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SUMMARY 

Direct lineage conversion, whereby a somatic cell assumes a new cellular identity, can 

be driven by ectopic expression of combinations of lineage-enriched transcription 

factors. To determine the molecular mechanisms by which expression of Gata4, Mef2c, 

and Tbx5 (GMT) induces direct reprogramming from a cardiac fibroblast toward an 

induced cardiomyocyte, we performed a comprehensive transcriptomic and epigenomic 

interrogation of the reprogramming process. Single cell RNA sequencing indicated that 

a reprogramming trajectory was acquired within 48 hours of GMT introduction, did not 

require cell division, and was limited mainly by successful expression of GMT. 

Evaluation of chromatin accessibility by ATAC-seq supported the expression dynamics 

and revealed widespread chromatin remodeling at early stages of the reprogramming 

process. Chromatin immunoprecipitation followed by sequencing of each factor alone or 

in combinations revealed that GMT bind DNA individually and in combination, and that 

ectopic expression of either Mef2c or Tbx5 is sufficient in some contexts to increase 

accessibility. We also find evidence for cooperative facilitation and refinement of each 

factor’s binding in a combinatorial setting. A random-forest classifier that integrated the 

observed gene expression dynamics with regions of dynamic chromatin accessibility 

suggested Tbx5 binding is a primary driver of gene expression changes and revealed 

additional transcription factor motifs co-segregating with reprogramming factor motifs, 

suggesting new factors that may be involved in the reprogramming process. These 

results begin to explain the mechanisms by which transcription factors normally 

expressed in multiple germ layers can function combinatorially to direct lineage 

conversion.  
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INTRODUCTION 

Somatic cellular identity is established by complex gene regulatory networks during 

embryonic development. Cellular reprogramming, whereby ectopic expression of 

transcription factors promotes acquisition of a new cell state, challenges the notion that 

somatic identity is permanent (Guo and Morris, 2017). Knowledge regarding molecular 

mechanisms that dictate embryonic development has been exploited to devise 

combinations of transcription factors that can facilitate direct reprogramming of 

fibroblasts toward myriad somatic cell types, including macrophages, neurons, and 

cardiomyocytes, without progression through an intermediate pluripotent state (Feng et 

al., 2008; Ieda et al., 2010; Rackham et al., 2016; Wernig et al., 2008). With a few 

exceptions (Davis et al., 1987; Xie et al., 2004), cellular reprogramming typically 

requires a combination of three to five lineage-enriched, but not lineage-specific, 

factors, although the precise mechanisms by which various combinations lead to 

cellular specificity is only beginning to be understood (Treutlein et al., 2016; Wapinski et 

al., 2017). Beyond offering a promising alternative to induced pluripotency to create 

resources for cell therapy, cellular reprogramming offers a unique system with which to 

study transcription factor function (Wapinski et al., 2013). The heterogeneity, functional 

redundancy, and transient nature of developing tissues has made mechanistic studies 

aimed at dissecting individual protein functions and the interdependency of transcription 

factor binding difficult to ascertain.    

Direct reprogramming of cardiac fibroblasts to cardiomyocytes has been 

achieved by ectopic expression of cardiac-enriched factors (Fu et al., 2013; Ieda et al., 

2010; Nam et al., 2013; Qian et al., 2012; Song et al., 2012). Ectopic expression of 

Gata4, Mef2c, and Tbx5 (GMT) is sufficient to alter the fibroblast epigenome and 

promote expression of genes associated with cardiomyocytes while simultaneously 

repressing the fibroblast gene program (Ieda et al., 2010; Liu et al., 2017; Zhou et al., 

2016). Perturbation of epigenetic remodelers and ectopic expression of additional 
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transcription factors such as Hand2 and MYOCD were found to influence 

reprogramming as well, with addition of Hand2 resulting in a greater portion of 

pacemaker-like cells (Addis et al., 2013; Christoforou et al., 2013; Protze et al., 2012; 

Zhou et al., 2016). Concomitant inhibition of TGF𝛃 and Wnt signaling resulted in 

improved reprogramming both in vitro and in vivo (Ifkovits et al., 2014; Mohamed et al., 

2017). Despite the relatively inefficient nature of this process, regardless of approach, in 

vivo studies have shown that reprogramming offers a therapeutic benefit (Jayawardena 

et al., 2015; Qian et al., 2012; Song et al., 2012).   

Gata4, Mef2c, and Tbx5 each have essential functions in a wide range of tissues 

during embryonic development. Deletion of any of these factors individually leads to 

murine embryonic lethality by E10.5 and gross malformation of various organ systems, 

including the developing cardiovascular system (Bruneau et al., 2001; Lin et al., 1997; 

Molkentin et al., 1997). Gata4 is a zinc finger transcription factor capable of interacting 

with compact chromatin, but exhibits limited ability to interact with regions containing 

DNA methylation (Cirillo et al., 2002; Oda et al., 2013). While it interacts with Nkx2-5 

and Tbx5 to promote cardiovascular development, it also cooperates with Foxa2 during 

endoderm development to promote expression of a transcriptional network required for 

foregut development (Holtzinger and Evans, 2005). Similarly, beyond cardiogenesis 

Tbx5 is also required for limb development (Agarwal et al., 2003; Ahn et al., 2002), 

while Mef2c is also essential for neural development (Akhtar et al., 2012; Flavell et al., 

2006; Leifer et al., 1993; Li et al., 2008a, 2008b; Shalizi et al., 2006). Thus, transcription 

factors must interact in a combinatorial fashion to induce genome-wide epigenetic 

changes, but the mechanism by which these factors achieve tissue specific DNA 

binding patterns and transcriptional regulation remains unknown. 

Although Gata4 in other contexts can interact with heterochromatic genomic 

regions that are relatively inaccessible, a necessary event during reprogramming, little 

is known regarding the ability of Tbx5 and Mef2c to bind to closed areas of chromatin. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642900doi: bioRxiv preprint 

https://doi.org/10.1101/642900


5 

One screen identified TBX5 as a factor capable of inducing DNA demethylation when 

expressed ectopically (Suzuki et al., 2017). While the function of Mef2c in this regard 

remains unclear, a study on the closely related factor Mef2d in photoreceptor cells 

found that it requires additional co-factors to access regions that do not encode strong 

consensus Mef-response motifs (Andzelm et al., 2015). Which of these factors, if any, 

function to open closed chromatin in the context of direct reprogramming, and whether 

they require combinatorial interaction to do so, remains unknown. 

Here, we investigated the genome-wide consequences of Gata4, Mef2c and 

Tbx5 expression, alone and in combination, in cardiac fibroblasts as the cells underwent 

reprogramming towards a cardiomyocyte-like state. By combining single cell RNA 

sequencing, ChIP-seq, and ATAC-seq analyses, we found that epigenomic and 

transcriptional changes occurred rapidly within the first 24-48 hours of reprogramming. 

Cells that adopted a trajectory toward the cardiac fate could largely be predicted by 

virtue of early gene expression changes and reprogramming factor expression. Applying 

a machine learning approach identified new candidate factors involved in 

reprogramming. Although GMT are each capable of acting independently to promote 

chromatin remodeling when expressed individually, we found that changes were 

primarily associated with Mef2c and Tbx5 binding only. Cooperative activity between 

Gata4, Tbx5, and Mef2c was evident as combinatorial expression resulted in refinement 

and facilitation of DNA binding compared to single factor expression, and combinatorial 

binding correlated with opening of chromatin particularly at cardiac loci.  
 

RESULTS 

Multiple Transcription Signatures Identified During Cardiac Reprogramming  

To determine the discrete temporal transcriptional response to reprogramming with 

GMT in the setting of TGF𝛃 and Wnt inhibition, we performed single cell RNA 
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sequencing during cardiac reprogramming of Thy1 positive (Thy1+) cells, largely 

representing fibroblasts, isolated from neonatal mouse hearts that encode an αMHC-

GFP reporter that is activated during reprogramming (Ieda et al., 2010) (Figure 1A). We 

collected and analyzed 29,718 cells representing five time points after transduction with 

retroviruses encoding Gata4, Mef2c, and Tbx5 (days 1, 2, 3, and 7), as well as the 

starting population. We additionally collected cells sorted at day 14 using the 

aforementioned αMHC-GFP reporter.  

Transcript information from all samples was aggregated and a graph based 

clustering approach using principal component analysis and the Louvain algorithm 

identified 14 distinct transcriptional signatures which were visualized using Uniform 

Manifold Approximation and Projection (UMAP) (Figure 1B, Table S1) (Becht et al., 

2018; Butler et al., 2018). Excluding the clusters that exclusively represent day -1 

(clusters 6 and 11), all additional clusters identified included cells collected at each time 

point, highlighting the limited technical variability between our timepoints and the 

heterogeneous response to GMT (Figure 1C, D).  

To better understand the biological significance of the 6 main groups of cells 

identified through hierarchical clustering of our populations, we next identified 

representative gene signatures for each cluster (Figure 1E). A differential expression 

test revealed 7,395 genes were differentially expressed (p < 0.01, average log fold 

change > 0.3) across our time course (Table S1). Three populations represented non-

fibroblast cell types present in the starting population that were detected throughout our 

time course: epicardium-derived (clusters 11 and 12), endocardium (cluster 13), and 

macrophages (clusters 8 and 9) (Figure 1D-E, Figure S1B). Endocardial cells were 

identified by expression of Emcn and Egfl7 (cluster 13, Figure 1E) (Cavallero et al., 

2015). Epicardial cells were detected based on expression of genes such as Lrrn4 and 

Mgp (cluster 12, Figure 1E) (Xiao et al., 2018). Notably, the expression of these genes 

exclusively within endocardium and epicardium cells throughout our time course does 
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not support a previous report that suggested these genes are expressed at early stages 

in reprogramming cells but subsequently repressed by GMT expression (Figure 1C-D) 

(Liu et al., 2017). Instead, our analysis suggests these distinct cell types persist in the 

population in low numbers and were not detected in the previous study due to a 

limitation in the number of cells captured.  

Four additional signatures were identified that putatively represent various stages 

or outcomes of cardiac reprogramming. The initial stages of reprogramming (early 

iCMs) are represented by clusters 0 and 5, identified by activation of genes such as 

Nid2 and Tnnt2 and incomplete repression of fibroblast-associated genes such as 

Col8a1 and Ptgs2 (Figure 1E, Figure S1B). This signature was present within 48 hours 

of GMT transduction, in agreement with previous reports (Liu et al., 2017; Sauls et al., 

2018). Cluster 2 represents late iCMs that express cardiomyocyte-related genes such 

as Nppa, Tnni3, Sln, and Myl7, and have downregulated the fibroblast gene program 

(Figure 1E, Figure S1B). Unexpectedly, this cluster contained cells collected from days 

3 (5% of day 3 cells) and 7 (26% of day 7 cells), as well as reporter-positive cells 

collected on day 14 (“+14r”; Figure 1C), suggesting a reprogrammed state can be 

acquired rapidly (Figure 1D).    

