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Abstract 

The growing importance of antibiotic resistance on clinical outcomes and cost of care             

underscores the need for optimization of current diagnostics. For a number of            

bacterial species antimicrobial resistance can be unambiguously predicted based on          

their genome sequence. In this study, we sequenced the genomes and           

transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates. By         

training machine learning classifiers on information about the presence or absence of            

genes, their sequence variation, and gene expression profiles, we generated          

predictive models and identified biomarkers of susceptibility or resistance to four           

commonly administered antimicrobial drugs. Using these data types alone or in           

combination resulted in high (0.8-0.9) or very high (>0.9) sensitivity and predictive            

values, where the relative contribution of the different categories of biomarkers           

strongly depended on the antibiotic. For all drugs except for ciprofloxacin, gene            

expression information substantially improved diagnostic performance. Our results        

pave the way for the development of a molecular resistance profiling tool that reliably              

predicts antimicrobial susceptibility based on genomic and transcriptomic markers.         

The implementation of a molecular susceptibility test system in routine clinical           

microbiology diagnostics holds promise to provide earlier and more detailed          

information on antibiotic resistance profiles of bacterial pathogens and thus could           

change how physicians treat bacterial infections. 
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Introduction 

The rise of antibiotic resistance is a public health issue of greatest importance             

(Cassini et al. 2019). Growing resistance hampers the use of conventional antibiotics            

and leads to increased rates of ineffective empiric antimicrobial therapy. If not            

adequately treated, infections cause suffering, incapacity and death, and impose an           

enormous financial burden on healthcare systems and on society in general (Alanis            

2005; Fair and Tor 2014; Gootz 2010). Despite growing medical need, FDA            

approvals of new antibacterial agents have substantially decreased over the last 20            

years (Kinch et al. 2014). Alarmingly, there are only few agents in clinical             

development for the treatment of infections caused by multidrug-resistant         

Gram-negative pathogens (Bush and Page 2017).  

Pseudomonas aeruginosa, the causative agent of severe acute as well as of chronic             

persistent infections, is particularly problematic. The opportunistic pathogen exhibits         

high intrinsic antibiotic resistance and frequently acquires resistance conferring         

genes via horizontal gene transfer (Lister, Wolter, and Hanson 2009; Partridge et al.             

2018). Furthermore, the accelerating development of drug-resistance due to the          

acquisition of drug resistance-associated mutations poses a serious threat. 

The lack of new antibiotic options underscores the need for optimization of current             

diagnostics. Diagnostic tests are a core component in modern healthcare practice.           

Especially in the light of rising multidrug-resistance, high-quality diagnostics becomes          

increasingly important. However, to provide information as the basis for infectious           

disease management is a difficult task. Antimicrobial susceptibility testing (AST) has           

experienced little change over the years. It still relies on culture-dependent methods            
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and as a consequence, clinical microbiology diagnostics is labor-intensive and slow.           

Culture-based AST requires 48h (or longer) for definitive results, which leaves           

physicians with uncertainty about the best drugs to prescribe to individual patients.            

This delay also contributes to the spread of drug-resistance (López-Causapé et al.            

2018; Oliver et al. 2015).  

The introduction of molecular diagnostics could become an alternative to          

culture-based methods and could be critical in paving the way to fight antimicrobial             

resistance. Identification of genetic elements of antimicrobial resistance promises a          

deeper understanding of the epidemiology and mechanisms of resistance and could           

lead to a timelier reporting of the resistance profiles as compared to conventional             

culture-based testing. It has been demonstrated that for a number of bacterial            

species antimicrobial resistance can be highly accurately predicted based on          

information derived from the genome sequence (Gordon et al. 2014; Bradley et al.             

2015; Moradigaravand et al. 2018). However, in the opportunistic pathogen P.           

aeruginosa even full genomic sequence information is insufficient to predict          

antimicrobial resistance in all clinical isolates (Kos et al. 2015). P. aeruginosa exhibits             

a profound phenotypic plasticity mediated by environment-driven flexible changes in          

the transcriptional profile (Dötsch et al. 2015). For example, P. aeruginosa adapts to             

the presence of antibiotics with the over-expression of the mex genes, encoding the             

antibiotic extrusion machineries MexAB -OprM, MexCD -OprJ, MexEF-OprN and       

MexXY -OprM. Similarly, high expression of the ampC encoded intrinsic         

beta-lactamase confers antimicrobial resistance (Martin et al. 2018; Goli et al. 2018;            

Haenni et al. 2017; Juan et al. 2017). Those transcriptional responses are frequently             

fixed in clinical P. aeruginosa strains, e.g. due to mutations in negative regulators of              
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gene expression (Frimodt-Møller et al. 2018; Juarez et al. 2018). Thus, the isolates             

develop an environment-independent resistance phenotype. Up-regulation of intrinsic        

beta-lactamases as well as over-expression of efflux pumps that contribute to the            

resistance phenotype make gene-based testing a challenge, because it is difficult to            

predict from the genomic sequence, which (combinations of) mutations would lead to            

an upregulation of resistance conferring genes (Llanes et al. 2004; Schniederjans,           

Koska, and Häussler 2017; Fernández and Hancock 2012).  

In this study, we investigated whether we can reliably predict antimicrobial resistance            

in P. aeruginosa using not only genomic but also quantitative gene expression            

information. For this purpose, we sequenced the genomes of 414 drug-resistant           

clinical P. aeruginosa isolates and recorded their transcriptional profiles. We built           

predictive models of antimicrobial susceptibility/resistance to four commonly        

administered antibiotics by training machine learning classifiers. From these         

classifiers we inferred candidate marker panels for a diagnostic assay by selecting            

resistance- and susceptibility-informative markers via feature selection. We found         

that the combined use of information on the presence/absence of genes, their            

sequence variation and gene expression profiles can predict resistance and          

susceptibility in clinical P. aeruginosa isolates with high or very high sensitivity and             

predictive value.  
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Results 

Taxonomy and antimicrobial resistance distribution of 414 DNA and         

mRNA sequenced clinical P. aeruginosa  isolates 

414 P. aeruginosa isolates were collected from clinical microbiology laboratories of           

hospitals across Germany and at sites in Spain, Hungary and Romania (Figure 1A).             

For all isolates, the genomic DNA was sequenced and transcriptional profiles were            

recorded. This enabled us to not only use the full genomic information but also              

information on the gene expression profiles as an input to machine learning            

approaches.  

