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Abstract

Large amount of super-resolution single particle trajectories has
revealed that the cellular environment is enriched in heterogenous re-
gions of high density, which remain unexplained. The biophysical
properties of these regions are characterized by a drift and their ex-
tension (a basin of attraction) that can be estimated from an ensemble
of trajectories. We develop here two statistical methods to recover the
dynamics and local potential wells (field of force and boundary) using
as a model a truncated Ornstein-Ulhenbeck process. The first method
uses the empirical distribution of points, which differs inside and out-
side the potential well, while the second focuses on recovering the drift
field. Finally, we apply these two methods to voltage-gated calcium
channels and phospholipids moving on the surface of neuronal cells
and recover the energy and size of these high density regions with
nanometer precision.
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1 Introduction

Super-resolution Single Particle Trajectories (SPTs) are used to monitor the
dynamics of large amount of particles that can be cytoplasmic molecules,
membrane receptors or channels in live cells. Over the past decade, statis-
tical methods based on stochastic models have been developed to segment
[1, 2], to interpret these large data sets and to extract relevant biophysical
parameters such as flows, fluxes and even statistics of arrival times between
various subregions [3, 4, 5, 6, 7, 8]. The most striking and universal charac-
teristic of these trajectories is that they are not homogeneously distributed
in cells, but rather are concentrated in sub-regions, a phenomenon that is
not fully understood: what are these regions of high densities? What are
the underlying physical forces that restrict and confine the trajectories? For
example, AMPA receptors that traffic on the surface of neuronal cells ac-
cumulate specifically at the post-synaptic density (PSD) of synapses, where
they are needed for proper synaptic transmission [9, 10]. Similarly, at the
pre-synaptic terminal, voltage-gated calcium channels (CaV) can accumulate
on membrane subregions, with a size around hundreds of nanometers [11].
Retaining these channels guarantee that calcium ions can flow near vesicles
to trigger release.

Heterogeneous distribution of trajectories within specific regions of large
density were observed systematically for a large spectrum of membrane pro-
teins, channel receptors [3, 11]: they are often concentrated in specific regions
for a physiological purpose, however, the biophysical mechanism for such ac-
cumulation remains unknown. A possible mechanism to retain trajectories is
a converging field of force due to the presence of an extended potential well.
These structures have been detected with a size of hundreds of nanometers
[3, 12, 11]. However the physical origin of these wells remains unclear be-
cause the length of classical electrostatic interactions is ten times shorter
[13]. These high density regions are characterized by several features: 1) a
converging drift field whether or not it is the gradient of a potential energy,
2) an energy depth and 3) a boundary. Finding and estimating these geomet-
rical characteristics from single trajectories and their statistical distribution
remain challenging especially at tens of nanometers below the diffraction
limit.

Here, we present two statistical methods to detect and interpret high-
density regions contained in single particle trajectories. We reconstruct the
possible underlying potential wells. The first approach is based on estimat-
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ing the density of points of a truncated Ornstein-Ulhenbeck process (which
account for a motion driven by a converging force and diffusion) as a stochas-
tic model. We recover the center, the covariance matrix and the boundary
of the wells. The second approach is based on estimating the drift flow.
Both approaches are validated on stochastic simulations. Finally, we apply
the present methods to estimate the characteristics of potential wells using
SPTs of voltage-gated calcium channels (CAV) and phospholipids (GPI-GFP
or lipid anchored GFP) embedded in the membrane of neuronal cells.

2 Methods

2.1 Coarse-grained description of stochastic trajecto-
ries

The Langevin’s description of a stochastic trajectory is summarized by the
equation

dx

dt
= v (1)

dv

dt
= −γv − U ′(x) +

√
2εγ η̇, (2)

where γ = Γ/m is the dynamical friction coefficient per unit mass and U is a
potential field. In the Smoluchowski’s limit [14, 15], the description reduces
to

γ
dx

dt
+ U ′(x) =

√
2εγη̇. (3)

However, this model assumes that the diffusion of a protein or a particle
embedded in a membrane surface is generated by a diffusion coefficient D
and a field of force F (X, t),

Ẋ =
F (X(t), t)

γ
+
√
2D Ẇ, (4)

where W is a Gaussian white noise and γ is a uniform viscosity [14]. The
source of the driving noise is the thermal agitation of the ambient lipid and
membrane molecules. However, due to the acquisition timescale of empirical
recorded trajectories, which is too low to follow the thermal fluctuations,
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rapid events are not resolved in the data, and at this coarser spatiotemporal
scale, the motion is described by an effective stochastic equation [3, 16]

Ẋ = a(X)dt+
√
2B(X)Ẇ , (5)

where a(X) is the drift field and B(X) the diffusion matrix. The effective
diffusion tensor is given by D(X) = 1

2
B(X)BT (X) (.T denotes the trans-

position) [17, 14]. The diffusion tensor accounts for impenetrable obstacles
of various sizes. Note that the interpretation at the physical level of the
stochastic equation is from the Ito’s sense and not Stratanovich or any other
sense, because a physical process has to be non-anticipating [17] (the future
cannot interfere with the past).

