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Abstract 35 

Olfactory sensory neurons expressing same-type odorant receptors typically project to a pair of 36 

glomeruli in the medial and lateral sides of the olfactory bulbs (OBs) in rodents. However, their 37 

functional properties remain unclear, because the majority of medial glomeruli are hidden in the 38 

septal OB. Recently, trace amine-associated odorant receptors were identified that project to a 39 

pair of glomeruli uniquely located in the dorsal OB. We measured the odorant-induced calcium 40 

responses of these glomeruli simultaneously and found that they exhibited similar temporal 41 

response patterns. However, the medial glomeruli had significantly larger respiration-locked 42 

calcium fluctuations than the lateral glomeruli. This trend was observed with/without odorant 43 

stimulation in postsynaptic neurons but not in presynaptic sensory axon terminals. This indicates 44 

that the medial rather than the lateral OB map enhances the respiration-locked rhythm and 45 

transfers this information to higher brain centers.46 
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Introduction 47 

Parallel processing of multiple streams of information improves the speed of processing and 48 

provides redundancy for fail-safe operations. Biological parallel streams of information in the 49 

brain are not typically identical neuronal circuits but have unique as well as common properties 50 

(Kandel et al., 2013) . How the brain organizes the distinct processing streams and combines 51 

them is not well understood.  52 

 Odor information is represented as spatial/temporal glomerular activity patterns on the 53 

surfaces of the olfactory bulbs (OBs). In rodents, olfactory sensory neurons (OSNs) expressing 54 

the same types of odorant receptors, among ~1,000 repertoires (Buck, 1996) , convert chemical 55 

signals into electrical signals in a respiratory rhythm and project to approximately two glomeruli 56 

in the OB: one on the medioventral side and the other on the dorsolateral side. The axons of 57 

these OSN projections traverse the medial/septal and lateral surfaces of the OBs, respectively. 58 

Because the two homologous glomeruli are arranged symmetrically in the OB, odor information 59 

is represented and processed in two mirror maps (Mombaerts et al., 1996; Nagao et al., 2002, 60 

2000; Zapiec and Mombaerts, 2015) . The paired glomeruli are connected via axon collaterals of 61 

tufted cells in a point-to-point manner (Belluscio et al., 2002; Lodovichi et al., 2003; Marks et al., 62 

2006) . Although the anatomical arrangements of the two maps have been studied, less is known 63 

about the functional connections between them (Zhou and Belluscio, 2012, 2008) . One pivotal 64 

idea is that the complex structure of the olfactory epithelium (OE) affects the sensitivity and 65 

timing of odorant responses of OSNs such that a delayed odorant response in one of the maps 66 

occurs with low odor concentrations (Kimbell et al., 1997; Schoenfeld and Cleland, 2006; Zhao 67 

et al., 2006; Zhou and Belluscio, 2012) . The similarity in the spatiotemporal patterns 68 

representing odor information between these glomeruli remains unknown, partly because of the 69 
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inaccessibility of the medial map, but is essential to understand the features that are common and 70 

uncommon between the two streams.  71 

 Trace amine-associated receptors (TAARs) were recently recognized as a second group 72 

gene family of odorant receptors (Liberles and Buck, 2006) . Pairs of OSNs expressing TAARs 73 

project to glomeruli in the mediodorsal OB (Dewan et al., 2013; Liberles, 2015; Pacifico et al., 74 

2012; Zhang et al., 2013) , which can frequently be observed simultaneously. Moreover, these 75 

two glomeruli are functionally identifiable because of their highly selective responses to the 76 

specific odorant at a low concentration (Zhang et al., 2013) . In the present study, we measured 77 

simultaneous odorant responses of these homologous glomerular pairs and compared the 78 

response properties between medial and lateral maps. These glomeruli exhibited similar activity 79 

patterns of response onset latency, rise and decay times, and amplitudes. However, the medial 80 

glomeruli showed significantly larger respiration-locked fluctuations than the lateral glomeruli. 81 

The difference was observed in postsynaptic neuronal responses but not presynaptic terminal 82 

activity, suggesting that despite similar inputs, the medial map neurons and/or circuits enhance 83 

the respiration-locked activity for further odor information processing.84 
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Results 85 

Expression patterns of GCaMP3 in OBs from Cre mouse driver lines. 86 

We recorded odor-evoked neuronal activity in the OBs of mice from multiple transgenic mouse 87 

lines. To express the genetically encoded calcium indicator GCaMP3 (Tian et al., 2009)  in 88 

different types of neurons in the OB, we used four Cre recombinase (Cre)-driver mouse lines. 89 

Specifically, OMP-Cre (Li et al., 2004) , Gad2-Cre (Taniguchi et al., 2011) , DAT-Cre (Bäckman 90 

et al., 2006) , and Pcdh21-Cre (Nagai et al., 2005)  mouse lines were crossed with a Cre-inducible 91 

GCaMP3 reporter mouse line (Ai38) (Zariwala et al., 2012)  so that GCaMP3 was expressed in 92 