We inferred a maximum likelihood phylogenetic tree based on variant nucleotide sites            

(Figure 1B). The tree was constructed by mapping the sequencing reads of each             

isolate to the genome of the P. aeruginosa PA14 reference strain and then aligning              

the consensus sequences for each gene. The isolates exhibited a broad taxonomic            

distribution and separated into two major phylogenetic groups. One included PAO1,           

PACS2, LESB58, and a cluster of high-risk clone ST175 isolates; the other included             

PA14, as well as one large cluster of high-risk clone ST235 isolates. Both groups              

comprised several further clades with closely related isolates of the same sequence            

type as determined by multi-locus sequencing typing (MLST). 

Next, we recorded antibiotic resistance profiles for all isolates regarding the four            

common anti-pseudomonas antimicrobials, tobramycin (TOB), ceftazidime (CAZ),       

ciprofloxacin (CIP), and meropenem (MEM) using agar dilution method. Most isolates           

of our clinical isolate collection exhibit antibiotic resistance against these four           
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antibiotics (Figure 1C, Supplementary Table S1). One third had a multidrug resistant            

(MDR) phenotype, defined as non-susceptible to at least three different classes of            

antibiotics (Magiorakos et al. 2012) . 

 

 

Figure 1: Geographic and phylogenetic distribution of 414 clinical P. aeruginosa isolates            
used in this study. (A) Geographic sampling site distribution, where circle size is             
proportional to the number of isolates from a particular location. (B) Phylogenetic tree of the               
clinical isolates and seven reference strains (a PA7-like outgroup clade including two            
clinical isolates is not shown). Abundant high risk clones identified by multi-locus sequence             
typing (MLST) are indicated by branch coloring. (C) Antimicrobial susceptibility profile           
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regarding the four commonly administered antibiotics tobramycin (TOB), ceftazidime (CAZ),          
ciprofloxacin (CIP) and meropenem (MEM) tested by Agar dilution according to Clinical &             
Laboratory Standards Institute guidelines (CLSI 2018). 

 

Machine learning for predicting antimicrobial resistance 

We used the genomic and transcriptomic data of the clinical P. aeruginosa isolates to              

infer resistance and susceptibility phenotypes to ceftazidime, meropenem,        

ciprofloxacin and tobramycin with machine learning classifiers. For each antibiotic we           

included all respective isolates categorized as either “resistant” or “susceptible”. For           

the genomic data, we included sequence variations (short nucleotide polymorphisms;          

SNPs, including small indels), and gene presence or absence (GPA) as features. In             

total, we analysed 255,868 SNPs, represented by 65,817 groups with identical           

distributions of SNPs across isolates for the same group, and 76,493 gene families             

with presence or absence information, corresponding to 14,700 groups of identically           

distributed gene families. 1,306 of these gene families had an indel in some isolate              

genomes, which we included as an additional feature. We evaluated SNP and GPA             

groups in combination with gene expression information for 6,026 genes (Figure 2). 

For each drug we randomly assigned isolates to a training set that comprised 80% of               

the resistant and susceptible isolates, respectively, and the remaining 20% to a            

validation set. Parameters of machine learning models were optimized on the training            

set and their value assessed in cross-validation (CV), while the validation set was             

used to obtain another independent performance estimate. We trained several          

machine learning classification methods on SNPs, GPA and expression features          

individually and in combination for predicting antibiotic susceptibility or resistance of           

isolates and evaluated the classifier performances. As the underlying gold standard           

8 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/643676doi: bioRxiv preprint 

https://paperpile.com/c/q2SjBq/A7vmi
https://doi.org/10.1101/643676
http://creativecommons.org/licenses/by-nd/4.0/


for evaluation, we determined MIC (minimal inhibitory concentration) values of all           

clinical isolates with agar dilution according to CLSI guidelines (CLSI 2018). 

 

Figure 2: Training and validating a diagnostic classifier for antimicrobial          
susceptibility prediction for four different drugs based on genomic (GPA/SNPs) and           
transcriptomic profiles (EXPR). The best data type combination was determined          
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using 80% of the data in standard and phylogenetically-informed cross-validation          
(cv) and further validated on the remaining 20% of the data.  

 

We calculated the sensitivity and predictive value of resistance (R) and susceptibility            

(S) assignment, as well as the macro F1-score, as an overall performance measure             

based of a classifier trained on a specific data type combination. The sensitivity             

reflects how good that classifier is in recovering the assignments of the underlying             

gold standard, representing the fraction of susceptible, or resistant, samples,          

respectively. The predictive value reflects how trustworthy the assignments of this           

particular classifier are, representing the fraction of correct assignments of all           

susceptible, or resistant assignments, respectively. The F1-score is the harmonic          

mean of the sensitivity and predictive value for a particular class, i.e. susceptible or              

resistant. The macro F1-score is the average over the two F1-scores. 

We used the support vector machine (SVM) classifier with a linear kernel, as in              

(Weimann et al. 2016), to predict sensitivity or resistance to four different antibiotics.             

Parameters were optimized in nested CV and performance estimates averaged over           

five repeats of this setup. The combined use of i) GPA, ii) SNPs and iii) information                

on gene expression resulted in high (0.8-0.9) or very high (>0.9) sensitivity and             

predictive values (Figure 3). Notably, the relative contribution of the different           

information sources to the susceptibility and resistance sensitivity strongly depended          

on the antibiotic. To assess the effect of the classification technique, we compared             

the performance of an SVM classifier with a linear kernel to that of random forests,               

and logistic regression, which we and others have used successfully for related            

phenotype prediction problems (Her and Wu 2018; Asgari et al. 2018; Wheeler,            
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Gardner, and Barquist 2018). For this purpose we used the data type combination             

with the best macro F1-score in resistance prediction with the SVM. As before, we              

evaluated the classification performance in random cross-validation, and on a          

held-out test data set. In addition, we performed a phylogeny-aware partitioning of            

our data set, to assess phylogenetic generalization ability of our technique.  

 

 

Figure 3 : Evaluation of AMR classification with a support vector machine (R:            
resistant; S: susceptible) using different performance metrics and data types (EXPR:           
gene expression; GPA: gene presence or absence; SNPs: single nucleotide          
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polymorphisms) or combinations thereof. Each individual panel depicts the results          
for one of four different anti-pseudomonal antibiotics (CAZ, CIP, MEM, TOB).  
 

The performance of the SVM in random cross-validation was comparable to logistic            

regression (Macro F1-score for the SVM: 0.83 ±0.06 vs. logistic regression:          

0.84±0.06), but considerably better than the random forest classifiers (0.67 ±0.14 )          

(Supplementary Figures S1, S2, Supplementary Table S2). The performance on the           

held-out data set was in a comparable range (SVM: 0.87 ±0.07, logistic regression:            

0.90±0.04, random forest 0.71±0.16) . We furthermore observed similar macro         

F1-scores inferred in the phylogenetically selected cross-validation (SVM: 0.87 ±0.07,         

logistic regression: 0.86±0.07, random forest 0.72±0.13) , which suggests only a          

minor influence of the bacterial phylogeny on the classification performance. The           

performance on the phylogenetically selected held-out data set were again          

comparable, though performance for the random forest deteriorated in comparison to           

the cross-validation results (SVM: 0.86 ±0.06, logistic regression 0.83±0.06, random         

forests 0.56±0.03). 