The two additional signatures putatively contain alternative reprogramming 

outcomes. The first exhibits expression of various genes associated with the cell cycle 

(clusters 4 and 10) such as Cdk1 and Top2a (Figure 1E). Alternatively, cells in cluster 1 

are more similar to the starting population, but have activated a subset of cell-cycle 

genes such as Ccnb1 (Figure 1E, Figure S1B). These cells are similar to cluster 3 in 

both UMAP space and based on hierarchical clustering, which has activated genes that 

become more robustly expressed in cluster 7, such as Mmp3 and Ccl7 (Figure 1C-E, 

Figure S1B). Cluster 7 is similar to clusters 11 and 12, which are found in the starting 

population, suggesting cluster 7 represents cells that do not acquire a cardiac fate nor 

enter the cell cycle (Figure 1D-E). Gene ontology (GO) analysis of genes activated in 
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cluster 7 (compared to cluster 11, n=488 genes, average log fold change > 0.3, p < 

1x10-10) revealed biological processes associated with vasculature and blood vessel 

development (p = 1.76x10-13 and 5.32x10-13, respectively). These cells uniquely activate 

genes associated with vascular developmental processes such as Epas1, Figf, and 

Sox9 (Figure 1E, Table S1) (Achen et al., 1998; Lincoln et al., 2007; Tian et al., 1997). 

They also continue to express genes associated with the starting fibroblast state, such 

as Dcn and Tbx20 (Table S1). Therefore, unlike direct neural reprogramming, we do not 

detect the emergence of an alternative cell type in our experiments (Treutlein et al., 

2016).  

 To better understand the associations between identified clusters and establish 

a transcriptional trajectory of the reprogramming process, we next ordered clusters in 

pseudotime using Monocle (Cao et al., 2019). Clusters containing alternative cell types 

identified in the starting population were eliminated (clusters 8, 9, 11, 12, and 13) from 

this analysis as they do not reflect the process or outcome of reprogramming. The 

starting fibroblasts (cluster 6) were also eliminated as they are too dissimilar to the 

reprogramming cells, and their inclusion masks the additional dynamics. This analysis 

indeed revealed a tree structure with three main branches indicating three possible 

outcomes (Figure 1F). One branch reflects an alternative outcome exhibited by 

progressive activation of Mmp3, while activation of cardiac genes such as Tnni3 and 

positive markers of cell cycle progression (e.g. Ccnb1) occur along separate, distinct 

trajectories (Figure 1G). The inverse relationship between cardiac reprogramming and 

proliferation is aligned with fibroblast reprogramming towards a pluripotent state which 

is also negatively impacted by continued proliferation (Xu et al., 2013). Collectively, 

these data suggest that a reprogramming trajectory can be acquired within 48 hours of 

GMT transduction but that reprogramming progress occurs at variable rates in individual 

cells. 
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Reprogramming Trajectory is Entered Quickly and Driven by GMT Transduction 

To understand how ectopic GMT expression may dictate the observed transcriptional 

trajectories,  we assayed expression of Gata4, Mef2c, or Tbx5 in each cell by 

generating 5’ single cell RNA sequencing data for 2,593 cells collected on day 1 of 

reprogramming. This approach circumvented the limitation of our initial analysis 

whereby the individual ectopic retroviral plasmids could not be distinguished because 

they each encode the same 3’ polyadenylation sequence that was used to generate 

cDNA during sequencing library construction. After eliminating the myeloid lineage, we 

identified 12 clusters within this population, confirming the prompt rate in which cells 

alter their transcriptional landscape in our system (Figure 2A). A pseudotime analysis 

again identified three main branches in the main trajectory as well as a separate group 

of clusters (clusters 6, 7, 11, and 12) that were unlinked from the main trajectory 

(Figure 2B).  

The three branches identified in the main trajectory represent gene signatures 

analogous to those presented in Figure 1 based on a differential expression analysis; 

cells that are likely proliferating (A, 22%), reprogramming cells (B, 33%), and fibroblast-

like cells (C, 29%) (Figure 2C, Table S2). Evaluation of GMT expression revealed their 

collective expression is observed in branch B, which contains cells that have activated 

markers of a cardiomyocyte fate (e.g. Pdlim3, Nid2, Smpx, and Tnnt2) and 

downregulated genes associated with a fibroblast identity (Tcf21, Postn, and Tbx20) 

(Figure 2C-E, Table S2). Gata4 is expressed in cardiac fibroblasts and is therefore 

detected throughout the population; however, it is increased 1.6 fold in cluster 1 

compared to cluster 2. GMT is also expressed in cluster 10, which lies within branch A, 

suggesting expression of GMT can lead to a partially reprogrammed state even if the 

cells enter a proliferative state (Figure 2C-E). While this type of reprogramming may not 

produce more advanced iCMs, it suggests proliferation does not prevent the initial 

stages of reprogramming (Liu et al., 2017). In contrast to branches A and B, the 
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fibroblast-like cells that populate branch C exhibited only baseline levels of all three 

factors (Figure 2E). This analysis confirms that this cell type arises from fibroblasts that 

do not express ectopic GMT, rather than representing a newly acquired state driven by 

transduction with one or two factors.  

GMT expression was also detected within the unlinked trajectory in clusters 6 

and 11 (Figure 2E). These clusters contain epicardial cells expressing Ddx4, Lrrn4, and 

Msln (Figure 2E, S2A, Table S2). Cluster 6 additionally upregulated early markers of 

the iCM trajectory such as Pdlim3, Smpx, and Cd24a, suggesting that, although 

unlinked from the main trajectory, this cell type may be capable of acquiring a 

cardiomyocyte-like gene expression signature upon transduction with GMT (Figure 2C-

D, Table S2). A similar cell cycle-related phenomenon was also observed in the 

epicardial cells, as cells in cluster 11 entered the cell cycle and activated expression of 

Pdlim3 and Smpx (Figure 2C-E, S2B Table S2).  

To identify variables that may dictate progress in the reprogramming trajectory, 

we next compared the gene expression profiles of clusters 1 and 4 as they represent 

early, yet distinct iCM reprogramming states. Examination of GMT expression levels 

found a statistically significant difference in Gata4 (negative binomial adjusted p-value = 

9.58x10-45) and Tbx5 (negative binomial adjusted p-value = 2.08x10-15) between 

clusters 1 and 4, but not Mef2c (Figure 2F, S2B). Cluster 1 exhibits stronger 

upregulation of early markers of reprogramming (e.g. Smpx, Tnnt2, and Cd24a) and 

downregulation of fibroblast-associated genes (e.g. Postn, Tbx20, and Sdpr) (Figure 

2C, F-G, S2B, Table S2). Therefore, while robust expression of Mef2c and Tbx5 is 

required, this variation suggests lower levels of Gata4 may limit the rate of 

reprogramming but still allow initiation of the process. While cluster 8 is most similar to 

clusters 1 and 4, it has not activated markers of reprogramming but it has 

downregulated markers of the starting fibroblasts (Figure 2F-G). There was a significant 

difference in Mef2c expression (negative binomial adjusted p-value = 1.17x10-08), 
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further supporting the necessity of robust expression of this gene. Ectopic expression of 

GMT could be limited by post-transcriptional mechanisms that influence protein stability 

or a subset of cells may have received fewer viral copies.  

 

Chromatin Remodeling Occurs within 72 Hours of GMT Expression 

To identify the dynamics in chromatin accessibility underlying the aforementioned 

transcriptional changes, we performed ATAC-seq on αMHC-GFP positive cells collected 

at five time points during reprogramming (days 2, 3, 7, 14, and 21), and compared 

regions of accessible chromatin to those detected in the starting fibroblast population. 

This analysis identified 100,691 total dynamic regions, which included a rapid gain of 

accessibility by day 2 of reprogramming at the early reprogramming marker gene 

Slc6a6 and cardiac Tnnt2 loci (Figure 3A, Figure S3A-B, Table S3). Principal 

component analysis of the genome-wide chromatin accessibility data shows extensive 

chromatin remodeling by day 2, in agreement with the transcriptional dynamics 

presented in Figure 1 (Figure S3C).  

To uncover factors that direct the most robust changes in chromatin accessibility, 

we performed principal component analysis and hierarchical clustering on the 10,000 

most differentially accessible regions identified during our time course and found eight 

primary patterns (Figure 3B). Approximately half of the most dynamic regions (n=4,480) 

identified in our time course lost accessibility during differentiation, while the other half 

gained accessibility (n=5,520). Regardless of chromatin remodeling dynamics, the vast 

majority of changes occurred distal from transcriptional start sites, with dynamic regions 

underrepresented in promoter proximal regions (p = 2.2e-16; Figure S3D). The majority 

of regions that lost accessibility exhibited this change within 3 days of GMT induction 

(Figure 3B, C; clusters 1-4). Motif enrichment analysis identified the TEAD family as 

most associated with loss of chromatin accessibility (Figure 3D, Table S4). The TEA 

transcription factors Tead1 and Tead4 are expressed throughout reprogramming (Table 
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S5, Figure S3E) and promote cell growth and proliferation through interactions with 

Hippo pathway components (Yoshida, 2008). Nuclear exclusion of TEAD proteins 

occurs during cell cycle exit (Ota and Sasaki, 2008). 

In contrast to the similar dynamics observed in clusters that exhibited the 

strongest loss of accessibility, there were multiple distinct patterns associated with gain 

of accessibility. Cluster A5 demonstrated a gain in chromatin accessibility by day 2, but 

then exhibited a return towards the fibroblast accessibility state at later time points, 

suggesting accessible chromatin at those sites was not stabilized (n=385, Figure 3B, 

C). This cluster showed limited enrichment of transcription factor sequence motifs, 

which may have prevented stable GMT binding similar to findings reported for Mef2c, 

Gata4 and FOXA2 whereby a lack of motif leads to transient sampling rather than stable 

binding (Figure 3D, Table S4) (Andzelm et al., 2015; Donaghey et al., 2018). Cluster 6 

demonstrated a similar initial trend as cluster 5; however, the extent of the loss at later 

time points was reduced (n=1352, Figure 3B-C). Clusters 7 and 8 represent the 

majority of regions associated with a gain in accessibility, and the maximum gain in 

these regions was observed after day 3 (n=2471, 1212, Figure 3B-C). Regions in these 

clusters maintained higher levels of accessibility over the time course, compared to 

clusters 5 and 6, and also contained significant enrichment of multiple motif families 

(Figure 3D, Table S4).  

To assess the potential functional roles of each cluster, we annotated regions 

exhibiting changes in chromatin accessibility using GREAT (Figure 3E, Table S6) 

(McLean et al., 2010). Regions that exhibited loss of accessibility were associated with 

the inflammatory response (cluster 2) and monocytes (cluster 3), supporting a previous 

report that ZNF281 promotes reprogramming through repression of inflammatory 

signaling pathways (Zhou et al., 2017). Clusters 7 and 8, which gain and maintain 

accessibility, were associated with cardiovascular terms such as cardiac and striated 

muscle development. Regions that did not maintain accessibility in cluster 5 were also 
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associated with cardiac function (Figure 3E, Table S6). It remains possible that while 

Tbx5 may transiently sample those sites during reprogramming, it requires 

developmentally regulated binding partners to initiate and/or stabilize the interactions 

with DNA that are not robustly expressed in our system, such as Eomes (McLane et al., 

2013). In summary, based on the motifs revealed by the ATAC-seq data, we can 

deduce the identity of additional transcription factors that may be responsible for 

promoting the cardiac state by increasing accessibility at cardiac loci and/or inhibiting 

other, alternative cell types throughout the reprogramming process. 