OSNs and GABAergic, dopaminergic, and mitral/tufted cells, respectively. We first verified the 93 

GCaMP3 expression pattern in each of the Cre-driver mouse lines (Fig. 1 A–D). In OMP-Cre 94 

mice, GCaMP3 signals were clearly detected only in OSNs in the glomerular layer (GL) (Fig. 95 

1A). Consistent with a previous report (Wachowiak et al., 2013) , GCaMP3 in Gad2-Cre mice 96 

was strongly expressed in the external plexiform layer (EPL) and in the granule cell layer (GCL); 97 

the expression was predominantly by granule cells, but enhanced detection methods also 98 

revealed expression by periglomerular cells in the GCL (Fig. 1B). In DAT-Cre mice, GCaMP3 99 

signals were mostly restricted to the GL (Fig. 1C). High magnification of this layer indicated that 100 

GCaMP3 was expressed by juxtaglomerular cells, which were considered to be short-axon (SA) 101 

cells (Kiyokage et al., 2010)  (inset of Fig. 1C). This pattern of expression was similar to that in 102 

the TH (tyrosine hydroxylase)-Cre line, another driver line for expression in dopaminergic cells 103 

(Wachowiak et al., 2013) . In Pcdh21-Cre mice, GCaMP3 was specifically expressed in 104 

mitral/tufted cells, as GCaMP3 signals appeared in somata and neurite processes in superficial 105 

EPL and the mitral cell layer (MCL) (Fig. 1D), as reported previously (Huang et al., 2013; 106 
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Figure 1: Cell-type-specific expression of GCaMP3 in OBs of mice from different transgenic lines.
(A–D) Confocal images of OBs in Cre-dependent GCaMP3 reporter mice crossed with OMP-Cre (A), Gad2-Cre (B), DAT-Cre (C), and Pcdh21-Cre (D) mice. Magnified views of the dashed squares are shown in the insets in B and C. GL, EPL, MCL, and GCL indicate glomerular layer, external plexiform layer, mitral cell layer, and granule cell layer, respectively. Scale bars, 100 µm.
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Mizuguchi et al., 2012; Nagai et al., 2005) . Although reporter expression is induced in OSNs in 107 

another Pcdh21-Cre-driver line (Wachowiak et al., 2013) , we did not observe this ectopic 108 

expression in our mice. In summary, these Cre mouse lines exhibited the expected cell-type-109 

specific GCaMP3 expression patterns. 110 

 111 

Identification of homologous glomeruli in medial and lateral maps. 112 

In vivo optical imaging of the dorsal OB has not been utilized as a means to record activity in the 113 

medial map, because most of the glomeruli are located in the medioventral region of the OB 114 

(Inaki et al., 2002; Johnson et al., 2009, 2005, 2004, 1999, 1995, Johnson and Leon, 2000, 1996; 115 

Mori et al., 2006; Nagao et al., 2000, 2002; Taniguchi et al., 2003; Zapiec and Mombaerts, 2015) . 116 

However, it was recently demonstrated that OSNs expressing TAARs project to two or a few 117 

glomeruli in caudal regions of the dorsal OB (Dewan et al., 2018, 2013; Johnson et al., 2012; 118 

Liberles, 2015; Pacifico et al., 2012; Zhang et al., 2013) . These medial and lateral glomeruli can 119 

easily be identified, because axons from TAAR-expressing OSNs projecting to the dorsomedial 120 

glomeruli transverse the anteromedial (septal) surface of the OB, whereas those projecting to the 121 

dorsolateral glomeruli transverse the anterolateral surface. The axonal trajectories and odorant 122 

response profiles of glomeruli receiving projections from OSNs expressing TAAR3 and TAAR4 123 

are well characterized (Dewan et al., 2018, 2013; Pacifico et al., 2012; Zhang et al., 2013) . 124 

Specifically, these glomeruli are highly sensitive to isopentylamine (IPA) and phenylethylamine 125 

(PEA), respectively. Therefore, we imaged simultaneously these medial and lateral glomeruli 126 

that receive input from TAAR3- and TAAR4-expressing OSNs. 127 

 Using IPA and PEA at final concentrations of 0.02% and 0.002%, which reliably and 128 