Ciprofloxacin resistance and susceptibility based on SVMs could be correctly          

predicted with a sensitivity of 0.92 ±0.01 and 0.87 ±0.01, and with simultaneously high            

predictive values of 0.91 ±0.01 and 0.90 ±0.01, respectively, using solely SNP          

information. The sensitivity 0.80 ±0.04 and 0.79 ±0.02 and predictive value 0.73 ±0.01          

and 0.76 ±0.02 to predict ciprofloxacin susceptibility and resistance based exclusively          

on gene expression data was also high. However, there was no added value of using               

information on gene expression in addition to SNP information for the prediction of             

susceptibility/resistance towards ciprofloxacin. 
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For the prediction of tobramycin susceptibility and resistance, the machine learning           

classifiers performed almost equally well when the three input data types (SNPs,            

GPA and gene expression) were used individually (values >0.8). SNP information           

was predictive of tobramycin resistance; however, it did not further improve the            

classification performance when combined with the other data types. GPA          

information alone was the most important data type for classifying tobramycin           

resistance and susceptibility providing sensitivity values of 0.84 ±0.01 and 0.95 ±0.01          

and predictive values of 0.88 ±0.01 and 0.93 ±0.01, respectively. The performance of           

GPA-based prediction increased further when gene expression values were included          

(sensitivity values of 0.89 ±0.01 and 0.94 ±0.01 for resistance and susceptibility          

prediction, respectively, and predictive values of 0.88±0.01 and 0.95 ±0.01). 

For the correct prediction of meropenem resistance/susceptibility, gene        

presence/absence was most influential (sensitivity values of 0.87 ±0.01 and 0.84 ±0.01          

for resistance and susceptibility prediction, respectively, and predictive values of          

0.92 ±0.00 and 0.74 ±0.01). As observed for tobramycin, the use of genome-wide           

information on GPA, and of information on gene expression in combination increased            

the sensitivity to detect resistance as well as susceptibility to meropenem to            

0.91 ±0.02 and 0.86 ±0.01 and the predictive values to 0.93 ±0.01 and 0.81 ±0.03,           

respectively.  

For ceftazidime using only information on gene presence/absence revealed a          

sensitivity of susceptibility/resistance prediction of 0.69 ±0.01 and 0.66 ±0.01, and          

predictive values of 0.66 ±0.01 and 0.67 ±0.01, respectively. Adding gene expression          

information considerably improved the performance of susceptibility and resistance         

sensitivity to 0.83 ±0.02 and 0.81 ±0.02 and predictive values of 0.81 ±0.02 and           
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0.83 ±0.01. In summary, for tobramycin, ceftazidime and meropenem combining GPA          

and expression information gave the most reliable classification results, whereas for           

ciprofloxacin we found that only using SNPs provided the best performance (Table 1             

and Supplementary Table S3). Thus for the remainder of the manuscript, we will             

focus on the results obtained with classifiers trained on those data type combinations.  

 

Table 1: Performance of support vector machine (SVM) classifier to predict           
sensitivity or resistance to four different antibiotics. The last column indicates the            
number of (combined) features that resulted in the least complex SVM model within             
one standard deviation of the peak performance, i.e. with the best F1-score macro             
and as few as possible features for each drug. 

Anti- 
biotic 

Markers 
used 

Sensitivity 
resistance 

Sensitivity 
susceptibility 

Predictive 
value 
resistance 

Predictive 
value 
susceptibility F1- score 

Number of 
markers 

CAZ GPA+ 
EXPR 

0.83 ±0.02 0.81 ±0.02 0.81 ±0.02 0.83 ±0.01 0.82±0.01 37 

TOB GPA+ 
EXPR 

0.89 ±0.01 0.94 ±0.01 0.88 ±0.01 0.95 ±0.01 0.92±0.01 59 

MEM GPA+ 
EXPR 

0.91 ±0.02 0.86 ±0.01 0.93 ±0.01 0.81 ±0.03 0.87+0.01 93 

CIP SNPs 0.92 ± 
0.01 

0.87 ± 0.01 0.91 ±0.01 0.90 ±0.01 0.90+0.01 50 

 
 

A candidate drug resistance marker panel  

We determined the minimal number of molecular features required to obtain the            

highest macro F1-score for each drug. We inferred the number of features            

contributing to the classification from the number of non-zero components of the SVM             

weight vectors, using a standard cross-validation set-up. For each value of the C             

parameter, which controls the amount of regularization imposed on the model, the            

cross-validation procedure was repeated five times (Figure 4, Supplementary Table          

S4). Performance of antimicrobial resistance prediction peaked for the candidate          
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classifiers using between 50 and 100 features. Notably, the ciprofloxacin classifier           

required only two SNPs until the learning curve performance was almost saturated,            

whereas classifiers of drugs that included expression and gene presence/absence          

markers required more feature (>50) to reach saturation. 

 

 

Figure 4: The number of features used by the support vector machine classifier             
(top panels) and corresponding classification performance (bottom panels) varies         
with the hyperparameter C. The SVM resistance/susceptibility classifier was         
evaluated in five repeats of ten-fold nested cross-validation. Each panel depicts the            
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results for a different drug (CAZ, CIP, MER, TOB) based on the best data type               
combination (GPA+EXPR/SNPs). The model with the fewest features within one          
standard deviation of the maximal performance was selected as the most suitable            
diagnostic classification model (red) (Supplementary Table S5). 

 

Next, we determined the C parameter resulting in the least complex SVM model             

within one standard deviation of the peak performance, i.e. with the best F1-score             

macro and as few as possible features for each drug (Friedman, Hastie, and             

Tibshirani 2001). We chose our candidate marker panel for each drug as the set of all                

non-zero features, and designated the respective model as the most suitable           

diagnostic classifier. We used SNP information for ciprofloxacin resistance and          

susceptibility prediction and the combination of GPA and expression features for           

tobramycin, meropenem and ceftazidime. We refer to each of these classifiers as the             

candidate classifier for susceptibility and resistance prediction for a particular drug. 

The ciprofloxacin candidate marker panel contained 50 SNPs. The meropenem,          

ceftazidime and tobramycin marker lists consisted of 93, 37 and 59 expression and             

GPA features. The complete list of candidate markers for the prediction of resistance             

against the four antibiotics is given in Supplementary Table S5. This list includes the              

candidate markers of the three input features namely GPA, gene expression and            

SNPs alone and in combination. Table 2 is a shortlist of the panel markers for each                

drug based on the data combination that had allowed us to train the most reliable               

classifier.  

