  Node 5 labeled 

as “Event Detector” ,  Mass precursor set as 4ppm, S/N Threshold set as 1 , Node 6 labeled as 

“Precursor ions Quantifier”, where RT Tolerance of Isotope pattern multiplets(min):0.2 and 

Single peak\Missing channels allowed:1. The obtained peptide/protein list was further 

analyzed with the designed consensus workflow with PD2.1. In short, total nine nodes, Node 

0 named as MSF Files which the “spectra to store” set as both identified or quantified,  

“merging of identified” is set as gloabally by search engine type , and the “reported FASTA 

Title lines: Best match, Node 1 is “PSM Grouper” which “peptide group modification the site 

probability Threshold set as 75 and ‘modification sites” show only best position, Node 2 is 

“Peptide and Protein filter”, “Validation mode set as “automatic and the target FDR for both 

PSMs and Peptides were set as “strict:0.01 and “Relaxed”: 0.05, Node 3 is “Peptide and protein 

filter” peptide confidence: high, minimum peptide length: 6, minimum peptide sequence: 1, 

Node 4 was “Protein scorer” which including Node 5 that named as “Protein grouping” : the 

strict parsimorny principle was applied, Node 6 labelled as “ Protein FDR Validation” : 0.01 

as strick and 0.05 as relexed, Node 7 was named as “Peptide in protein annotation” and Node 

8 was “Peptide and Protein quantifier”: use Unique+Razor peptide, consider protein groups for 

peptides unique, Normalized mode: total peptides, Scaling mode: On channels average(per file), 
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Report Quantification: Reproter Abundance Based on:  intensitys, Co-isolation Threshold: 50, 

Average reporter S/N Threshold: 100 

 

Bioinformatic analysis 

Bioinformatics analysis was performed using DAVID Resources 6.8 (EASE=0.01, others as 

default setting) (Huang da et al., 2009). The synaptic protein/gene database was downloaded 

from the SynSysNet website (von Eichborn et al., 2013) .  

 

Statistical analysis 

Each set of PD2.1 search peptide/protein list was exported to Microsoft Excel and then 

subjected to cut-off filtering according to the following parameters; Exp q_value≤0.01, 

Unique peptide≥1, Abundances grouped standard error in percent Light and Heavy <40% 

(except for brain sample 4). The statistical analysis was performed by PD2.1 default setting. 

Pearson correlation coefficients (default Excel Correl function) were used to measure the 

strength of the relationship between biological and technical replicates; correlation coefficient 

values >+0.8 is consider as significant positive correlated. Standard Deviation (SD) was used 

to measures the variance between biological triplicates of interested proteins. The distribution 

Figures were generate and analysed with GraphPad Prism 7. 

 

Data availability 

LC-MS/MS raw data from the 11 replicates and results for protein and peptide identification 

and quantification from PD2.1 have been deposited to the ProteomeXchange Consortium via 

the PRIDE(Perez-Riverol et al., 2019) partner repository with the dataset identifier 

PXD013502. The raw data and search results can be accessed using the following login to the 

PRIDE data depository.  

Username: reviewer30265@ebi.ac.uk 

Password: hdkeFqIl 
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Figure Legends 

Fig. 1. Workflow for in-vivo pulsed-SILAC labelling of mouse brain and subsequent 

proteomic analysis. Male C57BL6/J mice aged 7-8 weeks were acclimatised to their 

environment for 2-3 weeks on normal mouse chow diet containing 12C L-Lysine. The animals 

were then fasted for 16h overnight before switching to a 13C-L-Lysine-labelled SILAC diet for 

2 days duration. Mice were then euthanized and the brain tissues were excised for protein 

extraction and mass spectrometry analysis. Pulsed-SILAC proteome analysis then allowed 

identification of newly synthesized proteins (13C L-Lysine-labelled) within specific regions of 

the mouse brain.   

 

Fig. 2. Correlation of 432 13C-L-Lysine-labelled brain protein groups detected between 

biological samples indicating the high reproducibility of the proteomic data. X-axis v.s. 

Y-axis : (A) Brain1 v.s. Brain2; (B) Brain1 v.s. Brain3 ; (C) Brain1 v.s. Brain4; (D) Brain2 v.s. 

Brain3; (E) Brain2 v.s. Brain4; (F) Brain3 v.s. Brain4.  Average heavy/light abundance ratio 

[Log2] values of each biological samples were used for correlation calculation and scatter plots 

plotting. 