specifically induce activation of the glomeruli receiving inputs from TAAR3- and TAAR4-129 
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Figure 2: OSN axon trajectories for IPA-responsive glomeruli.
(A) Process for the DiI labeling of OSN axons. A1, resting fluorescence of GCaMP3 in the dorsal OB of OMP-Cre mouse; A2, IPA (0.02%)-responsive homologous glomeruli were observed by calcium imaging (color scale indicates ΔF/F0 [%] of GCaMP3 signal); A3, brightfield image after DiI implantation; A4, DiI fluorescence 30 min after DiI implantation; A5, DiI fluorescence 8 h after DiI implantation. The locations of IPA-responsive glomeruli are indicated by the white dotted circles. (B) Two-photon microscopy image of DiI-labeled glomeruli and OSN axons 2 days after DiI implantation. (C) Magnified image of area denoted by orange dotted square in B associated with lateral glomerulus. (D) Magnified image of area denoted by yellow dotted square in B associated with medial glomerulus. Two-photon microscopy images of OSN axons that transverse the lateral and medial surface of OB; orange and yellow dotted ellipses (in B, C, and D) represent major axonal projections from lateral and medial glomeruli. (E) Two-photon microscopy images of areas of lateral/medial border denoted by blue dotted square in B. Red asterisks indicate axon termination in several glomeruli in which the labeled OSNs probably passed through the surface of the DiI-implanted glomeruli. Some minor axons which did not show clear axon terminations in a glomerulus were observed in area 2 in this case. Ant., anterior. Lat., lateral. Scale bars, 200 µm in A and B, 50 µm in C and D, 100 µm in E.
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expressing OSNs, respectively (Dewan et al., 2018, 2013; Pacifico et al., 2012; Zhang et al., 130 

2013) , we identified distinct pairs of glomeruli comprising OSNs and GABAergic, dopaminergic, 131 

and mitral/tufted cells in the caudal areas of the dorsal OB (Fig. 2A and Fig. 3A). The locations 132 

of these homologous glomeruli are consistent with the positions of glomeruli receiving inputs 133 

from TAAR3- and TAAR4-expressing neurons in previous reports (Dewan et al., 2018, 2013; 134 

Pacifico et al., 2012; Zhang et al., 2013) . 135 

 To confirm that the glomeruli pairs represent medial and lateral maps, we retrogradely 136 

labeled TAAR3-expressing OSN axons by implanting the IPA-responsive glomeruli in OMP-137 

GCaMP3 mice with DiI (1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate) 138 

crystals. Optical observation performed 8 h later revealed labeling of OSN axons in both lateral 139 

and medial glomeruli (Fig. 2A5). These labeled axons were observed more clearly in fixed tissue 140 

2 days later (Fig. 2B). Dorsolateral to the lateral IPA-responsive glomerulus, the majority of the 141 

labeled axons were oriented in an anterolateral direction (orange dashed ellipses in Fig. 2B and 142 

C). By contrast, the majority of axons dorsomedial to the medial IPA-responsive glomerulus 143 

were in an anteromedial direction (toward the septum) (yellow dotted ellipses in Fig. 2B and D). 144 

Notably, multiple glomerular structures were revealed by the terminal branches of labeled axons 145 

in the medial region (red asterisks in Fig. 2E), indicating that these axons originated from the 146 

medial side. Taken together, these results indicate that the pairs of recorded glomeruli were 147 

homologous pairs representing both lateral and medial maps. Therefore, our experimental design 148 

provides a unique opportunity to record simultaneously the odor-evoked neuronal activity of 149 

homologous glomeruli in the medial and lateral maps in OBs. 150 

  151 

Similar temporal odor representations between medial and lateral maps in the OB. 152 
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Figure 3: Odor-evoked response maps and traces among different types of OB neurons.
Odor-evoked response maps (A) and traces (B) from OMP-Cre, Gad2-Cre, DAT-Cre, and Pcdh21-Cre mice. Resting GCaMP3 fluorescence images are displayed in the left panels in A. Pseudocolored images in the middle and right panels in A indicate responses to 0.02% IPA and PEA, respectively. Yellow dotted lines and circles in each image show approximately the edge of the left OB and homologous glomeruli evoked by 0.02% IPA and PEA, respectively. The color scales represent ΔF/F0 (%) of GCaMP3 signal. Traces shown in B represent GCaMP3 fluorescence changes from two subsets of homologous glomeruli evoked by indicated concentrations of IPA and PEA shown in A. Red and blue traces indicate lateral and medial glomeruli, respectively. Gray bars under each trace and vertical dotted lines indicate the timing of odor stimulation. Respiration signals are also shown under the traces.


https://doi.org/10.1101/643288


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/643288doi: bioRxiv preprint 