 

Table 2: The top 15 candidate markers ranked according to the contribution of each              
marker to the support vector machine classifier for each drug based on the best              
performing combination of data types. For gene presence/absence (GPA) markers          
we provide the gene id and accession based PA14 reference genome gene family             
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member or based on the Comprehensive Antibiotic Resistance Database (CARD)          
(Jia et al. 2017). Otherwise we include the gene name or id of each marker as                
generated by the bacterial genome annotation tool Prokka (Seemann 2014) and           
protein family clustering software Roary (Page et al. 2015). Expression markers are            
based on the PA14 genome, too. For short nucleotide polymorphisms (SNPs) we            
report the genome position in the reference PA14 genome.  
drug (data types 
used) 

data 
type 

PA14/CARD 
gene id 

PA14/CARD 
gene name  

Prokka/Roary gene 
family name SNP position 

TOB 
(GPA_EXPR) GPA A7J11_00271 qacEdelta1 emrE  
 GPA A7J11_02078 sul1 folP_2_indel  
 GPA PA14_04410 ptsP ptsP  
 GPA   group_282  
 GPA PA14_20840  group_14073  
 GPA   group_20477  
 EXPR PA14_15450 traJ   
 GPA PA14_15100  mepM_1  
 GPA A7J11_02078 sul1 folP_2  
 GPA   group_8948  
 GPA   group_51714  
 EXPR PA14_38410 amrB   
 GPA PA14_18565 alg8 alg8  
 GPA   group_3462  
 GPA   group_17749  
MEM 
(GPA_EXPR) GPA   group_596_indel  
 GPA PA14_51880 oprD oprD_4_indel  
 EXPR PA14_46070 gbuA   
 EXPR PA14_05550 oprM   
 GPA   group_3638  
 EXPR PA14_51880 oprD   
 GPA   group_6217  
 EXPR PA14_05540 mexB   
 EXPR PA14_07630    
 EXPR PA14_63090 lldD   
 GPA PA14_11960  yabI_indel  
 EXPR PA14_70940 betA   
 GPA   group_6280  
 GPA   group_15876  
 GPA   group_10960  
CIP (SNPs) SNP PA14_23260 gyrA  2015001 
 SNP PA14_65605 parC  5845617 
 SNP PA14_55600   4947631 
 SNP PA14_56040   5004892 
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 SNP PA14_30960 traG  2690138 
 SNP PA14_31010   2694327 
 SNP PA14_29390   2545634 
 SNP PA14_41560 nasA  3710561 
 SNP PA14_18260 fruK  1567193 
 SNP PA14_30910 trbE  2685860 
 SNP PA14_30960 traG  2689741 
 SNP PA14_59210   5274257 
 SNP PA14_44640   3974007 
 SNP PA14_41110   3665768 
 SNP PA14_15460 merA  1310089 
CAZ 
(GPA_EXPR) EXPR PA14_10790 ampC   
 GPA A7J11_02078 sul1 folP_2  
 GPA   group_8955  
 EXPR PA14_48900    
 GPA PA14_00810  group_13626  
 EXPR PA14_15770    
 GPA   group_3462  
 GPA PA14_33690 pvdE yojI  
 GPA   group_23010  
 GPA   petE_indel  
 EXPR PA14_31240    
 EXPR PA14_53500    
 GPA   group_5517  
 GPA PA14_22650  group_14516_indel  
 GPA   group_63043  
 

 

To test the performance of the candidate marker panel-based classifiers on an            

independent set of clinical P. aeruginosa isolates, we used them to predict antibiotic             

resistance for the samples of the validation dataset (Figure 5, Supplementary Table            

S6). On this held out data we obtained an F1-sore for all drugs that was similarly high                 

as before: namely this was for meropenem 0.95, ceftazidime 0.77 and tobramycin            

0.96, using gene expression and gene presence/absence features and 0.87 for           

ciprofloxacin using SNP information. These results indicate that the diagnostic          
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classifiers have good generalization abilities when applied to new samples. We           

observed more variability across drugs than in nested cross-validation, which is           

expected due to the smaller size of the validation set.  

 

 

Figure 5: Performance of the support vector machine (SVM) classifier for antimicrobial            
resistance and susceptibility prediction for different data types, different drugs and           
different evaluation schemes. The SVM performance was summarized by the F1-score           
and is shown for standard cross-validation (standard_cv, blue) and cross-validation          
using phylogenetically related blocks of isolates (block_cv, red) based on the training            
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data set (80% of the isolates) and for the validation data set (green; 20% of the                
isolates). EXPR: gene expression; GPA: gene presence and absence with indel           
information. SNPs: short nucleotide polymorphisms. 
 

 

Improvement of assignment accuracy with increasing sample       

numbers 

We next investigated how prediction performance depended on the number of           

samples used for classifier training. We trained the SVM classifiers on random            

subsamples of different sizes of the full data set with 414 isolates. For each model we                

recorded the macro F1-score in five repeats of ten-fold nested cross-validation           

(Figure 6). The classification performance saturates for all our classifiers well before            

using all available training samples, suggesting that when adding more isolates for            

resistance classification, the classification performance would improve only very         

slowly. Markers potentially remaining undiscovered in our study might have very           

small effect sizes, requiring much larger data set sizes for their detection.            

Interestingly, the number of samples required until the performance curve plateaued           

depends on the drugs and data types used. For ciprofloxacin, the performance of             

susceptibility/resistance prediction based on SNPs saturated quickly, likely due to the           

large impact of the known mutations in the quinolone resistance determining region            

(QRDR), whereas the classifiers for the other three drugs, which were trained on             

expression and gene presence/absence information required more samples until the          

F1-score plateaued. For these classifiers the dispersion of the macro F1-score for            

subsets of the data with fewer samples is also considerably higher than for the              

ciprofloxacin SNP models. 
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Figure 6: Classification performance improves and plateaus with the number of           
training samples used. A support vector machine-based resistance/susceptibility        
classifier was trained on differently sized and randomly drawn sub-samples from our            
isolate collection and evaluated in five repeats of a ten-fold nested cross-validation.            
Each panel depicts the results for a different drug (CAZ, CIP, MEM, TOB) based on               
the best data type combination (GPA+EXPR/SNPs).  
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Performance estimates of the candidate diagnostic classifiers are        

independent of the bacterial phylogeny 

In P. aeruginosa , different phylo-groups might contain different antibiotic resistance          

genes or mutations alone or in combinations. Thus, if there was an association of              

distinct resistance conferring genes with certain phylo-groups, our machine learning          

approach might identify markers that distinguish between different phylo-groups         

rather than between susceptible and resistant clinical isolates. In Supplementary          