 

Mef2c and Tbx5 Binding Is Associated with Changes in Chromatin Accessibility 

To understand how DNA binding by GMT underlies the early changes in chromatin 

accessibility, we next performed ChIP-seq at day 2 of reprogramming to assess Gata4, 

Mef2c, and Tbx5 occupancy. Unlike the ATAC-seq presented in Figure 3, this 

experiment was performed in immortalized neonatal cardiac fibroblasts to obtain 

sufficient numbers of cells; therefore, we created a new, matched ATAC-seq dataset for 

integration with the ChIP-seq data. This analysis identified 5,100, 6,904, and 5,307 

peaks for Gata4, Mef2c, and Tbx5, respectively (Figure 4A, 4B, S4A). Assignment of 

peaks to the nearest TSS showed that the majority of Gata4 and Mef2c peaks were 

located further than 2kb from the nearest TSS, while 45% of Tbx5 peaks were within 

2kb of a TSS, suggesting that Tbx5 may have the most direct influence on changes in 

gene expression (Figure S4B).  

To reveal relationships between reprogramming factor binding and chromatin 

accessibility, we performed hierarchical clustering on the merged region set (n=14,138) 

bound by Gata4, Mef2c, and/or Tbx5 during reprogramming, including changes in 

chromatin accessibility, and identified eight primary patterns (Figure 4B, S4A). Only two 

groups (clusters B1 and B3, n=2,630) included binding of all three factors. However, 

these clusters exhibited disparate chromatin dynamics. Cluster 1 contained regions that 
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were accessible in the starting population, and their accessibility increased slightly by 

day 2 (Figure 4B). Regions within cluster 3 were alternatively inaccessible in the 

starting fibroblasts and their accessibility increased (6.33-fold mean increase by day 2) 

(Figure 4B).  

This intersection revealed two clusters containing regions bound by Mef2c alone 

(clusters B2 and B4; n=1,968 and n=2,240, respectively), each displaying opposing 

trends in chromatin accessibility (Figure 4B). While regions in cluster 2 lost accessibility 

on average, regions in cluster 4 experienced a 2.55-fold mean increase, which may be 

linked to the greater representation of a Mef2 motif in cluster B4 vs cluster B2 (61.17% 

vs 49.44%, respectively) (Figure 4C, Table S7). While the trend identified in cluster 4 

suggests the machinery Mef2c requires to promote chromatin remodeling is active 

during reprogramming, we did not observe significant chromatin remodeling at regions 

bound by Tbx5 alone (cluster B7, n= 2,370) or Gata4 alone (cluster B5, n=1,419) 

(Figure 4B). Cluster B7 exhibited little change in accessibility during reprogramming 

(0.64-fold mean change), while regions bound by Gata4 and Tbx5 together (cluster B6; 

n=2,129), exhibited a 3.84-fold mean increase in accessibility, suggesting synergistic 

binding of Gata4 and Tbx5 has a positive impact on chromatin remodeling at those 

regions (Figure 4B).   

We next identified potential non-GMT cofactors within these regions by searching 

for known motifs enriched within ChIP-seq peaks, and summarized them based on TF 

family (Figure 4C, Table S7). As expected, top-ranked motifs corresponded to families 

of reprogramming transcription factors; however, additional motif families were also 

significantly enriched, including bZip, Homeobox, and Forkhead (Figure 4C, Table S7). 

These families include transcription factors such as Atf1/2/3/7, Fosl2, Jun, and Bach2 

(bZip); Tgif1/2 and Meis1 (H-box); and Foxm1 (Forkhead), all of which are expressed 

during reprogramming (Figure S3E).      
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Finally, we analyzed the binding of Gata4, Mef2c, and Tbx5 at regions that 

exhibited the most dynamic chromatin accessibility changes during reprogramming 

(regions from Figure 3B-C). We detected no enrichment of GMT binding at day 2 in 

regions that lose accessibility during reprogramming (clusters A1-4), while we detected 

statistically significant enrichment of GMT binding at day 2 in almost all regions that 

gained accessibility during reprogramming (clusters A6, A7, and A8) (Figure 4D). 

Cluster A5 is the only ATAC-seq cluster that gained accessibility at day 2 of 

reprogramming without significant enrichment of binding by reprogramming factors, 

providing a potential explanation for why this cluster exhibits only a transient 

accessibility gain (Figure 4D, 3B-C). Taken together, this suggests that chromatin 

accessibility dynamics directed by binding GMT are context-specific.  

 

Transcription Factor DNA Occupancy Defines Chromatin Accessibility Trends 

To understand how GMT binding, individually and in combination, is related to changes 

in chromatin accessibility, we next performed ChIP-seq and ATAC-seq at day 2 with 

single factors (SF) ectopically expressed, and additionally, with pairs of factors 

ectopically expressed (DF) (Figure 5A). Principal component analysis reveals that each 

individual factor’s binding pattern differed from the pattern detected during 

reprogramming when all three factors were present (Figure 5B). A large shift occurred 

for Gata4, whose binding became similar to Tbx5 during reprogramming with all factors, 

supporting a previously reported cooperative binding relationship between these two 

transcription factors in developing mouse and human cardiomyocytes (Ang et al., 2016; 

Luna-Zurita et al., 2016; Maitra et al., 2009). Mef2c exhibited a decidedly distinct 

binding pattern compared to Tbx5 and Gata4, but was altered by the addition of Gata4 

and Tbx5 (Figure 5B). 

Hierarchical clustering of the merged 28,424 region set bound by Gata4, Mef2c, 

and/or Tbx5 when all factors (AF) or single factors (SF) were ectopically expressed, 
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together with changes in chromatin accessibility, resulted in 8 distinct clusters (Figure 

5C). Cluster C1 represents regions bound by all three factors, regardless of whether the 

other reprogramming factors are present; however, most clusters were driven by 

binding of a single factor (Figure 5C). Clusters C2, C4, C5, and C6 represent clusters 

bound in single factor conditions that are refined by addition of all factors (Figure 5C, 

S5A). Binding of a single factor in C2 and C5 is associated with a concomitant increase 

in chromatin accessibility. These single binding events refined by the addition of the 

other reprogramming factors coincide with overrepresentation of the single factor’s 

sequence motif (Figure S5B, Table S8). Regions in C5 exhibit an increase in chromatin 

accessibility only when Gata4 is present alone, which may suggest these regions act as 

regulatory elements in alternative cell types for which Gata4 is involved but Tbx5 and 

Mef2c are not, such as at the TSS of the endothelial gene Lecam2 (Figure S5A). 

Similarly, Mef2c was sufficient to induce an increase in chromatin accessibility in a 

subset of regions within C2 that is abrogated in the reprogramming condition (mean fold 

changes, M= 1.75, MG=1.24, MT=1.12, AF=0.84) (Figure 5C; Table S9). Mef2c and 

Tbx5 single binding events were also associated with a loss of chromatin accessibility 

(C4 and C6), suggesting their ability to interact with DNA and alter chromatin 

accessibility is context dependent. C8 confirms the divergent response to Tbx5 binding 

as a subset of these regions are also bound by Gata4, and are associated with minimal 

changes in chromatin accessibility (Figure 5C). We did not identify a cluster in which 

Gata4 is independently capable of increasing chromatin accessibility, suggesting its 

function in the reprogramming context is downstream of epigenetic remodeling. 

We noted unique trends in clusters C3 and C7. They are dominated by regions 

that exhibit binding of all three factors in the all factor reprogramming condition, but 

limited binding in the single factor conditions, suggesting cooperation between 

reprogramming factors facilitates DNA binding at these regions (Figure 5C). Such areas 

demonstrated the greatest average increases in chromatin accessibility among regions 
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included in this analysis. While Mef2c binding was sufficient to promote a 3.09-fold 

increase in chromatin accessibility in cluster C3, Tbx5 comparably directed a 3.08-fold 

increase in cluster C7 (Figure 5C, Table S9). This suggests that chromatin changes 

induced by Mef2c and Tbx5 in these clusters create a chromatin landscape amenable to 

the binding of the additional reprogramming factors, adding another layer of regulatory 

complexity.     

We next ascertained the relationship between these clusters and the 

transcriptional signatures presented in Figure 1. To that end, we defined genes that 

uniquely represent early iCMs, late iCMs and untransduced fibroblasts based on our 

single cell RNA sequencing analysis (p<0.0001), and calculated the distance from the 

TSS to the closest dynamic region included in the 28,424 region set. Both clusters C2 

and C3, which represent regions whose chromatin dynamics are largely associated with 

Mef2c binding, were significantly associated with genes marking “Early iCM” 

populations (p < 0.001, Figure 5D, left). Clusters C3 and C7 were associated with “Late 

iCM” marker genes and an increase in occupancy by all three reprogramming factors 

during reprogramming (p < 1e-10; Figure 5D, middle). The association between C3 

and C7 with expression of late iCM markers suggests that the “Late iCM” trajectory in 

particular results from cooperative binding by all three reprogramming factors while 

Mef2c facilitates the initial gene expression changes that define early iCMs based on 

the significant association between C2 and early iCM genes. 

We next asked if any of the observed chromatin dynamics occurred near genes 

that represent the alternative trajectory, which contains untransduced cells that do not 

reprogram. Indeed, we found that regions in cluster C5 that were bound by Gata4 only 

in the SF condition were significantly closer to genes that represent alternative trajectory 

(p < 0.001; Figure 5D, right). The lack of chromatin accessibility changes in the DF 

conditions in C5 indicate that neither Mef2c (MG) nor Tbx5 (GT) bind to or prevent 

Gata4 from binding to or altering chromatin accessibility at these regions, supporting our 
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conclusion that these cells represent an untransduced population that expresses and is 

regulated by endogenous levels of Gata4 (Figure 5A, C). Cumulatively, these data 

reveal the complexity of the mechanisms through which transcription factors influence 

each other, both enabling and refining one another’s ability to bind DNA and affect 

accessibility changes.  

 

Modeling GMT-Induced Transcriptional Changes 

In an effort to discern additional transcription factors that direct the initial stages of 

reprogramming, we devised a multivariate random-forest based machine learning 

approach to predict which transcription factor sequence motifs are most associated with 

transcriptional changes observed at day 2. The first iteration of our model incorporated 

the motifs of expressed transcription factors that lie within accessible chromatin, and the 

motif’s distance to the transcription start site (TSS) of a differentially expressed gene 

(Figure 6A). However, we found a low correlation between associations within 2kb or 

greater than 500kb from a TSS, which subsequently led us to focus on motifs within 2-

500kb of a differentiationally expressed gene (Supplemental Methods). This supports a 

previous report that suggested regulatory events >2kb from the TSS have more 

influence on gene expression dynamics than more proximal motifs (Pliner et al., 2018). 