Shin
Figure 4: Onset latencies of medial and lateral glomeruli.
(A) Scatter plots displaying the distributions of onset latencies of medial and lateral glomeruli, which responded to PEA and IPA stimuli. x and y axes indicate onset latencies of medial and lateral glomerular responses, respectively. Individual green and orange dots indicate single trial data of 0.02% and 0.002% PEA or IPA. Gray lines indicate the equal onset latency time points of medial and lateral glomerular responses. (B) Box plots displaying the distributions of the differences of onset latencies between medial and lateral glomeruli responses to 0.02% and 0.002% PEA or IPA. Red horizontal lines in each box indicate the medians. Quartiles are shown as whiskers. NS, not significant (two-tailed paired Student’s t test).
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Figure 5: Rise times of medial and lateral glomeruli.
(A) Scatter plots displaying the distributions of rise times of the medial and lateral glomeruli, which responded to PEA and IPA stimuli. x and y axes indicate rise times of medial and lateral glomerular responses, respectively. Individual green and orange dots indicate single trial data of 0.02% and 0.002% PEA or IPA. Gray lines indicate the equal rise time points of medial and lateral glomerular responses. (B) Box plots displaying the distributions of the differences of rise times between medial and lateral glomerular responses to 0.02% and 0.002% PEA or IPA. Red horizontal lines in each box indicate the medians. Quartiles are shown as whiskers. NS, not significant (two-tailed paired Student’s t test).
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Figure 6: Decay times of medial and lateral glomeruli.
(A) Scatter plots displaying the distributions of decay times of the medial and lateral glomeruli, which responded to PEA and IPA stimuli. x and y axes indicate decay times of medial and lateral glomerular responses, respectively. Individual green and orange dots indicate single trial data of 0.02% and 0.002% PEA or IPA. Gray lines indicate the equal decay time points of medial and lateral glomerular responses. (B) Box plots displaying the distributions of the differences of decay times between medial and lateral glomerular responses to 0.02% and 0.002% PEA or IPA. Red horizontal lines in each box indicate the medians. Quartiles are shown as whiskers. NS, not significant (two-tailed paired Student’s t test).
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Figure 7: Peak amplitude of medial and lateral glomerular responses.
(A) Scatter plots displaying the distributions of peak amplitudes of medial and lateral glomerular responses to PEA and IPA stimuli. x and y axes indicate peak amplitudes of medial and lateral glomerular responses, respectively. Individual green and orange dots indicate single trial data of 0.02% and 0.002% PEA or IPA. Gray lines indicate the equal peak amplitudes of medial and lateral glomerular responses. (B) Box plots displaying the distributions of the differences of peak amplitudes of medial and lateral glomerular responses to 0.02% and 0.002% PEA or IPA. Red horizontal lines in each box indicate the medians. Quartiles are shown as whiskers. NS, not significant (two-tailed paired Student’s t test).
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The medial and lateral glomeruli pairs represent inputs from odorant receptors of the same type 153 

within medial and lateral regions, respectively, of the complex OE structure. Receptors in these 154 

regions may be exposed to different air flow rates and mucosal volumes. We hypothesized that 155 

these differences would be reflected in the timing of the glomeruli responses. However, the 156 

calcium signals from all cell types examined in medial and lateral glomeruli in response to IPA 157 

and PEA had similar amplitudes and temporal patterns (Fig. 3B). Further analyses revealed that 158 

the timing of odor inputs to both maps was similar, as revealed by the onset latency measured as 159 

the time at which the calcium signal exceeded the threshold from first inhalation during odor 160 

stimulation (Fig. 4). The rise times of the responses, which are an indicator of response speed 161 

and reflect the neuronal spike frequency, were similar between medial and lateral glomeruli (Fig. 162 

5). The rise time was assessed as the duration for the calcium signal to increase from 20% to 163 

80% of the peak signal. Conversely, the similar decay times, during which the calcium signal 164 

decreased from 100% to 50% of the peak signals, suggested that the activity in one glomerulus 165 

was not prolonged relative to the other after the odor stimulus was turned off (Fig. 6). Both 166 

glomeruli in the pairs had responses that were similar in strength, as indicated by the peak 167 

amplitudes (Fig. 7). Overall, there were no significant differences between paired glomeruli in 168 

onset latency, rise time, decay time, and peak amplitude of the calcium responses in any of the 169 

cell types studied (two-tailed paired t tests, see Table 1). 170 

 171 

Respiration-locked calcium fluctuations in medial maps are larger than in lateral maps. 172 

Oscillatory calcium responses associated with respiration were observed in the optical recordings 173 

(Fig. 3B). These respiratory-linked fluctuations in calcium signals in medial glomeruli appeared 174 

to be larger in the postsynaptic neurons (i.e., GABAergic, dopaminergic, and mitral/tufted cells 175 
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Figure 8
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Figure 8: Respiration-locked calcium fluctuations of medial and lateral glomeruli.
(A) Schematic illustration of data collection time points and power spectral analysis. The prestimulation and odor stimulation periods are defined in left panel. Middle and right panels are representative examples of power spectral analyses with large frequency ranges in single trials. Respiration-locked fluctuations of calcium signals were prominently observed at 2–4 Hz (arrows). (B) Representative results of power spectral analyses of calcium signals during prestimulation (upper panels) and odor stimulation (lower panels) periods in neurons from GCaMP-expressing OMP-, Gad2-, DAT-, and Pcdh21-Cre mice. These calcium response traces are shown as 0.02% IPA response signals (as in Fig. 3B). Blue and red traces indicate medial and lateral glomeruli, respectively. (C) Comparisons of power spectra between the homologous glomeruli during the prestimulation (upper panels) and odor stimulation (lower panels) period in neurons from OMP-, Gad2-, DAT-, and Pcdh21-Cre mice. The ratios of peak powers were calculated by dividing the medial glomerular power by the lateral glomerular power in each trial. (D) Comparisons of peak power between the prestimulation and odor stimulation periods. The power ratios were calculated by dividing the odor stimulation period power (lower panels in C) by the prestimulation-period power (show in C, upper panels). Red horizontal lines in each box show medians. Quartiles are shown as whiskers. NS, not significant; ***; p < 0.001 two-tailed paired Student’s t test). 
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in the Gad2-Cre, DAT-Cre, and Pcdh21-Cre lines, respectively) than in the OSNs (i.e., cells in 176 

the OMP-Cre line). To examine this quantitatively, we applied a power spectral analysis to the 177 

data. Power spectra before and during odor stimulation displayed peak frequencies of 2–4 Hz 178 