Figures 3, 4, 5 and 6 we show susceptibility and resistance of each isolate in the                

context of the phylogenetic tree as predicted by the diagnostic classifier and based             

on AST for each of the drug. To assess whether our predictive markers are biased by                

the phylogenetic structure of the clinical isolate collection, we assessed classification           

robustness in a block cross-validation approach. Here, isolates of phylo-groups with           

differing sequence types as determined by MLST were grouped into blocks and all             

isolates of a given block were only allowed to be either in the training or test folds                 

(Figure 2, 5). Overall, for all four candidate diagnostic classifiers, we found that the              

performance estimates were only slightly lower than those obtained with standard           

cross-validation. This confirmed that the various P. aeruginosa phylogenetic         

subgroups possess similar mechanisms and molecular markers for the resistance          

phenotype and that the identified markers are distinctive for resistance/susceptibility          

instead of phylogenetic relationships.  

Notably, this was different for some suboptimal data type combinations, such as for             

predicting tobramycin resistance using SNPs or gene expression, where a          

substantially lower discriminative performance was achieved in block- compared to          

random cross-validation (macro F1-score difference > 0.2, Supplementary Table S3).          
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These results suggest that – despite the observed independence of the presence of             

genetic resistance markers and bacterial phylogeny – for some antibiotics we found a             

non-negligible phylo-group-dependent performance effect. This underlines the       

importance of assessing the impact of the phylogeny on the antimicrobial resistance            

prediction. 

 

Misclassified isolates are more frequent near the MIC breakpoints 

We tested whether we could detect an overrepresentation of misclassified samples           

among the samples with a MIC value close to the breakpoints compared to samples              

with higher or lower MIC values, selecting samples from equidistant intervals (in log             

space) around the breakpoint. We report only the strongest overrepresentation for           

each drug after multiple testing correction. For ciprofloxacin significantly more          

samples with a MIC between 0.5 and 8 were misclassified (31 of 139 samples (22%))               

than samples with a MIC smaller than 0.5 or larger than 8 (7 of 219 samples (3%))                 

(Fisher exact test with an FDA adjusted p-value of 6.2 ∙10-8; Figure 7). For             

ceftazidime, we found that 46 of 177 samples (26%) with a MIC between 4 and 64                

were misclassified whereas only 21 of 157 (13%) of samples with a MIC smaller or               

higher than those values were misclassified (adjusted p-value: 0.014). For          

meropenem, we found that 26 of 207 samples (13%) with a MIC between 1 and 16                

were misclassified, but only 8 of 147 (5%) of all samples with a MIC smaller or higher                 

than those values were misclassified (adjusted p-value: 0.05). For tobramycin, no           

significant difference was found.  
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Figure 7: Number of samples misclassified and correctly predicted by the support            
vector machine resistance and susceptibility classifier (SVM) grouped by their          
minimum inhibitory concentration. Each panel depicts the results for a different           
anti-pseudomonal drug (CAZ: ceftazidime, CIP: ciprofloxacin, MEM: meropenem,        
TOB: tobramycin) for the best data type combination (GPA+EXPR/SNPS).         
Misclassified and correctly classified samples for the training data set (80%) were            
inferred in a ten-fold cross-validation. An SVM trained on the training data set was              
used to predict resistance/susceptibility of the validation samples (20%). The          
number of misclassified samples in the training (80%) and validation set were            
aggregated. 
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Discussion 

One of the most powerful weapons in the battlefield of drug-resistant infections is             

rapid diagnostics of resistance. Earlier and more detailed information on the           

pathogens antimicrobial resistance profile has the potential to change antimicrobial          

prescribing behavior and improve the patient’s outcome. The demand for faster           

results has initiated investigation of molecular alternatives to today's culture-based          

clinical microbiology procedures. However, for the successful implementation of         

robust and reliable molecular tools, it is critical to identify the entirety of the molecular               

determinants of resistance. Failure to detect resistance can lead to the administration            

of ineffective or sub-optimal antimicrobial treatment. This has direct consequences          

for the patient; and poses significant risks especially in the critically ill patient.             

Conversely, failing to identify susceptibility may result in the avoidance of a drug             

despite the fact that it would be suitable to treat the pathogen, in the extreme case                

leading to patient death due to a lack of known treatment options. Overtreatment             

could also be a consequence and the needless use of broad-spectrum antibiotics.            

This drives costs in the hospital, puts patients at risk for more severe side effects and                

may contribute to the development of drug resistance by applying undesired selective            

pressures.  

In this study, we show that without any prior knowledge on the molecular             

mechanisms of resistance, machine learning approaches using genomic and         

transcriptomic features can provide high antibiotic resistance assignment capabilities         

for the opportunistic pathogen P. aeruginosa . The performance of drug resistance           

prediction was strongly dependent on the antibiotic. 
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Ciprofloxacin resistance and susceptibility prediction mostly relied on SNP         

information. Particularly two SNPs in the quinolone resistance determining region          

(QRDR) of gyrA and parC had the strongest impact on the classification            

(Supplementary Table S3). This is an expected finding as quinolone antibiotics act by             

binding to their targets, gyrase and topoisomerase IV (Bruchmann et al. 2013); and             

target-mediated resistance caused by specific mutations in the encoding genes is the            

most common and clinically significant form of resistance (del Barrio-Tofiño et al.            

2017). Although the sensitivity to predict resistance and susceptibility from only gene            

expression data was also high towards ciprofloxacin, there was no added value of             

using information on gene expression in addition to SNP information. Nevertheless,           

for the design of a diagnostic test system, it might be of value to include also gene                 

expression information as a fail-safe strategy. Interestingly, among the gene          

expression classifiers that were associated with ciprofloxacin       

susceptibility/resistance, we found prtN, which is involved in pyocyanin production.          

Pyocyanin has previously been demonstrated to alter ciprofloxacin susceptibility in P.           

aeruginosa (Grant et al. 2010). Furthermore, we found that altered expression and            

sequence of genes of the conjugation machinery such as traG, trbE, trbI and the              

closely located transcriptional regulator merD influenced classification. This is         

interesting because, it has been shown before that quinolone resistance inducing           

QRDR mutations do not only appear as a result of de novo target modification but are                

also frequently obtained by conjugation (Pitondo-Silva et al. 2015). 