Using our model, we saw an average Pearson correlation value of 0.37 between 

observed fold-change and the predicted fold-change of gene expression when 

executing the full model with differential accessibility data from fibroblasts compared 

with day 2 of reprogramming, and sequence-based motifs from all transcription factors. 

The correlation was stronger than described in previous reports that utilized ATAC-seq 

data to infer genomic features involved in gene expression (Dong et al., 2012). Limiting 

the model to accessible reprogramming factor motifs at day 2 without considering 

accessibility changes over time led to an average correlation of 0.19, or a correlation of 

0.20 for a model using only ChIP-seq validated reprogramming factor motifs accessible 
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at day 2 (Supplemental Methods). Our model predicted 48 motifs significantly 

associated with transcriptional changes observed during the fibroblast to day 2 

reprogramming transition (Figure 6B). These data suggest additional transcription 

factors are indeed involved in regulating gene expression dynamics during 

reprogramming as most expression dynamics cannot be explained by a limited set of 

transcription factors.  

By comparing the rates of expression change between time points in proximity-

associated vs non-associated genes for each motif, we ranked the identified motifs 

based on a “net importance score” (see supplementary methods), which predicts their 

involvement in the regulation of gene expression during reprogramming (Figure 6B). A 

positive net importance score suggests an activating influence on transcription while a 

negative score suggests a repressing influence; a score close to zero may indicate a 

mixed influence. This analysis found that the Tbx5 motif was most associated with gene 

expression changes during the transition from fibroblast to day 2. Notably, while Mef2 

motifs were also among the top ranked set of putative early regulators, Gata motifs 

were absent from this list, suggesting that Tbx5 and Mef2c are more influential than 

Gata4 in regulating gene expression changes during the early stages of reprogramming. 

The lack of Gata4 detection in this prediction combined with our ChIP- and ATAC-

sequencing results suggests that it is less impactful than Mef2c or Tbx5 at the earliest 

stages of reprogramming. Motifs of Smads2/3/4 were also predicted to influence gene 

expression, supported by previous work from our lab and others that showed TGF𝛃 

inhibition positively influences reprogramming outcome (Ifkovits et al., 2014; Mohamed 

et al., 2017).  

While the random forest model predicted activating and repressive influences for 

individual transcription factors, it did not reveal if the identified transcription factors 

target similar or distinct gene sets. We therefore performed hierarchical clustering on 

the “Gene associating signatures” of each identified motif in order to illustrate putative 
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co-regulatory relationships between multiple transcription factors. (Figure 6C, 

Supplemental Methods). Red indicates motif enrichment is associated with the 

predicted target gene, while blue indicates a depletion of the accessible motif locations. 

This results in two major branches, one of which contained many transcription factor 

motifs associated with cardiomyocyte development such as Mef and Tbx family motifs, 

as well as Sox, Fox, and SMAD motifs. The Tbx5 motif was most closely linked to 

changes at regions that also encode Tgif1 motifs, a TGF𝛃-induced transcriptional 

homeodomain-containing repressor (Figure 6C).  

To predict which of the 48 identified transcription factors may cooperatively 

impact cardiac reprogramming, we fitted a linear model to determine transcription factor 

pairs whose influence on gene expression could not be explained by either of the 

transcription factors alone (i.e., predicted synergistic or antagonistic interaction) (see 

Supplementary Methods). We ranked the transcription factor motifs by their total 

number of predicted interactions, and selected 17 top candidate factors that may 

contribute to reprogramming in a cooperative manner (Table S10).  

Of our 48 identified transcription factors, 27 have previously been tested as part 

of a screen for regulators of direct cardiac reprogramming using expression of an 

αMHC-GFP reporter and/or expression of cardiac Tnnt2 as a measure of 

reprogramming (Zhou et al., 2017). 41% of the tested factors (11 out of 27) did indeed 

either enhance or repress reprogramming outcome, compared to the 22% “hit” rate 

reported from the published screen of 786 genes (transcription factors, cytokines, 

epigenetic regulators, etc.) pre-selected for their propensity to influence cell fate, 

thereby validating our machine learning approach. Our selection of factors that may 

cooperatively impact cardiac reprogramming further improved the ratio of positively 

tested factors to 60% (6 out of 10) (Figure 6D, S6). These results indicate that future 

studies of the remaining identified candidates may reveal additional factors that can 

enhance or serve as barriers of cardiac reprogramming. 
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DISCUSSION 

Here, we interrogated the transcriptional and epigenetic dynamics underlying direct 

cardiac reprogramming in an in vitro mouse cardiac fibroblast system, revealing 

numerous insights into the mechanisms associated with the cell fate transition from a 

fibroblast toward a cardiomyocyte. Epigenetic and transcriptional changes occurred 

broadly within the first 72 hours, and cells destined to reprogram could largely be 

predicted by virtue of early gene expression dynamics and reprogramming factor 

expression. Single-cell assays addressed long-standing mysteries regarding 

heterogeneity and response to combinations of reprogramming factors, clarifying 

existing interpretation of bulk transcriptome data sets. Integration of GMT DNA 

occupancy with genome-wide chromatin accessibility in the setting of individual or 

combinations of transcription factors revealed an interdependency of their binding 

patterns and suggests a possible mechanism through which they synergize to facilitate 

successful reprogramming. Finally, a machine learning approach revealed clusters of 

co-located transcription factor motifs associated with coordinate gene expression 

changes, pointing to additional factors that may promote or inhibit reprogramming.  

Despite similarities to rapid transcriptional and chromatin remodeling seen in 

other systems, our results highlight differences between direct cardiac reprogramming 

and other reprogramming types. For example, during the transition from fibroblast to 

neuron induced using a combination of Ascl1, Brn2 and Mytl (Treutlein et al., 2016), an 

alternative fate characteristic of skeletal muscle was observed. In contrast, for cells that 

were successfully transduced with GMT, no major alternative fates were observed.  

Alternatives may be limited in the cardiac setting, because, as we show here, GMT 

binding is refined when they are expressed combinatorially, perhaps focusing binding 

events on cardiac loci. However, Ascl1’s binding is not altered by the addition of other 

neural reprogramming factors such as Brn2 and Mytl1, suggesting its binding is 
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unrestrained and may occur at regulatory elements employed in the development of 

multiple cell types (Wapinski et al., 2013). Interestingly, addition of ectopic expression of 

Ascl1, predicted by our random-forest approach, enhanced cardiac reprogramming 

suggesting the myogenic outcome in neural reprogramming is not a technical artifact 

(Zhou et al., 2017).  

While reports of direct reprogramming were first documented many years ago, 

the tools available to dissect the precise molecular mechanism of these processes were 

limited. Advances in single cell RNA sequencing have created avenues to identify the 

path a single cell can take to its endpoint, and identify the molecular determinants of 

these trajectories (Cacchiarelli et al., 2018; Schiebinger et al., 2019). Simultaneous 

advances in machine learning have improved the information gleaned from scRNA-seq 

data, as well as the ability to correlate changes between gene expression and 

chromatin remodeling (Cao et al., 2018; Deng et al., 2019; Lopez et al., 2018; Way and 

Greene, 2018; Welch et al., 2017). The observation that the vast majority of fibroblasts 

that expressed GMT proceeded into the induced cardiomyocyte trajectory suggests a 

higher efficiency among GMT expressing cells than previously recognized. Furthermore, 

other cell types, such as epicardial cells, have the potential to be partially 

reprogrammed, although they remain dissimilar to induced cardiomyocytes. 

         In conclusion, we have developed a comprehensive genomic assessment of 

transcription factor binding, chromatin state, and transcriptional changes, that reveals 

the molecular complexity involved in direct cardiac reprogramming. Mechanistic insights 

provided by integration of multiple datasets have started to reveal how lineage-enriched 

transcription factors can induce cell fate transitions in a combinatorial fashion, thereby 

achieving specificity of gene regulation.   
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FIGURE LEGENDS 

 

Figure 1. Single-cell Expression Analysis of Direct Cardiac Reprogramming. 

(A) Schematic of reprogramming system. Tissue explants from αMHC-GFP+ neonatal 

mouse pups are cultured for ~10 days, allowing expansion of fibroblast population. 

Thy1+ cells, largely fibroblasts, are isolated by fluorescence-activated cell sorting 

(FACS), infected with Gata4, Mef2c, and Tbx5 (GMT) retroviruses, and cultured with 

chemical inhibitors as indicated for up to 14 days as some reprogrammed cells mature 

into spontaneously beating iCMs. 

(B) UMAP visualization of 29,718 cells colored by cluster association identified by a 

graph-based clustering approach. Cluster numbers as indicated. 

(C) UMAP visualization of cells as in (B), colored by collection time (days) before and 

after transduction with GMT. 14r indicates cells collected at day 14 and sorted using the 

αMHC-GFP reporter (“r” denotes reporter-positive sample).  

(D) Stacked bar plot indicating the relative contribution of cells from each time point (as 

shown in C) to each cluster (as shown in B). Dendrogram is generated based on a 

distance matrix constructed in principal component analysis (PCA) space. 

(E) Heatmap showing expression of top 20 differentially expressed genes for each 

cluster. Each row shows the fold change in expression of a single gene compared to the 

population mean of that gene. Red indicates higher expression; blue lower. Order of 

clusters according to dendrogram relationship depicted in (D). Clusters are identified 

along the top, with colored bars matching (B). Two marker genes per cluster are labeled 

at the right. Putative cell identity, determined based on differential expression, is labeled 

at bottom with colors indicating (grey) cells present in our starting population, (yellow) 

alternative reprogramming outcome, (orange) early iCMs and (red) late iCMs. 

(F) Pseudotime trajectory of cells from clusters 0, 1, 2, 3, 4, 5, 6, 7, 10, and 11 

generated using Monocle. Cell color is based on cluster color in (B). 
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(G) Expression (log10(UMI+0.1)) of branch marker genes (Tnni3, Mmp3, Ccnb1, and 

Slc1a6) visualized in pseudotime trajectory plots. 

 

Figure 2. Cardiac Reprogramming Trajectory Is Entered Rapidly. 

(A) UMAP visualization of 2,593 cells collected at day +1 and colored by Louvain-

identified clusters.  

(B) Pseudotime trajectory identified by Monocle of all cells in (A). Color indicates 

progression in pseudotime space. Grey indicates disjointed trajectory. Letters indicate 

main branches in the main trajectory.  

(C) Dot plot showing expression of top marker genes from each cluster based on 

specificity calculated by Moran’s I test. The color of the dot represents the average 

expression level (log10(UMI+0.1)) while the size of the dot represents the percentage of 

cells expressing the gene. Background color indicates branches from (B).   

(D) Expression (log10(UMI+0.1)) of branch markers Ccna2, Pdlim3, and Tcf21 

visualized in a UMAP trajectory plot. 

(E) Expression (log10(UMI+0.1)) of Gata4, Mef2c, and Tbx5 visualized in a UMAP 

trajectory plot. 

(F) Violin plots depicting normalized UMI levels for Gata4, Mef2c, and Tbx5 in cluster 1, 

4, and 8, colored based on cluster identification depicted in (A). Stars indicate negative 

binomial adjusted p-values. 