(arrows in Fig. 8A), which matches the respiration rhythm under our experimental conditions. 179 

These respiration-locked calcium oscillations were detected in all the cell types (Fig. 8B). The 180 

peak power spectra at 2–4 Hz were indeed larger in medial glomeruli than in lateral glomeruli 181 

from Gad2-, DAT-, and Pcdh21-Cre mice both before and after odor stimulation but not in 182 

OMP-Cre mice. The statistical analysis is summarized in Fig. 8C (two-tailed paired t tests, see 183 

Table 1; the datasets are the same as in Fig. 4–7). In addition, the medial/lateral power ratios for 184 

spectra from postsynaptic neurons were larger during odor stimulation than before stimulation 185 

(Fig. 8D), suggesting a strong influence of the odor stimulus on the size of the fluctuation. These 186 

differences were observed consistently with 0.02% and 0.002% PEA and IPA (two-tailed paired 187 

t tests, see Table 1). These results suggest that respiration-locked calcium fluctuations in the 188 

medial maps are enhanced postsynaptically in the OB by odorant stimulation.189 
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Discussion 190 

Pre/postsynaptic calcium events in multiple cell types. 191 

In this work, GCaMP was expressed in postsynaptic GABAergic, dopaminergic, and 192 

mitral/tufted cells and in presynaptic axon terminals of OSNs of mice from various transgenic 193 

Cre-driver lines. Calcium signaling in OSNs reflects activation resulting in transmitter release, 194 

whereas calcium signaling in the other cell types may reflect activation of calcium-permeable 195 

glutamate receptors and the opening of calcium channels in response to excitatory postsynaptic 196 

potentials or spikes initiated in the dendrites or soma (Burnashev et al., 1992; Chen et al., 1997; 197 

Halabisky et al., 2000; Helmchen et al., 1999; Nagayama et al., 2007; Svoboda et al., 1999) . 198 

Therefore, the calcium influxes in these cells are controlled by different biophysical mechanisms 199 

and represent different aspects of biological events. These differences would not impact our 200 

imaging results, as the comparisons were between medial and lateral glomeruli comprising the 201 

same cell types. Notably, we did not observe cell-type-specific differences between the medial 202 

and lateral maps at the glomerular level, which is consistent with recent data at the single-cell 203 

level showing that odorant responses of juxtaglomerular cells are associated with the same 204 

glomerulus putatively (Homma et al., 2019) . Nevertheless, we cannot exclude the possibility of 205 

differential response timing by different cell types, because the time resolution for calcium 206 

imaging was limited and did not reflect that activity of all neurons within a glomerulus. Future 207 

studies may begin to address this by imaging spike activity at a single-cell resolution. 208 

 209 

Response timing of the homologous glomeruli in medial and lateral maps. 210 

A pioneer electrophysiological study using a unique transgenic mouse line in which all OSNs 211 

express the same odorant receptor suggested that that the latencies of mitral cell responses to 212 
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odorant stimulation are shorter in the medial map than in the lateral map, especially at a low 213 

odorant concentration (Zhou and Belluscio, 2012) . Because the OE is a complicated structure, 214 

airflow speed likely varies throughout the nasal cavity, and odorants may reach different areas at 215 

different times (Kimbell et al., 1997; Schoenfeld and Cleland, 2006; Zhao et al., 2006). This 216 

would produce a time lag for odorant responses in medial and lateral neurons. However, we did 217 

not observe different onset latencies between homologous medial and lateral glomeruli, even at 218 

low odorant concentrations. This may be because our recordings were via optical imaging rather 219 

than electrophysiology and from glomerular rather than MCLs. Another possible reason is the 220 

difference in OB regions recorded, which reflect inputs from different OE regions. Our study 221 

was restricted to a small region of the posteromedial dorsal OB, which receives inputs from the 222 

dorsal OE (Miyamichi et al., 2005) . The dorsal OE faces the large nasal cavity and has a 223 

relatively simple wall structure compared with that of ventral zones. Moreover, OSNs projecting 224 

to medial and lateral maps are close together in the dorsal OE, for which any latency would not 225 

be detectable under our experimental conditions. It is possible that differential latencies from 226 

neurons in the ventral OB may be larger or more easily detected (Kimbell et al., 1997; 227 