For the prediction of tobramycin susceptibility and resistance, the machine learning           

classifiers performed almost equally well when the three input data types (SNPs,            

GPA and gene expression) were used individually (sensitivity and predictive values           
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>0.8). Remarkably, the combined use of the GPA and the gene expression data sets              

improved the classification performance. Although SNP information also was         

predictive of tobramycin resistance, it did not further improve the classification           

performance when combined with the other feature types. GPA information alone           

was the most important data type for classifying tobramycin resistance or           

susceptibility. The majority of aminoglycoside resistant clinical isolates harbor genes          

encoding for aminoglycoside modifying enzymes (AMEs). The AMEs are very diverse           

but are usually encoded by genes located on mobile genetic elements, including            

integrons and transposons. In accordance, the presence of respective markers that           

indicate the presence of these mobile elements was found to be strongly associated             

with tobramycin resistance (e.g. qacE, delta1, sul1 or folP). However, the most            

influential discriminator was the presence of the emrE gene. EmrE has been            

described to directly impact on aminoglycoside resistance by mediating the extrusion           

of small polyaromatic cations (X.-Z. Li, Poole, and Nikaido 2003). Expression of ptsP             

was also associated with tobramycin resistance. This gene has previously already           

been associated with tobramycin resistance (Schurek et al. 2008). The performance           

of GPA-based prediction increased further when gene expression values were          

included. We found e.g. amrB ( mexY ), which encodes a multidrug efflux pump known             

to confer to aminoglycoside resistance (Westbrock-Wadman et al. 1999; Lau,          

Hughes, and Poole 2014), as one of the top candidates within the marker panel. This               

confirms that expression of efflux pumps is an important bacterial trait that drives the              

resistance phenotype in P. aeruginosa . Tobramycin resistance/susceptibility was        

associated especially with an altered expression or SNPs within genes involved in            

type 4 pili motility ( pilB pilT2, pilY1, pilQ, pilH) and the type three secretion system               
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( pcr genes). It has been proposed that surface motility can lead to extensive             

multidrug adaptive resistance as a result of the collective dysregulation of diverse            

genes (Sun et al. 2018). Furthermore, the expression of the type III secretion effector              

gene, exoU, has been previously shown to be associated with antibiotic resistance to             

tobramycin in P. aeruginosa strains isolated from chronic otitis media infections (Park            

et al. 2017) . 

For the correct prediction of meropenem resistance/susceptibility, gene        

presence/absence was most influential. Interestingly, in contrast to tobramycin         

resistance classification, we observed a substantial accumulation of indels in specific           

marker genes. Among these marker genes were ftsY, involved in targeting and            

insertion of nascent membrane proteins into the cytoplasmic membrane, czcD,          

encoding a cobalt-zinc-cadmium efflux protein and oprD. Inactivation of the porin           

OprD is the leading cause of carbapenem non-susceptibility in clinical isolates           

(Köhler et al. 1999). As expected, also a decreased oprD gene expression in the              

resistant group of isolates was identified as an important discriminator. Interestingly           

though, the most important gene expression marker was not the down-regulated           

oprD , but an up-regulation of the gene gbuA, encoding a guanidinobutyrase in the             

arginine dehydrogenase pathway, in the meropenem resistant group of isolates. The           

finding of gbuA expression in meropenem resistant P. aeruginosa isolates could be            

an interesting topic to further follow up. Furthermore, components encoding the           

MexAB-OprM efflux pump ( mexB, oprM) were identified as important features          

associated with resistance. This efflux pump is known to export beta-lactams,           

including meropenem (Srikumar et al. 1998; X. Z. Li, Nikaido, and Poole 1995;             

Clermont, Brahimi, and Plesiat 2001).  
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As observed for tobramycin, the correct prediction of ceftazidime         

resistance/susceptibility was strongly influenced by both, gene expression values         

(here ampC, fpvA, pvdD, algF) and gene presence/absence (including presence of           

mobile genetic elements). AmpC is a known intrinsic beta-lactamase, able to           

hydrolyze cephalosporins (Lister, Wolter, and Hanson 2009). Adding information on          

the gene expression considerably improved the performance of susceptibility and          

resistance sensitivity, which was not observed in a similar scale for any other             

antibiotic.  

In conclusion, we demonstrate that extending the genetic features (SNPs and gene            

presence/absence) with gene expression values is key to improving performance.          

Thereby relative contribution of the different categories of biomarkers to the           

susceptibility and resistance sensitivity strongly depended on the antibiotic. This is in            

stark contrast to the prediction of antibiotic resistance in many Enterobacteriaceae,           

where knowledge of the presence of resistance-conferring genes, such as          

beta-lactamases, is usually sufficient to correctly predict the susceptibility profiles.          

However, analysis of the gene expression marker lists revealed that the resistance            

phenotype in the opportunistic pathogen P. aeruginosa (and possibly also in other            

non-fermenters) is multifactorial and that alterations in gene expression can alter the            

resistance phenotype quite substantially.   

Intriguingly, we found that the performance of our classifiers improved if the isolates             

exhibited MIC values that were not close to the breakpoint. This was especially             

apparent for ciprofloxacin. It has been demonstrated that patients treated with           

levofloxacin for bloodstream infections caused by Gram-negative organisms for         

which MICs were elevated, yet still in the susceptible category, had worse outcomes             
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than similar patients infected with organisms for which MICs were lower (Defife et al.              

2009). A possible explanation for treatment failure could be the presence of first-step             

mutations in gyrA that lead to MIC values near the breakpoint. If subjected to              

quinolones, those isolates can rapidly acquire second step mutations in parC that            

would then exhibit a fully resistant phenotype. An additional explanation might also            

be that generally MICs have a low level of reproducibility (Turnidge and Paterson             

2007; Juan et al. 2012; Javed et al. 2018). A non-accurate categorization due to              

uncertainty in testing near the MIC breakpoint can explain failure in the assignment of              

drug resistance by the machine learning classifiers.  

Capturing the full repertoire of markers that are relevant for predicting antimicrobial            

resistance in P. aeruginosa will require further studies, to expand the predictive            

power of the established marker lists. The remaining misclassified samples in our            

study on the basis of these marker lists represent a valuable resource to uncover              

further spurious resistance mutations.  

The broad use of molecular diagnostic tests promises more detailed and timelier            

information on antimicrobial resistant phenotypes. This would enable the         

implementation of early and more targeted, and thus more effective antimicrobial           

therapy for improved patient care. Importantly, a molecular assay system can easily            

be expanded to test for additional information such as the clonal identity of the              

bacterial pathogen or the presence of critical virulence traits. Thus, availability of            

molecular diagnostic test systems can also provide prognostic markers for disease           

outcome and give valuable information on the clonal spread of pathogens in the             

hospital setting. However, to realize the full potential of the envisaged molecular            

diagnostics, clinical studies will be needed to demonstrate that broad application of            
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such test systems will have an impact in clinical decision-making, provide the basis             

for more efficient antibiotic use, and also decrease the costs of care. 