(G) Violin plots depicting normalized UMI levels for Pdlim3, Tbx20, and Tnnt2 in clusters 

1, 4 and 8, colored based on cluster identification depicted in (A). Stars indicate 

negative binomial adjusted p-values.  

 

Figure 3. Reprogramming Initiates Widespread Chromatin Accessibility Changes. 

(A) Profiles display gain of ATAC-seq signal in iCMs harvested at day 2, day 3, week 1, 

week 2, and week 3 after reprogramming induction with GMT (purple) compared to 
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fibroblasts (black) near the early reprogramming marker gene Slc6a6 (left) and 

cardiomyocyte gene locus Tnnt2 (right). Only non-duplicate read pairs mapping within 

500bp were retained, and track height representing the density of reads from merged 

biological replicates (n=3) was normalized to sample read depth of the condition with 

the highest number of mapped read pairs.  

(B) Heatmap displays hierarchical clustering of 10,000 regions with most differentially 

accessible chromatin status in αMHC-GFP+ iCMs harvested at day 2, day 3, week 1, 

week 2, and week 3 after reprogramming induction with GMT, compared to fibroblasts 

infected with dsRed control retrovirus. Clustering highlights 8 distinct patterns (A1-A8). 

Red indicates accessibility gain, while blue indicates decrease. The data plotted are 

row-normalized log2 counts for these 10,000 regions across all samples, and the 

number of differentially accessible regions per cluster is depicted by n. 

(C) Medoid plots show ATAC-seq tag density over time at dynamic regions from each 

cluster A1-A8 that are representative of overall trends. Grey region represents the 95% 

confidence interval of the standard error of the mean signal profile of the representative 

region.  

(D) Tables list transcription factor families with motifs significantly enriched (p ≤ 1e-19) 

within dynamic regions from each cluster compared to all stably accessible (non-

dynamic) regions. P-values listed are from the top ranked motif from each transcription 

factor family. Complete motif enrichment results are available in Table S4. 

(E) Bar charts show top three ranked biological process terms enriched in dynamic 

regions from each cluster compared to all stably accessible (non-dynamic) regions. 

Enriched annotations were determined using GREAT (McLean et al., 2010). 

 

Figure 4. Chromatin Accessibility Dynamics Associated with Gata4, Mef2c, and 

Tbx5 Occupancy during Reprogramming. 
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(A) ChIP-seq profiles display GMT binding in unsorted cells at day 2 of reprogramming 

near the early reprogramming marker gene locus Nid2 (left panel) and the 

cardiomyocyte locus Actn2 (right panel) at day 2 of reprogramming. Grey rectangles 

indicate regions bound by Gata4 (orange track), Mef2c (blue track), and/or Tbx5 (green 

track). ATAC-seq signal from unsorted cells at day 2 of reprogramming (purple track) 

and fibroblasts infected with control dsRed retrovirus (black track). ChIP-seq track 

height is normalized to sample read depth of condition with highest number of reads. 

ATAC-seq track height is normalized to sample read depth of condition with highest 

number of mapped read pairs. Tracks are representative of read density from merged 

biological replicates (Gata4 ChIP, n=6; Mef2c ChIP, n=4; Tbx5 ChIP, n=4; for all ATAC-

seq conditions n=3).  

(B) Heatmap displays hierarchical clustering of ChIP-seq peaks. Grey scale displays 

average tag density across replicates, normalized to input, with black indicating an 

increase in tag density in sample over input. At right, co-clustered changes in 

accessibility. Blue-red color scale indicates tag density of ATAC-seq at day 2 of 

reprogramming, normalized to fibroblast. Red indicates a relative increase in 

accessibility, while blue indicates a decrease. Co-clustering reveals 8 distinct patterns 

(B1-B8). The counts are normalized for differences in sequencing depth between 

samples using upper quartile normalization separately for the the ChIP and the input 

samples of each transcription factor. Data for individual replicates including inputs are 

shown in Figure S4A. 

(C) Tables display transcription factor families with motifs significantly enriched within 

GMT-bound regions from each cluster, compared to stably accessible (non-dynamic) 

regions. P-values listed are from the top ranked motif within each transcription factor 

family, calculated using the cumulative hypergeometric distributions. (Full enrichment 

results available in Table S7.) 
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(D) Bar plot displays the percentages of accessible chromatin regions (ATAC-seq 

peaks) from each cluster (A1-A8 in Figure 3B), bound by Gata4, Mef2c, or Tbx5. 

Statistical significance determined using Fisher exact test for overrepresentation of 

overlapping ChIP-seq peaks in one cluster compared to all dynamic region clusters. 

 

Figure 5. Chromatin Accessibility Dynamics Associated with Gata4, Mef2c, and 

Tbx5 Occupancy Following Independent and Combinatorial Expression. 

(A) Profiles display ChIP-seq signal for GMT in single factor (SF) and all factor (AF) 

conditions, and ATAC-seq signal in SF, double factor (DF), and AF conditions, near the 

early reprogramming marker gene locus, Ehd4. Grey rectangle highlights region bound 

by Gata4 (orange tracks), Mef2c (blue tracks), and Tbx5 (green tracks) in AF condition, 

without binding by any of these factors in SF conditions. Blue rectangles highlight 

regions bound primarily by Mef2c when ectopically expressed alone (SF), but bound by 

Gata4, Mef2c, and Tbx5 when all factors are expressed (AF). Profiles represent read 

density from merged biological replicates normalized to read depth (Gata4 AF ChIP, 

n=6; Mef2c and Tbx5 AF ChIP, n=4; SF ChIP conditions, n=3; all ATAC-seq conditions, 

n=3). 

(B) Principal component analysis of all ChIP-seq replicates based on 500 most variable 

regions among all conditions. Gata4 ChIP-seq samples are shown in orange, Mef2c in 

blue, Tbx5 in green, and input in black. Single factor (SF) expression conditions 

indicated by a triangle (▲) and all factor (AF) expression indicated by a circle (⬤).  

(C) Heatmap displays hierarchical clustering of ChIP-seq peaks, with grey scale 

displaying average tag density across replicates, normalized to input (left). Black 

indicates an increase in tag density in sample over input. At the right, co-clustered tag 

density of ATAC-seq, normalized to fibroblast. Red indicates a relative increase in 

accessibility, while blue indicates a decrease. Co-clustering reveals 8 distinct patterns 

(C1-C8). Conditions include exogenously expressed single factors (SF), double factors 
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(DF), and all reprogramming factors (AF), with unsorted cells harvested at day 2 of 

reprogramming.  

(D) Violin plots show distribution of distances from ChIP-seq peaks in each cluster to 

nearest TSS of differentially expressed genes (DE genes) in cells from “Early iCM”, 

“Late iCM”, and “Alternative Trajectory” scRNA-seq clusters. Internal lines indicate 

median values. Wilcoxon p-values were determined per cluster, by comparing distances 

to TSSs of DE genes with distances to all TSSs, and adjusted for multiple testing using 

Bonferroni correction. 

 

Figure 6. Model of Transcription Factor Association with Changing Rate of Gene 

Expression over Time. 

(A) Schematic representation of input features for the multivariate random-forest based 

machine learning approach, including known transcription factor (TF) motifs, chromatin 

accessibility, and bulk gene expression, used to predict TFs influencing gene 

expression changes during reprogramming. TFs are associated with genes using motifs 

in nearby regions (< 500kb from transcription start site) that change in chromatin 

accessibility during reprogramming, and the influence of a TF across genes is estimated 

using targeted maximum likelihood applied to a collection of machine-learning models 

(Supplemental Methods). 

(B) Bar chart displays 48 transcription factor motifs significantly associated with gene 

expression changes observed during the fibroblast to day 2 reprogramming transition, 

and expressed in at least one time point during reprogramming (Reads Per Kilobase of 

gene, per Million mapped reads, RPKM > 2). Motif family is listed in parentheses. 

Transcription factor motifs are ranked by a model-based estimates of motif net influence 

on fibroblast to day 2 gene expression changes (Bonferroni corrected p-value < 0.05). 

This net importance score” predicts involvement in transcriptional regulation during 

reprogramming, with a positive score suggesting an activating influence, a negative 
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score suggesting a repressing influence, and a score close to zero suggesting a 

combined influence on transcription.  

(C) Heatmap of clustered gene-association signatures for identified motifs. Rows 

represent transcription factor motifs; columns are genes associated with these motifs 

(as described in Supplemental Methods). Red indicates enrichment of the motif nearby 

a gene, while blue indicates depletion of the motif; white indicates no predicted 

influence of the transcription factor on the gene. Hierarchical clustering was performed 

using the Euclidean distance metric as implemented in the pheatmap package in R.  

(D) Heatmap displays temporal expression levels for top 17 transcription factors 

predicted to influence reprogramming based on a ranking of putative cooperative 

relationships between factors. Expression values were generated from bulk RNA-seq of 

sorted αMHC-GFP+ iCMs collected at each time point in triplicate, and data is shown as 

log2 mean normalized Counts Per Million mapped reads (nCPM). Transcription factor 

names listed in green, blue, or black were previously tested during reprogramming 

induced with Akt1, Gata4, Hand2, Mef2c, and Tbx5 (AGHMT) in adult mouse fibroblasts 

(Zhou et al., 2017). Of these, factors listed in green significantly improved 

reprogramming outcome based on αMHC-GFP reporter expression and/or cardiac 

Tnnt2 expression assayed by antibody staining, while factors in blue inhibited 

reprogramming by one or both of these metrics. Factors in black had no significant 

effect on reprogramming outcome. Factors in red have not been tested before, and 

indicate novel candidate regulators of reprogramming identified in this study.  See 

Figure S6 for quantification of reprogramming outcomes. 
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METHODS 

 

Cell Culture  

Direct cardiac reprogramming was performed on neonatal mouse cardiac fibroblasts as 

previously described, using only freshly prepared retroviruses (Ieda et al., 2010; Qian et 

al., 2013). ChIP-seq and ATAC-seq experiments presented in Figure 5 were performed 

using an immortalized neonatal cardiac fibroblast cell line, expressing cre-excisable T-

antigen, developed by Palmer Yu in the Srivastava lab.  

 

Sequencing Library Construction 
 

Single-Cell RNA sequencing (scRNA-seq) 

Single-cell RNA-seq libraries were prepared using the Chromium Single Cell 3′ Reagent 

Kits v2 (PN-120236, PN-120237, PN-120262). Biological replicates were created for 

four times: minus 1, plus 1, plus 7 and plus 14 days. All libraries were pooled and 

sequenced using the HiSeq 4000 to a read depth of at least 30,000 reads per cell. 

 

Bulk RNA Sequencing 

Total RNA was isolated using the miRNeasy Micro Kit (Qiagen). Bulk RNA-seq libraries 

were prepared with ovation RNA-seq system v2 kit (NuGEN). The RNA-seq libraries 

were analyzed by Bioanalyzer and quantified by QPCR (KAPA). Samples were 

sequenced at 100PE on the Illumina HiSeq 2500 at the Harvard FAS core. 