Schoenfeld and Cleland, 2006; Zhao et al., 2006) . In other words, the time lag may gradually 228 

become larger along the dorsal-ventral axis in the OB. 229 

 230 

Neuronal/circuitry mechanism of respiration-locked calcium fluctuations 231 

The fluctuations of calcium responses, which corresponded to the rhythm of respiration, were 232 

larger in medial glomeruli than in lateral glomeruli. This may reflect differential airflow volumes 233 

or rates along the medial and lateral sides of the nostril. As this was only observed in 234 

postsynaptic calcium responses, the modulation is likely not within the OE but in the OB. The 235 
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mechanism for this modulation may involve the physiological properties of these and/or 236 

associated neurons in medial and lateral glomeruli, such as differences in the expression of 237 

various calcium and/or other essential channels. As we did not observe differences in the 238 

amplitudes of the calcium responses, more than one channel type may be involved. Differential 239 

expression of other essential molecules would also change neuronal and/or network excitability. 240 

Neurons in medial glomeruli may also increase and decrease their intracellular calcium levels 241 

more synchronously during inhalation and exhalation, respectively. Such synchrony would be 242 

expected to affect the overall activity of neurons within a glomerulus; this could more directly be 243 

addressed by studies recording neuronal spikes in the context of a circuit. Thus, further 244 

investigations are needed to determine the mechanism by which calcium fluctuations are larger 245 

in medial glomeruli than in lateral glomeruli in response to odorant stimulation. 246 

 247 

Inhibitory connections between the two maps 248 

Tufted cells in the lateral glomeruli project to cells in the internal plexiform and superficial 249 

GCLs underlying the medial glomeruli receiving inputs from the same odorant receptors, and 250 

vice versa. These projections activate granule cells and thus inhibit surrounding mitral/tufted 251 

cells (Belluscio and Katz, 2001; Lodovichi et al., 2003; Zhou and Belluscio, 2008) , resulting in 252 

mutual inhibition between the medial and lateral maps. Our data suggest this inhibition is not 253 

simple (i.e., one glomerulus is inhibited when the other is activated), as medial and lateral 254 

glomeruli are activated simultaneously during odor stimulation. The similar temporal patterns 255 

and the absence of counterphase-locked activity between the two glomeruli also suggest that the 256 

activity of one glomerulus does not inhibit the other homologous glomerulus in a given time 257 

phase, such as during inhalation or exhalation. The functional role of these mutual inhibitory 258 
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connections and how they contribute to odor processing remain unknown. It is possible that these 259 

connections regulate the temporal activity pattern and/or synchrony of neurons or glomeruli in 260 

both maps. 261 

 262 

Odor information processing streams from the medial and lateral maps 263 

One of the unresolved issues is where the medial and lateral maps project and how higher brain 264 

centers handle these two outputs. Current knowledge of the connections between the OB and the 265 

olfactory cortex (Ghosh et al., 2011; Igarashi et al., 2012; Miyamichi et al., 2011; Nagayama et 266 

al., 2010; Sosulski et al., 2011)  suggest that there may not be dramatic differences regarding 267 

where the maps project. However, it is still not known whether the outputs from the two maps 268 

are evenly transmitted to all olfactory cortical areas, and some regions may preferentially receive 269 

input from one or the other. More detailed knowledge of the cortical projections may help reveal 270 

the significance of the multiple maps and how the information from the two information streams 271 

is compiled in higher brain centers. 272 

 273 

Rhythm of respiration 274 

In vertebrate land animals, airflow through the nasal cavity during respiration alternates between 275 

orthonasal and retronasal directions. This induces a synchronized rhythm in the olfactory system, 276 

which contributes to the odor information process (Cury and Uchida, 2010; Spors and Grinvald, 277 

2002; Uchida et al., 2014; Wilson and Mainen, 2006) . Moreover, the orthonasal and retronasal 278 

airflows switch the perception from smells originating from the surrounding environment to taste 279 

in the mouth, respectively (Gautam and Verhagen, 2012; Shepherd, 2012) . In addition to 280 

olfactory areas, respiration-locked oscillations have been observed in hippocampus as well as 281 
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barrel and prefrontal cortices in the rodent (Biskamp et al., 2017; Lockmann et al., 2016; Nguyen 282 

Chi et al., 2016; Phillips et al., 2012; Shusterman et al., 2011; Yanovsky et al., 2014) . In the 283 

barrel cortex, phase-locked oscillation patterns coordinate the interaction between olfaction and 284 

tactile sensations (Ito et al., 2014) , whereas freezing behavior is modulated by rhythmic activity 285 

in prelimbic prefrontal cortex driven by inputs from the anterior olfactory nucleus (Moberly et al., 286 

2018) , which has topographical connections to the OB (Schoenfeld et al., 1985; Yan et al., 2008) . 287 

The anterior olfactory nucleus sub-region which dominantly primarily receive inputs from the 288 

medial map may relay this information to higher brain centers controlling respiration-linked 289 

neuronal activity associated with mouse behavior. Thus, the anterior olfactory nucleus may be 290 

responsible for processing information from multiple glomerular maps and represents an area 291 

that warrants further study.292 
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Materials and Methods 293 

All procedures were performed on mice of either sex in accordance with National Institutes of 294 

Health guidelines and approved by the Animal Welfare Committee at the University of Texas 295 