Materials and Methods 

Strain collection and antibiotic resistance profiling 

Our study included 414 clinical P. aeruginosa isolates provided by different clinics or             

research institutions: 350 isolates were collected in Germany (138 at the Charité            

Berlin (CH), 89 at the University Hospital in Frankfurt (F), 39 at the Hannover Medical               

School (MHH), and 84 at different other locations). 62 isolates were provided by a              

Spanish strain collection located at the Son Espases University Hospital in Palma de             

Mallorca (ESP), and two samples originated from Hungary and Romania,          

respectively. 

All clinical isolates were tested for their susceptibility towards the four common            

anti-pseudomonas antibiotics tobramycin (TOB), ciprofloxacin (CIP), meropenem       

(MEM), and ceftazidime (CAZ). Minimal inhibitory concentration (MIC) testing and          

breakpoint determination was performed in agar dilution according to Clinical &           

Laboratory Standards Institute (CLSI) guidelines (CLSI 2018). Most of the isolates           

were categorized as multidrug-resistant (resistant to three or more antimicrobial          

classes, Supplementary Table 1). As reference for differential gene expression and           

sequence variation analysis the UCBPP-PA14 strain was chosen. 

  

31 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/643676doi: bioRxiv preprint 

https://paperpile.com/c/q2SjBq/A7vmi
https://doi.org/10.1101/643676
http://creativecommons.org/licenses/by-nd/4.0/


 

Colony screening 

To rule out possible contaminations, all isolates were continuously re-streaked at           

least twice from single colonies. Only isolates with reproducible outcomes in           

phenotypic tests were included in the final panel, which furthermore passed DNA            

sequencing quality control (>85 % sequencing reads mapped to P. aeruginosa           

UCBPP-PA14 reference genome, total read GC content of 64-66 %). 

 

RNA sequencing 

For comparable whole transcriptome sequencing, all clinical isolates and the          

UCBPP-PA14 reference strain were cultivated at 37 °C in LB broth and harvested in              

RNAprotect (Qiagen) at OD600= 2. Sequencing libraries were prepared using the           

ScriptSeq RNA-Seq Library Preparation Kit (Illumina) and short read data (single           

end, 50 bp) was generated on an Illumina HiSeq 2500 machine creating on average              

3 million reads per sample. 

The reads were mapped with Stampy (v1.0.23; (Lunter and Goodson 2011)) to the             

UCBPP-PA14 reference genome (NC_008463.1), which is available for download         

from the Pseudomonas Genome database ( http://v2.pseudomonas.com). Mapping       

and calculation of reads per gene (rpg) values was performed as described            

previously (Khaledi et al. 2016). Expression counts were log-transformed (to deal           

with zero values we added one to the expression counts).  
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DNA sequencing 

Sequencing libraries were prepared from genomic DNA using the NEBNext Ultra           

DNA Library Prep Kit (New England Biolabs) and sequenced in paired end mode on              

Illumina HiSeq or MiSeq machines, generating either 2x250 or 2x300 bp reads. On             

average 2.89 million reads were generated per isolate (ranging from 653,062 to            

21,086,866 reads with at least 30 times total genome coverage per isolate). All reads              

were adapter and quality clipped using fastq-mcf (Andrews 2010). 

All sequencing data are available at NCBI’s Gene Expression Omnibus (GEO) and            

Sequence Read Archive (SRA) under the accession numbers GSE123544         

(RNA-sequencing reads) and PRJNA526797 (DNA-sequencing reads), respectively. 

 

SNP calling         

DNA-sequencing reads were mapped with Stampy as described above (see          

RNA-sequencing). For variant calling, SAMtools, v 0.1.19 (H. Li et al. 2009) was             

used. Heterozygous single-nucleotide variants were converted to the most likely          

homozygous state. 

 

Phylogeny 

Paired-end reads (read length 150, fragment size 200) of eight reference genomes            

were simulated using art_illumina (v2.5.8) with the default error profile at 20-fold            

coverage (Huang et al. 2012). Together with our 414 clinical isolates, the sequencing             

reads were mapped to the coding regions of reference genome UCBPP-PA14 by            

BWA-MEM (v0.7.15) (H. Li 2013). SAMtools (v1.3.1) (H. Li et al. 2009) and             

BamTools (Barnett et al. 2011) (v2.3.0) were used for indexing and sorting the             
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aligned reads respectively followed by variant calling using FreeBayes (v1.1.0)          

(Garrison and Marth 2012). The consensus coding sequences were computed by           

BCFtools (v1.6) (H. Li 2011) and then sorted into families by corresponding reference             

regions. A gene family was excluded if the gene sequence of any of its member               

differed by more than 10% in lengths as compared to the length of the reference               

genome gene family. Totally, 5,936 families were retained. The sequences of each            

family were aligned by MAFFT (v7.310) (Katoh and Standley 2013), and the            

alignments were concatenated. SNP sites that were only present in a single isolate             

were removed from the alignment. The final alignment was composed of 558,483            

columns, and the approximately maximum likelihood phylogeny was then inferred by           

FastTree (v2.1.10, double precision) (Price, Dehal, and Arkin 2010). 

 

Pan-genome analysis and indel calling 

The trimmed reads were assembled with SPAdes, v.3.0.1 using the --careful           

parameter (Bankevich et al. 2012). The assembled genomes were annotated using           

Prokka (v1.12) (Seemann 2014) using the metagenome mode of Prokka for gene            

calling, as we had noticed that genes on resistance cassettes were often missed by              

the standard isolate genome gene calling procedure. The gene sequences were           

clustered into gene families using Roary (Page et al. 2015).  We observed that Roary              

frequently clustered together gene sequences of drastically varying lengths due to           

indels or start and stop codon mutations in those gene sequences and frequently             

also splits orthologous genes into more than one gene family. To overcome this             

behaviour we modified Roary to require at least  95% alignment coverage in the             

BLAST step (https://github.com/hzi-bifo/Roary ).  
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For matching the Prokka annotation and the reference annotation of the PA14 strain             

we used bedtools (Quinlan 2014) to search for exact overlaps of the gene             

coordinates. In a second step we identified all Roary gene families that contained a              

PA14 gene. To identify insertions and deletions in the Roary gene families we             

extracted nucleotide sequences for each gene family and used MAFFT (Katoh and            

Standley 2013) to infer multiple sequence alignments. We restricted this analysis to            

gene families present in at least 50 strains. Then we used MSA2VCF            

( https://github.com/lindenb/jvarkit/) for calling variants in the gene sequences and         

restricted the output to insertion and deletions of at least nine nucleotides.  