  

Assay for Transposase-Accessible Chromatin with Sequencing (ATAC-seq) 

We prepared iCM, single-factor, and fibroblast samples for ATAC-seq as previously 

described (Buenrostro et al., 2013). Aliquots of 10,000–50,000 cells were spun down 
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(310 RCF for 3 minutes) and washed with 200 μL of chilled PBS. Samples were lysed 

with 200 μL of chilled lysis buffer (20 mM Tris-HCl (pH 8.0), 85 mM KCl, 0.5% NP-40) 

and spun down at 500 RCF for 5 minutes. Nuclear pellets were transposed with 25 μL 

of Tagment DNA Buffer, 2.5 μL of Tagment DNA Enzyme (Nextera Sample prep Kit 

from Illumina, cat # FC-121-1030), and 22.5 μL of nuclease-free H2O. The samples 

were incubated at 37°C for 30 minutes and stored at −20°C. Transposed samples were 

purified using the QIAGEN MinElute Reaction Cleanup Kit (cat #28204). Samples were 

amplified using 25 μL of NEBNext High Fidelity 2x PCR Master Mix, 1.25 μM Nextera 

custom primer, 1.25 μM Nextera custom primers with unique barcodes, and nuclease-

free H2O. We amplified samples using the following PCR conditions: 72°C for 5 

minutes; 98°C for 30 seconds; and cycled at 98°C for 10 seconds, 63°C for 30 seconds 

and 72°C for 1 minute. Half of each sample was amplified for 12 cycles, MinElute 

purified and assessed by bioanalyzer for library quality. Samples concentration was 

quantified by Qbit before pooling. Samples were sequenced at 100PE on the Illumina 

HiSeq 2500 at either the Harvard FAS core or the UCSF CAT core. 

 

Chromatin Immunoprecipitation Followed by Sequencing (ChIP-seq)   

Cells (106 per ChIP) were crosslinked in 1% formaldehyde in suspension at room 

temperature for 10 minutes with gentle rotation. Crosslinking was quenched by addition 

of glycine (final 125 mM), followed by incubation at room temperature for 5 minutes with 

gentle rotation. Cell pellets were lysed in buffer [20 mM Tris-HCl, pH 8, 85 mM KCl, 

0.5% NP-40, protease inhibitors] for 10 minutes on a rotator at 4°C. Nuclei were isolated 

by centrifugation (2,500 x g, 5 minutes, 4°C), resuspended in nuclei lysis buffer [50 mM 

Tris-HCl, pH 8, 10 mM EDTA, pH 8, 1% SDS, protease inhibitors] and incubated on a 

rotator for 30 minutes at 4°C. Chromatin was sheared using a Covaris S2 sonicator for 

15 minutes (60-second cycles, 5% duty cycle, 200 cycles/burst, intensity = 5) until DNA 

was in the 200–700 base-pair range. Chromatin was diluted fivefold in ChIP dilution 
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buffer [0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8, 167 mM 

NaCl, protease inhibitors] and incubated with antibody (2 mg/million cells) at 4°C 

overnight under rotation. Antibodies used are Santa Cruz, Gata4, sc-1237x; Cell Signal 

Tech, Mef2c 5030; Santa Cruz, Tbx5 (C-20) sc-17866x. Antibody-protein complexes 

were immunoprecipitated using Pierce Protein A/G magnetic beads at 4°C for 2 hours 

under rotation. Beads were washed five times (2-minute washes under rotation) with 

cold RIPA buffer [50 mM HEPES- KOH, pH 7.5, 500 mM LiCl, 1 mM EDTA, 1% NP-40, 

0.7% Na-deoxycholate], followed by one wash in cold final wash buffer [1xTE, 50 mM 

NaCl]. Immunoprecipitated chromatin was eluted at 65°C with agitation for 30 minutes in 

elution buffer [50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS]. High-salt buffer [250 

mM Tris-HCl, pH 7.5, 32.5 mM EDTA, pH 8, 1.25 M NaCl] and Proteinase K were 

added and crosslinks were reversed overnight at 65°C. Samples were treated with 

RNase A and DNA was purified with Agencourt AMPure XP beads. Fragmented ChIP 

and control (whole-cell extract) DNA was end-repaired, 5′ phosphorylated and dA-tailed 

with NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB E7645). Samples were 

ligated to adaptor oligos for multiplex sequencing (NEB E7335), PCR amplified and 

sequenced on an Illumina NextSeq500. 

 

Sequencing Data Processing and Analyses 
 

Single-Cell RNA-Seq Analysis                         

The 10X Genomics Cell Ranger pipeline was used to demultiplex raw data, align reads, 

count transcripts and aggregate multiple samples and timepoints. The R packages 

Seurat v2.3 and Monocle v3 were used for all downstream analyses (Butler et al., 2018; 

Cao et al., 2019). Cells that met unique molecular index (UMI) and gene thresholds 

were included in subsequent analyses. Clustering was performed based on a principal 

component analysis and visualized using UMAP (McInnes et al., 2018). Differential 
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expression between the clusters was calculated using the negative binomial test 

(Figures 1 and 2) and Moran’s I tests (Figure 2). 

                                                          

Bulk RNA-Seq Analysis 

Trimming of known adapters and low-quality regions of reads was performed using 

Fastq-mcf (http://code.google.com/p/ea-utils). Sequence quality control was assessed 

using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and RSeQC 

(Wang et al., 2012). Alignment of the provided samples to the mm9 reference genome 

was performed using Bowtie 2.2.4 (Langmead and Salzberg, 2012). Reads were 

assigned to genes using "featureCounts"(Langmead and Salzberg, 2012; Liao et al., 

2014), part of the Subread suite (http://subread.sourceforge.net/). Gene-level counts 

were arrived at using Ensembl gene annotation, in GTF format. We calculated 

differential expression p-values using edgeR, an R package available through 

Bioconductor (Robinson et al., 2010). We first filtered out genes where there were not at 

least two samples with at least 5 (raw) reads. Once these genes are removed, we 

recalculate the counts per million for each gene (CPM) and filter out any genes with a 

CPM above 20,000. After excluding these genes, we re-normalize remaining genes 

using calcNormFactors (TMM) ("weighted trimmed mean of M-values") in edgeR 

(Robinson and Oshlack, 2010; Robinson et al., 2010). Calculation of p-values is 

performed in edgeR for the differential expression between samples. EdgeR uses a 

negative binomial distribution as a model for expected gene expression. Finally we use 

the built-in R function "p.adjust" to calculate the FDR (false discovery rate) for each P-

value, using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). We 

used GO-Elite to generate biological ontology terms (Zambon et al., 2012). 
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ATAC-Seq Analysis 

Reads were aligned to the mm9 genomic assembly using bowtie2 with options: -X 600 - 

-no-mixed --no-discordant. Duplicate reads were removed using Picard MarkDuplicates 

(http://broadinstitute.github.io/picard). Peaks were called using macs2 callpeak with 

options: -p 0.1 --nomodel --shift 100 --extsize 200 -B --SPMR --call-summits. Peaks 

concordant between at least two of three replicates were considered for further analysis. 

The clustering is performed using the bioconductor package HOPACH and visualized 

using pheatmap in R (Laan et al., 2003). The regions are determined by first estimating 

counts in each of the replicate samples for each of the time-points across a merged set 

of 307,204 peaks (called by MACS2) , then normalizing the counts for differences in 

sequencing depths and estimating the association with time using the likelihood ratio 

tests based on negative binomial generalized log-linear model in bioconductor package 

edgeR. The 10,000 regions represent those with most significant association from the 

100,691 regions passed an FDR threshold of 0.05 based on this test. We associated 

biological processes to these regions using GREAT (McLean et al., 2010). Motif 

enrichment analysis was completed using HOMER (Heinz et al., 2010). 

 

ChIP-Seq Analysis 

Trimming of known adapters and low-quality regions of reads was performed using 

Fastq-mcf (http://code.google.com/p/ea-utils). Sequence quality control was assessed 

using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and RSeQC 

(Wang et al., 2012). Alignment of the provided samples to the mm9 reference genome 

was performed using Bowtie 2.2.4 (Langmead and Salzberg, 2012). Peaks were called 

using GEM (Guo et al., 2012; Langmead and Salzberg, 2012). Raw read counts per 

peak were generated with featureCounts (Liao et al., 2014), DEseq2 to normalize read 

counts, then ChIP signal was normalized to input before using hopach() to cluster peaks 

with the following settings: clusters="best", initord="clust" (Laan et al., 2003). Region 
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intersects were found using BEDTools (Quinlan and Hall, 2010). Motif enrichment 

analysis was completed using HOMER (Heinz et al., 2010). Known motifs and 

sequence logos were generated from de novo motifs matched to the JASPAR CORE 

non-redundant vertebrate database (Heinz et al., 2010; Mathelier et al., 2015) using 

Tomtom from the MEME suite (Bailey et al., 2009). Significant differences in peak 

distances from gene groups was determined by Wilcoxon-Mann-Whitney rank sum 

testCounts were normalized for differences in sequencing depth between samples using 

upper quartile normalization separately for the ChIP and the input samples of each 

transcription factor. The normalized counts for the three transcription factor were then 

combined into one matrix, the top 500 most variable regions based on these normalized 

counts were determined, and corresponding counts for these regions are used to 

perform principal component analysis. 

 

Mathematical Modeling of Transcription Factors Associated with Changing Rate 

of Gene Expression over Time: Gene Regulation Model for Integrating Changes in 

Chromatin State with Gene Expression. The net importance of a given transcription 

factor motif captures the mean fold-change (day 2 versus fibroblast stage) across all 

genes that gain occurrences of this motif resulting from chromatin changes in a 2kb- 

500kb neighborhood around their transcription start sites, during this transition versus 

the mean fold-change across all genes that lose occurrences of this motif during the 

same transition, after accounting for the effects for all other transcription factor motifs. 

These were estimated using a targeted maximum likelihood estimation (tmle) as 

implemented in the tmle package in R that used random forests and generalized linear 

models as the underlying machine learning algorithms. The targets of a given 

transcription factor that gain occurrences of the motif are empirically determined as the 

set of genes whose change in motif association due to the time transition is greater than 

the 90th quantile of the changes in motif association across all genes. Similarly the 
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targets of a transcription factor motif that loses association are the set of genes whose 

change in motif association due to the time transition is less than the 10th quantile of 

the changes in motif association across all genes. (See Supplemental Methods for 

additional information.)  
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SUPPLEMENTAL INFORMATION 

Supplemental information includes 6 figures, 10 tables, and an extended methods section 
describing modeling approach applied in Figure 6. 
 

SUPPLEMENTAL FIGURES 
Figure S1. 

(A) Representative fluorescence-activated cell sorting (FACS) plots for αMHC-GFP+ cells at 

week 2 of reprogramming. 

(B) Expression (log10(UMI+0.1)) of marker genes for each cluster visualized in UMAP plots. 

Numbered clusters from Figure 1B listed at right for reference. 

 
Figure S2.  

(A) Expression (log10(UMI+0.1)) of epicardial markers visualized in a UMAP trajectory plot. 

(B) Violin plots representing normalized UMI levels of genes presented in Figures 2F-G for all 

clusters.  

 

Figure S3.  

(A) Bar graph indicates total number of ATAC-seq peaks identified for each replicate (1-3). 