Health Science Center at Houston. 296 

 297 

Animals.  298 

Cre-inducible GCaMP3-expressing mice (Ai38; #014538, Jackson Laboratory, Bar Harbor, ME) 299 

(Zariwala et al., 2012) were used for the expression of the calcium indicator in target neurons. 300 

This mouse line was crossed with the following Cre-driver mouse lines: OMP-Cre (for OSNs, 301 

#006668; Jackson Laboratory) (Li et al., 2004) , Gad2-Cre (for GABAergic neurons, #010802; 302 

Jackson Laboratory) (Taniguchi et al., 2011) , DAT-Cre (for dopaminergic neurons, #006660; 303 

Jackson Laboratory) (Bäckman et al., 2006), and Pcdh21-Cre (for mitral/tufted cells, #02189; 304 

RIKEN BioResource Research Center, Tsukuba, Japan) (Nagai et al., 2005) . 305 

  306 

Histology. 307 

Mice were deeply anesthetized and fixed by transcardial perfusion with 4% paraformaldehyde 308 

(PFA) in 0.1 M phosphate buffer (PB; pH 7.4). Then, whole brains were dissected out and 309 

postfixed in 4% PFA/0.1 M PB overnight. The samples were cryoprotected in 30% sucrose 310 

(wt/vol) in phosphate-buffered saline (PBS; pH 7.4) and embedded in optimal cutting 311 

temperature compound (Fisher HealthCare, Waltham, MA). Olfactory tissue sections 30-µm 312 

thick were cut on a cryostat, washed with PBS, and mounted with Fluoroshield mounting 313 

medium (F6057; Sigma-Aldrich, St. Louis, MO). Images were captured on an Olympus 314 

FluoView FV1000 laser scanning confocal microscope using a 20×/0.75 NA lens objective 315 
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(UPLSAPO 20X; Olympus, Tokyo, Japan). 316 

  317 

Odorant stimulation. 318 

IPA (#126810; Sigma-Aldrich) and PEA (#128945; Sigma-Aldrich) were diluted in mineral oil 319 

(M3516; Sigma-Aldrich) to 0.1% and 0.01% in glass vials. The odorants were vaporized using 320 

nitrogen, mixed with filtered air to final concentrations of 0.02% and 0.002% with 0.5 liter/min 321 

air flow rate, and then delivered to mouse nostrils using a custom-made olfactometer (Kikuta et 322 

al., 2013) . The odorants were presented for 2 s with an interstimulus interval of >60 s to avoid 323 

sensory adaptation. 324 

 325 

In vivo optical imaging. 326 

GCaMP-expressing mice were anesthetized with urethane (1.2 g/kg of body weight, 327 

intraperitoneal). The depth of anesthesia was monitored by toe pinches throughout the 328 

experiment. Body temperature was kept between 36.0°C and 37.0°C with a heating pad. The 329 

skull over the OBs was carefully thinned with a dental drill and covered with 1.2% agarose 330 

dissolved in saline and with a 4–6-mm2 coverslip (thickness, #1). Odor-evoked GCaMP3 signals 331 

were recorded through a 5× lens objective (Fluar 5×/0.25; Zeiss, Oberkochen, Germany) on a 332 

microscope (SliceScope; Scientifica, Uckfield, United Kingdom) equipped with a high-speed 333 

charge-coupled-device camera (NeuroCCD-SM256; RedShirtImaging, Decatur, GA) at 125 Hz 334 

(128 × 128 pixels) for 12 s, which included a 4-s prestimulus period and a 2-s odor presentation 335 

period. Excitation light was provided using a 470-nm light-emitting diode module (M470L2; 336 

Thorlabs, Newton, NJ). A standard green fluorescent protein filter set (BrightLine GFP-4050A-337 

OMF-ZERO; Semrock, Rochester, NY) was used to detect the GCaMP3 signal. Chest movement 338 
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of the animals was monitored to measure the respiratory rhythm during the optical imaging 339 

period. 340 

 341 

DiI labeling of OSN axons. 342 

After calcium imaging, the skull over the dorsal OBs was removed. Then, small DiI crystals 343 

were attached to the tip of glass capillaries (tip diameter, ~5 µm) and embedded into the area of 344 

IPA-responsive glomeruli. The positions of blood vessels relative to identical pairs of glomeruli 345 

were used as landmarks for DiI implantation. The mice remained anesthetized for 9–10 h after 346 

DiI implantation and then were fixed by transcardial perfusion with 4% PFA/0.1 M PB. Whole 347 

brains were removed and incubated in PBS at room temperature until observation. Low-348 

magnification images were captured by a charge-coupled-device camera (NeuroCCD-SM256 or 349 

SensiCam; PCO, Kelheim,Germany) using a 5× lens objective (Fluar 5×/0.25, Zeiss) with a 350 

light-emitting diode module (MCWHL2-C1; Thorlabs) and a standard Cy3 cube (BrightLine 351 