 

Fig. 3. Brain protein groups identified with high confidence displayed strong correlation 

in the proteomic datasets generated by biological samples 1, 2 and 3. X-axis v.s. Y-axis: 

(A) Brain1 v.s. Brain2; (B) Brain1 v.s. Brain3; (C) Brain2 v.s. Brain3. n=823, average 

heavy/light abundance ratio [Log2] value was used for correlation calculation and scatter plots 

plotting. 

 

Fig. 4. Distribution histogram on selected 823 protein groups. Protein average abundance 

(H/L ratio [Log2]) in selected 823 protein groups, represented as a distribution histogram for 

highly confident active translating proteomic datasets in Brain1, Brain2 and Brain3. 

 

Fig. 5. Corpora quadrigemina and visual cortex are the most active translation region in 

brain. Different brain function related regions display variable newly synthesized protein 
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abundance (average H/L ratio [Log2]). Based on the mean values, Corpora quadrigemina and 

visual cortex are most active regions in brain. 

 

Table 2. 13C-L-Lysine labelled protein groups identified with high confidence in brain 

tissue samples 1-3. The correlation between biological triplicates are indicated. 

Table 3. Hippocampus, brain cortex and cerebellum are the most active translating 

regions in brain. (A) DAVID cluster analysis of tissue expression for selected protein groups 

(EASE cut-off value 0.01) (B). Protein expression and average H/L abundance ratio (Log2) in 

specific brain regions.(C) Selected candidates and their uniprot accession ID used during 

DAVID clustering searches and their average H/L abundance ratio [Log2] between the 

biological triplicates. 

Table 4. DAVID clustering search results on selected 808 genes.  (A) cellular compartment 

(B) biological process (C) molecular functions and (D) KEGG pathway results (EASE cut-off 

value 0.01) on selected genes. (E) Gene mapping list for selected genes in the SynSysNet 

synaptic database. Candidates that found in SynSysNet synaptic database are high-lighted in 

red. 

 

Supplementary 

Supplementary Figure Legends 

Supplementary Fig. S1. Record of body weight for individual mice (A) and average daily 

SILAC food intake per animal (B). 10 weeks old C57BL6 mice were caged as three mice per 

cage. Their body weight, food and water intake were measured and recorded as indicated. 

 

Supplementary Fig. S2. Selected newly synthesized protein groups identified with high 

confidence (displayed together with correlation between technical triplicates);  (A) 

Brain1_TR1 correlation with Brain1_TR2. (B) Brain1_TR1 correlation with Brain1_TR3. (C) 

Brain1_TR2 correlation with Brain1_TR2. (D) Brain2_TR1 correlation with Brain2_TR2. (E) 

Brain2_TR1 correlation with Brain2_TR3. (F) Brain2_TR2 correlation with Brain2_TR3. (G) 

Brain3_TR1 correlation with Brain3_TR2. (H) Brain3_TR1 correlation with Brain3_TR3. (I) 
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Brain3_TR2 correlation with Brain3_TR3. n=823; heavy/light abundance ratio (Log2) values 

were used for correlation calculation and scatter plots plotting. 

 

Supplementary Table S1. Record of mouse body weight and average SILAC diet 

consumption per animal.    

Supplementary Table S2. Brain protein groups identified with high confidence within the 

13C-L-Lysine-labelled fraction from any 3 biological samples.  

Supplementary Table S3. Brain protein groups identified with high confidence within the 

13C-L-Lysine-labelled fraction from all samples analysed. 

Supplementary Table S4. Selected newly synthesized protein groups identified with high 

confidence (displayed together with correlation between technical triplicates).   
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Table 1. Murine brain-derived peptide spectrum match (PSM), peptide and protein groups as identified within biological 

samples Brain1, Brain2, Brain3 and Brain4. 

 

 

 

K6 

contained 

peptides 

group 

K6 

contained 

PSM 

K6 peptides 

contained 

protein 

groups 

All peptide 

groups 
All PSM 

All protein 

groups 

K6 

contained 

peptides 

group (%) 

K6 

contained 

PSM (%) 

K6 peptides 

contained 

protein 

groups (%) 

Brain1 3902 20888 1569 75432 985299 6217 5.17 2.12 25.24 

Brain2 3284 17871 1508 70251 1008570 6254 4.67 1.77 24.11 

Brain3 3905 21828 1812 76538 980271 6554 5.10 2.23 27.65 

Brain4 1420 7000 774 35518 396891 4536 4.00 1.76 17.06 
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