Sorted αMHC-GFP+ cells were assayed at each time point and in sorted dsRed-positive 

fibroblasts infected with a control dsRed retrovirus. 

(B) Bar graph indicates total number of concordant ATAC-seq peaks for each condition and total 

number of replicate concordant peaks overlapping between conditions. Concordant peaks met 

an FDR threshold of < 0.05 in at least two out of three replicates. 

(C) Principal component analysis of all ATAC-seq replicates (n=3) for each condition based on 

10,000 most differentially accessible regions among all reprogramming time points compared 

with fibroblasts. 

(D) Histogram shows distribution of regions within each dynamic cluster (A1-A8) and in a set of 

non-dynamic regions that are stably accessible in fibroblasts and in all reprogramming 
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conditions, binned based on the distance from each peak to the nearest transcription start site 

(TSS). Dynamic regions were underrepresented within 2kb of a TSS compared with non-

dynamic regions accessible in all conditions (Fisher's p-value = 2.2e-16 for both up- and 

downstream bins). 

(E) Heatmap displays expression levels for transcription factors with motifs with highest 

enrichment in dynamic accessibility clusters (A1-A8) compared with non-dynamic region set 

stably accessible in all conditions. Values indicate log2 of the mean normalized CPM across all 

replicates (n=3) from bulk RNA-seq completed on sorted αMHC-GFP+ cells collected at each 

time point during reprogramming. 

 
Figure S4. 

(A) Heatmap displays tag densities of ChIP-seq sample and inputs, for all replicates. Counts 

were normalized for differences in sequencing depth between samples using upper quartile 

normalization separately for the ChIP and the input samples of each transcription factor. 

Columns represent independent replicates. Rows retain order shown in Figure 4B. 

(B) Bar plot displays binned distribution of ChIP-seq peaks from nearest transcription start site 

(TSS). We identified a lower proportion of dynamic regions (all clusters) within 2kb up- and 

downstream of the nearest TSS compared with stably accessible, non-dynamic regions (Fisher 

odds ratio = 0.2 and 0.07, respectively; p-value = 2.2e-16 for both comparisons). 

 
Figure S5. 

(A) Browser tracks display ChIP-seq in single factor and all factor conditions, and ATAC-seq 

signal in single factor, double factor, and all factor conditions, near leukocyte-endothelial cell 

adhesion molecule 2 (Lecam2). Track height was normalized to sample read depth within each 

assay. Orange rectangle highlights region from cluster 5 with Gata4 binding in the single factor 

condition which is ameliorated when all factors are present.  
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(B) Bar graph indicates percentage of regions within each cluster (C1-C8) that contain Gata4 

(orange), Mef2c (blue), or Tbx5 (green) motifs. P-values were calculated using the cumulative 

hypergeometric distributions of motif occurrence in clustered region set compared with motif 

occurrence in non-dynamic regions stably accessible in fibroblasts and reprogramming 

conditions. Full motif enrichment results available in Table S8. 

 
Figure S6. Reprogramming Outcomes Following Candidate Transcription Factor 

Overexpression.  

Table lists selected z-score results of reprogramming screen completed by (Zhou et al., 2017) 

for overexpression of candidate transcription factor predicted in this study to enhance or serve 

as barriers of cardiac reprogramming in a cooperative manner, highlighted in Figure 6D.  

 
SUPPLEMENTAL TABLES 

 

Table S1. Related to Figure 1. Differential Gene Expression for Each Cluster. Contains 

average log fold changes and p-values for all differentially expressed genes from negative 

binomial tests used to determine identities of populations in clusters in Figure 1B, and 

designates top 20 marker genes per cluster used to generate Figure 1E. 

 

Table S2. Related to Figure 2. Differential Gene Expression for Each Cluster. Contains 

average log fold changes and p-values for all differentially expressed genes from negative 

binomial tests used to determine identities of populations in clusters in Figure 2A, and results of 

Moran’s I tests, including top two marker genes per cluster used in Figure 2C. Also contains 

average fold changes and p-values for all differentially expressed genes from pairwise tests of 

cluster 2 vs cluster 1, cluster 1 vs cluster 4, and cluster 4 vs cluster 8. 
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Table S3. Related to Figure 3. Table  containing 100,691 regions dynamic between fibroblasts 

and αMHC-GFP+ cells collected at reprogramming time points day 2, day 3, week 1, week 2, 

and week 3. 

 

Table S4. Related to Figure 3. Known motif enrichment results comparing regions in each 

cluster to stably accessible background region set.   

 

Table S5. Bulk RNA-seq Gene Expression during Reprogramming. Table includes raw read 

counts and normalized CPM values for each replicate for all genes expressed at an average 

value nCPM > 1 in fibroblasts or αMHC-GFP+ cells over time course. Includes differential 

expression results between conditions. 

 

Table S6. Related to Figure 3. Gene Ontology Results from Regions Clustered by 

Chromatin Accessibility Changes over Time Using GREAT Analysis. 

 

Table S7. Related to Figure 4. Known Motifs Enriched in Regions Clustered by Gata4, 

Mef2c, Tbx5 Occupancy and Chromatin Accessibility at Day 2 of Reprogramming. 

 

Table S8. Related to Figure 5. Known Motifs Enriched in Regions Clustered by Gata4, 

Mef2c, Tbx5 Occupancy and Chromatin Accessibility during Combinatorial Exogenous 

Expression of Individual Factors.  

 

Table S9. Related to Figure 5. Fold Change in ChIP-seq Signal over Input and ATAC-seq 

Signal over Fibroblast Control for All Regions in Figure 5C. 

Table S10. Related to Figure 6. Total Predicted Co-regulatory Interactions of 

Transcription Factor Candidates. Table includes total number of cofactors predicted by model 
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for candidate regulators of reprogramming, with totals listed separately for predicted interactors 

with positive and negative net importance scores. 
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SUPPLEMENTAL INFORMATION 

Supplemental information includes 6 figures, 10 tables, and an extended methods 
section describing modeling approach applied in Figure 6. 
  

Supplemental Text and Figures
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SUPPLEMENTAL FIGURES 

 
 

 
Figure S1. 

(A) Representative fluorescence-activated cell sorting (FACS) plots for αMHC-GFP+ 

cells at week 2 of reprogramming. 
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(B) Expression (log10(UMI+0.1)) of marker genes for each cluster visualized in UMAP 

plots. Numbered clusters from Figure 1B listed at right for reference. 
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Figure S2.  

(A) Expression (log10(UMI+0.1)) of epicardial markers visualized in a UMAP trajectory 

plot. 
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(B) Violin plots representing normalized UMI levels of genes presented in Figures 2F-G 

for all clusters.  
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Figure S3.  

(A) Bar graph indicates total number of ATAC-seq peaks identified for each replicate (1-

3). Sorted αMHC-GFP+ cells were assayed at each time point and in sorted dsRed-

positive fibroblasts infected with a control dsRed retrovirus. 
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(B) Bar graph indicates total number of concordant ATAC-seq peaks for each condition 

and total number of replicate concordant peaks overlapping between conditions. 

Concordant peaks met an FDR threshold of < 0.05 in at least two out of three replicates. 

(C) Principal component analysis of all ATAC-seq replicates (n=3) for each condition 

based on 10,000 most differentially accessible regions among all reprogramming time 

points compared with fibroblasts. 

(D) Histogram shows distribution of regions within each dynamic cluster (A1-A8) and in 

a set of non-dynamic regions that are stably accessible in fibroblasts and in all 

reprogramming conditions, binned based on the distance from each peak to the nearest 

transcription start site (TSS). Dynamic regions were underrepresented within 2kb of a 

TSS compared with non-dynamic regions accessible in all conditions (Fisher's p-value = 

2.2e-16 for both up- and downstream bins). 

(E) Heatmap displays expression levels for transcription factors with motifs with highest 

enrichment in dynamic accessibility clusters (A1-A8) compared with non-dynamic region 

set stably accessible in all conditions. Values indicate log2 of the mean normalized 

CPM across all replicates (n=3) from bulk RNA-seq completed on sorted αMHC-GFP+ 

cells collected at each time point during reprogramming. 
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Figure S4. 

(A) Heatmap displays tag densities of ChIP-seq sample and inputs, for all replicates. 

Counts were normalized for differences in sequencing depth between samples using 

upper quartile normalization separately for the the ChIP and the input samples of each 

transcription factor. Columns represent independent replicates. Rows retain order 

shown in Figure 4B. 

(B) Bar plot displays binned distribution of ChIP-seq peaks from nearest transcription 

start site (TSS). We identified a lower proportion of dynamic regions (all clusters) within 
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2kb up- and downstream of the nearest TSS compared with stably accessible, non-

dynamic regions (Fisher odds ratio = 0.2 and 0.07, respectively; p-value = 2.2e-16 for 

both comparisons). 
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Figure S5. 

(A) Browser tracks display ChIP-seq in single factor and all factor conditions, and 

ATAC-seq signal in single factor, double factor, and all factor conditions, near 

leukocyte-endothelial cell adhesion molecule 2 (Lecam2). Track height was normalized 

to sample read depth within each assay. Orange rectangle highlights region from cluster 

5 with Gata4 binding in the single factor condition which is ameliorated when all factors 

are present.  

(B) Bar graph indicates percentage of regions within each cluster (C1-C8) that contain 

Gata4 (orange), Mef2c (blue), or Tbx5 (green) motifs. P-values were calculated using 
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the cumulative hypergeometric distributions of motif occurrence in clustered region set 

compared with motif occurrence in non-dynamic regions stably accessible in fibroblasts 

and reprogramming conditions. Full motif enrichment results available in Table S8. 
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Figure S6. Reprogramming Outcomes Following Candidate Transcription Factor 

Overexpression.  

Table lists selected z-score results of reprogramming screen completed by (Zhou et al., 

2017) for overexpression of candidate transcription factor predicted in this study to 

enhance or serve as barriers of cardiac reprogramming in a cooperative manner, 

highlighted in Figure 6D.  
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SUPPLEMENTAL TABLES 

 

Table S1. Related to Figure 1. Differential Gene Expression for Each Cluster. 

Contains average log fold changes and p-values for all differentially expressed genes 

from negative binomial tests used to determine identities of populations in clusters in 

Figure 1B, and designates top 20 marker genes per cluster used to generate Figure 

1E. 

 

Table S2. Related to Figure 2. Differential Gene Expression for Each Cluster. 

Contains average log fold changes and p-values for all differentially expressed genes 

from negative binomial tests used to determine identities of populations in clusters in 

Figure 2A, and results of Moran’s I tests, including top two marker genes per cluster 

used in Figure 2C. Also contains average fold changes and p-values for all differentially 

expressed genes from pairwise tests of cluster 2 vs cluster 1, cluster 1 vs cluster 4, and 

cluster 4 vs cluster 8. 

 

Table S3. Related to Figure 3. Bed file containing 100,691 regions dynamic between 

fibroblasts and αMHC-GFP+ cells collected at reprogramming time points day 2, day 3, 

week 1, week 2, and week 3. 