 

Support vector machine classification 

For applying cross-validation, the data set was split once randomly and once            

phylogenetically informed (see below) into k-folds (k set to 10, unless specified            

otherwise). Classifier hyperparameters were optimized on a k-1 fold sized partition,           

and performance of the optimally parameterized method was determined on the left            

out k fraction of the data. This was performed for all possible k partitions,              

assignments summarized and final performance measures obtained by averaging.  

 

Comparison of different machine learning classifiers 

We used the training set for hyperparameter tuning of the classifiers, i.e. a linear              

SVM, RF, and LR, optimizing the F1-score in ten-fold cross-validation and then            

evaluated the best trained classifier on the held-out set. The RF classifier was             

optimized for the macro F1-score over different hyperparameters: (i) the number of            

decision trees in the ensemble, (ii) the number of features for computing the best              
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node split, (iii) the function to measure the quality of a split and (iv) the minimum                

number of samples required to split a node. The logistic regression and the linear              

SVM were optimized for the macro F1-score over: (i) the C parameter ( inverse to the               

regularization strength ) and (ii) class weights (to be balanced based on class            

frequencies or to be uniform over all classes). Subsequently we measured the           

performance of the optimized classifiers over accordingly generated, held-out sets of           

samples).  

In clinical practice P. aeruginosa strains isolated from patients are likely to include             

sequence types that are already part of our isolate collection. To obtain a more              

conservative estimate of the performance of the antimicrobial susceptibility         

prediction, we also validated the classifiers on a held-out dataset composed of            

entirely new sequence types and also selected the folds in cross-validation to be             

non-overlapping in terms of their sequence types (block cross-validation). For          

partitioning the isolate collection into sequence types we used spectral clustering           

over the phylogenetic similarity matrix (von Luxburg 2007). We obtained this matrix            

by applying a Gaussian kernel over the matrix of distances between isolates based             

on the branch lengths in the phylogenetic tree.  

 

Multi Locus Sequence Typing (MLST) 

Consensus fastq files for each isolate were created with SAMtools to extract the             

seven P. aeruginosa relevant MLST gene sequences ( acsA, aroE, guaA, mutL,           

nuoD, ppsA, trpE). Sequence type information was obtained from the Pseudomonas           

aeruginosa MLST Database ( https://pubmlst.org/paeruginosa/) (Jolley and Maiden       

2010). 
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Implementation 

We encapsulated the sequencing data processing routines in a stand-alone package           

named seq2geno2pheno https://github.com/hzi-bifo/seq2geno2pheno. The SVM     

classification was conducted with Model-T https://github.com/hzi-bifo/Model-T, which       

is built on scikit-learn (Pedregosa et al. 2011) and was already used as the prediction               

engine in our previous work on bacterial trait prediction (Weimann et al. 2016).             

seq2geno2pheno also implements a framework to use a more broader set of            

classifiers, which we used to compare different classification algorithms for drug           

resistance prediction. Finally, we created a repository that includes scripts to           

re-produce the figures and analyses presented in this paper using the           

aforementioned packages  https://github.com/hzi-bifo/Fighting_PA_AMR_paper . 
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Supplementary Information 

Supplementary Table S1: Pseudomonas isolate resistance and supplier information.         

Isolate: the isolate name, Supplier (Geographic origin): Institution that provide each strain            

and the sampling site. 

Supplementary Table S2: Machine classification performance across drugs, combination of          

data types and different cross-validation schemes (randomly: sheet random) or          

phylogenetically informed: sheet tree) for the training and validation data set (including a             

summary for the best data type combination for each drug (best data type combinations).              

Drug: one of four anti-pseudomonal drugs, Classifier: one of LR (logistic regression), SVM             

(support vector machine), RF (random forest), Data type: data type combination used, Macro             

F1 cv: macro F1-score based on cross-validation, macro F1 validation: macro F1-score            

based on the validation set. 

Supplementary Table S3: Support vector machine classification performance across drugs,          

combination of data types and different cross-validation schemes for the training data set.             

cv_mode: cross-validation scheme, data type: data type combination, drug:         

anti-pseudomonal drug, measure: performance measure, value: performance measure value,         

std: standard deviation of performance measure. 

Supplementary Table S4: Number of markers for different values of the SVM C-parameter             

for each data type combination. data type: data type combination, drug: anti-pseudomonal            

drug. no_feats: number of non-zero features in the model, F1-score_macro: overall           

performance measure, c_param: value of the SVM C parameter. 

Supplementary Table S5: Genetic and expression markers for each data type combination.            

cparam: optimal SVM C parameter, data type: data type combination, drug:           

anti-pseudomonal drug, feature: marker id, which is a combination of PA14 reference gene id              

44 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/643676doi: bioRxiv preprint 

https://doi.org/10.1101/643676
http://creativecommons.org/licenses/by-nd/4.0/


and gene name, Prokka/Roary gene id or name, SNP position and nucleotide and amino acid               

change (if applicable) and number of markers with identical distribution in the data set. SVM               

weight: quantitative contribution of the marker in the SVM model. 

Supplementary Table S6: SVM classification performance across drugs, combination of          

data types for different performance measures for the validation data set. data type: data              

type combination, drug: anti-pseudomonal drug, c_param: the C parameter of the optimal            

SVM model used for prediction. 

Supplementary Figure S1 

Supplementary Figure 1: Comparison of support vector machine, random forest,          
and logistic regression classifiers in antimicrobial resistance prediction, and their          
generalization ability. Training and performance estimates was performed in         
ten-fold cross-validation, where isolates were split either randomly (standard: std) or           
using phylogenetically related blocks of isolates (block). The classification was          
performed for each antibiotic using the best performing feature combinations for the            
SVM. The error bar shows the variability (standard deviation) in 10 test folds. 
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Supplementary Figure S2 

Supplementary Figure 2: Comparison of support vector machine, random forest,          
and logistic regression classifiers in antimicrobial resistance prediction, and their          
generalization ability. The classifiers were tuned in a ten-fold cross-validation;          
subsequently their performances are reported over the held-out set, where isolates           
were split either randomly (standard: std) or using phylogenetically related blocks of            
isolates (block).  
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Supplementary Figures S3-S6 
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Supplementary Figures S3-S6: Phylogenetic tree of the 414 P. aeruginosa          
isolates used in this study. The branches leading towards two deeply branching            
clades were collapsed (CH4433 and ESP077, and CH4684, CH5206 and          
CH5387). The inner ring depicts the susceptibility of each isolate to ciprofloxacin,            
meropenem, tobramycin, and ceftazidime respectively; green susceptible, red        
resistant; rose intermediate resistant. The outer rings shows the susceptibility as           
assigned by the diagnostic genomic classifier (intermediate resistant samples         
were not assigned). 
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