Cy3-4040C-OMF-ZERO; Semrock). For high-magnification views of OSN axons, images were 352 

acquired with a two-photon microscope (Prairie Ultima; Bruker, Billerica, MA), using a 20× 353 

water immersion lens objective (UMPLFLH 20XW; Olympus), with a 5-µm inter-z-slice interval 354 

and 512 × 512 pixel resolution. DiI was excited at 920 nm (Ti:sapphire laser, MaiTai HP DS; 355 

Spectra-Physics, Santa Clara, CA), and DiI fluorescence was detected with an emission filter 356 

cube (575-nm dichroic mirror and 607/45-nm barrier filters). 357 

 358 

Data analysis for wide-field calcium imaging data. 359 

Odor-evoked response maps were generated using Fiji/ImageJ (Schindelin et al., 2012) with 360 

custom-written scripts. Spatially filtered (3 × 3 mean filter) prestimulation-period images (4 s) 361 
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were averaged and used as a baseline (F0). Images averaged 3 s after the onset of the 1-s odor 362 

stimulation were used as the response image (F). Then, F was subtracted from F0 to obtain the 363 

difference (ΔF). ΔF values were divided by F0 to obtain the ratio image (ΔF/F0). Spatial filters (3 364 

× 3 mean filter) were also applied to the ratio images. All negative values were set to zero in the 365 

images. Regions of interest corresponding to glomeruli were manually set (4–8 pixels centered 366 

on each glomeruli). 367 

 The time courses of calcium signals (see Fig. 3B) were calculated using MATLAB 368 

(MathWorks, Natick, MA) with custom-written scripts. ΔF/F0 values were calculated using the 369 

same procedure described above but with a temporal filter (3 frames average, 24 ms) rather than 370 

a spatial filter applied to the ΔF/F0 values. 371 

 Onset latency, rise time, decay time, and peak amplitude were computed with custom 372 

MATLAB scripts. First, the baseline values (ΔF/F0) were determined as the mean values over the 373 

baseline period, which were defined as the 80-ms time window immediately before stimulation 374 

onset. Then, the noise level in each trial was defined as the minimum standard deviation among 375 

eight 0.5-s blocks in the 4-s prestimulation period. The onset latency was determined as the first 376 

time point at which all data points in the subsequent 80 ms exceeded the threshold (2.5 times the 377 

noise level). The onset latency was measured as the time elapsed from the first inhalation after 378 

the onset of odor presentation. The rise time was defined as the duration the calcium signals 379 

increased from 20% to 80% of peak amplitude. Time points for when the calcium signals 380 

reached 20% and 80% of the peak amplitude were set as the earliest time point after which half 381 

of the data points in the subsequent 80 ms exceeded these criteria. The decay time was defined as 382 

the duration the calcium signal decreased from 100% to 50% of the peak amplitude. Time points 383 

for when the calcium signals reached 100% and 50% of peak amplitude were set as the earliest 384 
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time point after which half of data points in the subsequent 80 ms dropped below these criteria. 385 

The peak amplitude was measured as the maximum value using the 80-ms time window moving 386 

average, which reflects average of 9 sequential data points, after stimulation onset. 387 

 To analyze fluctuations in the calcium fluorescence, a power spectral analysis based on 388 

Fourier transform was used. First, ΔF/F0 values were preprocessed with a 40-ms box filter and 389 

divided into two periods, corresponding to prestimulation (2 s before onset of odor stimulation) 390 

and odor stimulation (4 s after onset of odor stimulation). Then, a power spectrum was computed 391 

by using Fast Fourier transform with 2,048 points (using a built-in function of MATLAB [fft.m]) 392 

in each period. Because we used a 125-Hz sampling frequency, the frequency resolution is 0.061 393 

Hz. The peak power in each period was determined as the maximum value between 2 and 4 Hz. 394 

 395 

Statistics. 396 

Statistical analyses were performed using Microsoft Excel 2013. All statistical significance was 397 

determined by a two-tailed paired Student’s t test; p values of <0.05 were considered statistically 398 

significant. Data are presented as scatter and box-whisker plots of pooled data sets for a given 399 

odorant and concentration from OMP- (279 trials in 0.02% PEA, 194 trials in 0.002% PEA, 297 400 

trials in 0.02% IPA, and 185 trials in 0.002% IPA; n = 10), Gad2- (106 trials in 0.02% PEA, 84 401 

trials in 0.002% PEA, 119 trials in 0.02% IPA, and 62 trials in 0.002% IPA; n = 6), DAT- (216 402 

trials in 0.02% PEA, 118 trials in 0.002% PEA, 184 trials in 0.02% IPA, and 123 trials in 403 

0.002% IPA; n = 6), and Pcdh21-Cre (199 trials in 0.02% PEA, 130 trials in 0.002% PEA, 241 404 

trials in 0.02% IPA, and 176 trials in 0.002% IPA; n = 6) mice. In scatter plots, individual dots 405 

show data points from single trials. In box-whisker plots, horizontal red lines and boxes indicate 406 

the medians and quartiles, respectively. The whiskers go from each quartile to the minimum or 407 
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maximum. All p values calculated in this study are listed in Table 1. 408 
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