 

Table S4. Related to Figure 3. Known motif enrichment results comparing regions 

in each cluster to stably accessible background region set.   
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Table S5. Bulk RNA-seq Gene Expression during Reprogramming. Table includes 

raw read counts and normalized CPM values for each replicate for all genes expressed 

at an average value nCPM > 1 in fibroblasts or αMHC-GFP+ cells over time course. 

Includes differential expression results between conditions. 

 

Table S6. Related to Figure 3. Gene Ontology Results from Regions Clustered by 

Chromatin Accessibility Changes over Time Using GREAT Analysis. 

 

Table S7. Related to Figure 4. Known Motifs Enriched in Regions Clustered by 

Gata4, Mef2c, Tbx5 Occupancy and Chromatin Accessibility at Day 2 of 

Reprogramming. 

 

Table S8. Related to Figure 5. Known Motifs Enriched in Regions Clustered by 

Gata4, Mef2c, Tbx5 Occupancy and Chromatin Accessibility during Combinatorial 

Exogenous Expression of Individual Factors.  

 

Table S9. Related to Figure 5. Fold Change in ChIP-seq Signal over Input and 

ATAC-seq Signal over Fibroblast Control for All Regions in Figure 5C. 

Table S10. Related to Figure 6. Total Predicted Co-regulatory Interactions of 

Transcription Factor Candidates. Table includes total number of cofactors predicted 

by model for candidate regulators of reprogramming, with totals listed separately for 

predicted interactors with positive and negative net importance scores. 
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SUPPLEMENTAL METHODS 

Proteins/transcription factors associated with changing rate of gene 

expression over time 

 

Gene regulation model for integrating changes in chromatin state with gene 

expression 

 

A model is constructed for the differences in the rates of change of mRNA levels for 

each gene between two consecutive time-points as a function of changes in sequence 

composition of differentially open and closed regions between these time-points in a cis-

region for the gene. Only changes in sequence composition associated with known 

transcription factors are used in this analysis. 

 

Let M denote the number of genes (this corresponds to the set of genes whose mean 

expression is associated with time or the day of reprogramming). Let Tt denote the tth 

time-point, , where gene expression and chromatin state is assayed (T0 

= 0 [Fibroblast stage before the GMT vectors are added], T1 =2 [day 2], T2 =3 [day 3], T3 

=7 [week 1], T4 =14 [week 2] and T5 =21 [week 3]).  

 

Let Xt,i denote the log2 mean (across the 3 replicates) normalized (across all replicates 

over time) expression of gene i at time t . Let Yt,i denote the rate of change of the 

logarithm of the mean of expression of gene i at time t. 

t ∈ 0,1, 2,3, 4, 5{ }
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                  (1)    

 

Let denote the difference between the rates of change of the log2 expression of 

gene i at time t and at time t-1.  

 

                         (2) 

 

Assume that the changes in rate of change of the expression of gene i between time t 

and time t-1 can be explained by some subset of N sequence motifs. Each sequence 

motif is associated with a protein/transcription factor. Let denote the change in the 

strength of association of motif j, with gene i between time t and time t-1 

resulting from the differential opening and closing of chromatin.  

 

One model of gene expression regulation across all genes between times t-1 and t 

(denoted by Ft) is assumed. 

 

   (3) 

 

The functional form of Ft is non-parametrically identified using a supervised learning 

approach (see next sections). 

Yt,i = 0 for t = 0

     =
Xt,i − Xt−1,i( )
Tt −Tt−1( )

 for t > 0

ΔYt,i

ΔYt,i =Yt,i −Yt−1,i  t > 0

Δmt,i
j

j ∈ 1,2,!,N{ }

ΔYt,i = Ft Δmt,i
1 ,Δmt,i

2 ,!,Δmt,i
N( )
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Biophysical motivation for the modeling approach 

The above gene regulation model has a biophysical motivation. The rate of change of 

the log of the expression of a given gene at a given time is the difference between the 

rate at which it is transcribed and the rate at which the corresponding mRNA decays.  

The rate of transcription of this gene is a (unknown) function of the strengths of 

association of transcription factors/proteins with this gene at this time-point. The rate of 

decay of the log of the expression of the gene is a fixed constant (independent of time) 

if one assumes a first-order rate of decay for the corresponding mRNA. Therefore the 

differences in the rate of change of the log of the expression of gene at the two time-

points should be a function of the difference in the strengths of association of the 

transcription factors between these time-points. Note the analysis assumes the same 

model, Ft  (Equation 3), for all genes. This is a simplification necessitated by grossly 

smaller number of samples (order 1) versus the number of possible interacting 

motifs/transcription factors (order 100) and will result in the identification of modes of 

regulation that is apparent across a relatively large proportion of genes. On the other 

hand this simplification has the advantage of not directly requiring the concentrations of 

the regulating transcription factors corresponding to over-represented sequence motifs.  

 

Identification of the list of proteins/transcription factors  

The list of sequence motifs/proteins/transcription factor to use for the model between 

consecutive time-points are identified using the open chromatin regions for each 

replicate ATAC-seq sample at these time-points (see MACS2 section for peak calling). 
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The open chromatin regions at each time-point by combining the regions across 

replicates (using bedops –everything [1]). The findMotifsGenome.pl function (using the 

options –size given and hypergeometric enrichment scoring) in Homer [2] is used to 

identify motifs enriched (p-value < 1e-1000) at time t, using the open chromatin regions 

at time t as foreground and the open chromatin regions at time t-1 as background. 

Similarly, this function is used to identify motifs enriched at time t-1 using the open 

chromatin regions at time, t as background. The list of proteins used in the analysis at 

time t is the union of the motifs from the two above enrichment analyses. 

 

Association strength of a motif with a gene 

The location of each of the above identified motifs in the open chromatin regions at 

each time-point is obtained using the –find option of the findMotifsGenome.pl function. 

Assume that there are motif locations of motif j in the open chromatin regions at time 

t. Then the strength of association of motif j with gene i is given by,  

 

             (4) 

 

where  is the distance of the kth  location of the motif from the transcription start site 

(TSS) of gene i. D corresponds to a distance domain. In the analysis, two distance 

Kt
j

mt,i
j =

1
1+ dt,i,k

j( )k=1

Kt
j

∑ ⋅ I dt,i,k
j( )

I dt,i,k
j( ) =1 if dt,i,k

j ∈ D

I dt,i,k
j( ) = 0 if dt,i,k

j ∉ D

dt,i,k
j
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domains are considered – (0, 2kb) and (2kb, 500kb) corresponding to promoter and 

potential distal enhancer associations. 

 

The change in motif gene association is then defined as, 

 

                           (5) 

 

Validation of the gene regulation model 

The gene regulation model stated in Equation (3) is fit across a set of genes using the 

random Forests [3] based supervised learning approach. This is done using the rfsrc 

function that is part of the randomForestSRC package [4] in R[5]. The set of genes 

whose mean expression is associated with the time or the day of reprogramming is 

randomly divided into ten groups. The data for the genes corresponding to nine of the 

ten groups are used to learn the model given in Equation (3). The correlation between 

the observed for the set of the genes in the remaining group and the predicted 

for these genes using the model learnt is computed.  

 

Importance of transcription factors/proteins in explaining changes in gene 

expression 

The importance of each of the transcription factors in explaining changes in rate of 

change of expression across all the genes between time-point t-1 and t, is defined here. 

This is followed by its estimation procedure. 

Δmt,i
j =mt,i

j −mt−1,i
j

ΔYt,i ΔYt,i
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In words, the importance of a given transcription factor at a given time-point, t is defined 

as the change in the mean difference in the rates of changes of expression of genes 

which is associated with this transcription factor from the mean difference in the rates of 

changes of expression of genes which are not associated with this transcription factor 

after accounting for effects from all other transcription factors on this difference.  

 

Denote the set of positive values of  by,  

 (6) 

the second of negative values of , by 

 

  (7) 

and the set of absolute values of , by 

  (8) 

Define as the 90th quantile of , as the 10th quantile of and 

as the 25th quantile of  .  

Denote  as a binary variable that is equal 1 if motif j is associated with gene i at time 

t. 

   (9) 

Δmt,i
j

ΔMt,+
j = Δmt,i

j :Δmt,i
j > 0{ }

Δmt,i
j

ΔMt,−
j = Δmt,i

j :Δmt,i
j < 0{ }

Δmt,i
j

ΔMt
j = Δmt,i

j{ }

Q90t,+
j ΔMt,+

j Q10t,−
j ΔMt,−

j Q25t
j

ΔMt
j

At,i
j

At,i
j =1 if Δmt,i

j >Q90t,+
j

     = 0 otherwise
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Denote  as a binary variable that is equal -1 if motif j is associated with gene i at time 

t-1. 

   (10) 

Denote  as a binary variable that is equal 2 if motif j is not associated with gene i at 

either time-point. 

   (11) 

 

Let denote the vector of changes in motif association with gene i across all motifs 

except motif j.  

   (12) 

Then the marginal mean difference in rate of change of expression between time-points 

t and t-1 across genes associated with motif j at time t is defined as, 

  (13) 

The symbol E denotes expectation while its subscript denotes the values over which the 

expectation is taken. The marginal mean difference in rate of change of expression 

between time-points t and t-1 across genes associated with motif j at time t-1 is defined 

as, 

  (14) 

At,i
j

At,i
j = −1 if Δmt,i

j <Q10t,−
j

     = 0 otherwise

At,i
j

At,i
j = 2 if Δmt,i

j <Q25t
j

     = 0 otherwise

Wt,i
− j

Wt,i
− j = Δmt,i

k : k ≠ j{ }

Ψt,+
j = Ew Ei

ΔYt,i
At,i

j =1,Wt,i
− j = w

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

Ψt,−
j = Ew Ei

ΔYt,i
At,i

j = −1,Wt,i
− j = w

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭
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The marginal mean difference in rate of change of expression between time-points t and 

t-1 across genes not associated with motif j at either time is defined as, 

  (15) 

 

,  and are estimated using the targeted Maximum Likelihood Estimation 

(tMLE) approach [6]using the tmle package [7]in R. Random forests and Generalized 

Linear Models (glm) are the two model specified for use by the SuperLearner [8] for 

estimation in the tmle function. 

 

The importance of motif j at time point t is then defined as, 

 

   (16) 

 

The importance of motif j at time point t-1 is defined as, 

 

   (17) 

 

The statistical significance of  and are determined from the standard errors of 

,  and estimated using the tmle function. The significant motifs for time-

points t and t-1 are identified using a Bonferroni-defined threshold of 0.05/(2N), where N 

is the number of identified enriched motifs in the open chromatin regions at these time-

points.  
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The net importance of each motif is then defined as, 

 

The bar plots in Figure 6b represent the net importance values of the transcription 

factors. The net importance of a given transcription factor motif captures the mean fold-

change (day 2 versus fibroblast stage) across all genes that gain occurrences of this 

motif resulting from chromatin changes in a 2kb- 500kb neighborhood around their 

transcription start sites, during this transition versus the mean fold-change across all 

genes that loose occurrences of this motif during the same transition, after accounting 

for the effects for all other transcription factor motifs. While both positive and negative 

scores indicate associations with dynamically expressed genes, a positive score for a 

transcription factor would be consistent with an activating influence on gene expression 

while a negative score with a repressing influence on gene expression. 
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