2.2 Potential well characteristics

The drift field a(X) in equation 5 may represent a field force that acts on the
diffusing particle, that could due to a potential well [13]. When the diffusion
tensor D(X) is locally constant and the coarse-grained drift field a(X) is a
gradient of a potential

a(X) = −∇U(X), (6)

then the density of particles is given locally by the Boltzmann distribution
[18]

ρ(X) = N0e
−U(X)/D, (7)

where N0 is a normalization constant. An infinite paraboloid potential well
with an elliptic base has the analytical representation for X = (x, y)

U(x, y) = A

((
x− µx

a

)2

+

(
y − µy

b

)2
)
, (8)

where the center is (µx, µy) with amplitude A and a, b are the sizes of the semi-
axes of the ellipse. To account for a finite well, we restricted the influence of
the well to the region

ΓE = {(x, y)|U(x, y) ≤ E}. (9)
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The truncated energy function U associated to a parabolic potential well is
finally given by

U(X) =

 A
[
(x−µx

a
)2 + (y−µx

b
)2
]
, if X ∈ ΓE

E otherwise
, (10)

from which the drift field is the gradient of the energy, given by

∇U(X) = −2A


x− µx

a2

y − µy

b2

 . (11)

The goal of the present work is to recover, from empirical single particle
trajectories that consists of few successive points acquired at a sampling rate
∆t, the center (µx, µy), the amplitude A, the size of each semi-axis a, b and
the boundary E .

2.3 Simulations of stochastic trajectories

To validate the two methods, we first generated synthetic single particle
trajectories from the stochastic process

Ẋ = −∇U(X)dt+
√
2Dη̇, (12)

using the classical Euler’s scheme. The potential U is defined in equation
(8), D is the diffusion coefficient and η is the normalize Gaussian noise.
In practice, we follow the experimental protocol and generated at a time
resolution ∆t N trajectories (X1(0), .., XN(K∆t)) containing K points (K =
20), summarized in Fig. 1A-B).

We consider two types of numerical simulations depending whether the
initial points Xi(0) are uniformly distributed 1) inside the well or 2) inside
a square box surrounding the well. This uniform distribution represents the
random activation of fluorophores by a laser (Fig. 1C). To guarantee a con-
stant number of points inside a well across various simulations, we generated
new trajectories from an initial uniform distribution until we reached a de-
sired number of points inside the well. This resetting procedure generates
a distribution of points which depends on the initial uniform distribution.
However, in the limit of large N , the distribution of points converges toward
the steady-state, which is Gaussian inside the well and uniform outside, when
trajectories are confined to large square domain.
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2.4 Empirical estimators

The drift of the stochastic model 5 can be recovered from SPTs acquired at
any infinitesimal time step ∆t by estimating the conditional moments of the
trajectory increments ∆X = X(t+∆t)−X(t) [14, 19, 20, 16, 21]

a(x) = lim
∆t→0

E[∆X(t) |X(t) = x]

∆t
, (13)

D(x) = lim
∆t→0

E[∆X(t)T∆X(t) |X(t) = x]

2∆t
. (14)

The notation E[· |X(t) = x] means averaging over all trajectories that are at
point X at time t. To estimate the local drift a(X) and diffusion coefficients
D(X) at each point X at a fixed time resolution ∆t, we use a similar pro-
cedure as the one for the estimation of the density in section 3 based on a
square grid. The points of trajectories are first grouped within small square
bins S(xk, r) of size ∆x and centered on lattice grid xk and the drift and
local diffusion coefficient are estimated for each of the square.

When there are N trajectories {Xi(0), . . . , Xi(K∆t)}, with i = 1 . . . N
and ∆t the sampling time, the discretization of equation 13 for the drift
a(xk) = (ax(xk), ay(xk)) in a bin centered at position xk is

ax(xk) ≈ 1

Nk

Nt∑
j=1

Ns−1∑
i=0,xj(i∆t)∈S(xk,r)

(
xj((i+ 1)∆t)− xj(i∆t)

∆t

)
(15)

ay(xk) ≈ 1

Nk

Nt∑
j=1

Ns−1∑
i=0,xj(i∆t)∈S(xk,r)

(
yj((i+ 1)∆t)− yj(i∆t)

∆t

)
,

where Nk are the number of points of the trajectory falling in the square
S (xk, r). Similarly, the components of the effective diffusion tensor D(xk)
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are approximated by the empirical sums

Dxx(xk) ≈ 1

Nk

Nt∑
j=1

Ns−1∑
i=0,xj(i∆t)∈S(xk,r)

(xj((i+ 1)∆t)− xj(i∆t))2

2∆t

Dyy(xk) ≈ 1

Nk

Nt∑
j=1

Ns−1∑
i=0,xj(i∆t)∈S(xk,r)

(yj((i+ 1)∆t)− yj(i∆t))2

2∆t
(16)

Dxy(xk) ≈ 1

Nk

Nt∑
j=1

Ns−1∑
i=0,xj(i∆t)∈S(xk,r)

xj((i+ 1)∆t)− xj(i∆t))(yj((i+ 1)∆t)− yj(i∆t))

2∆t
.

There are thus several free parameters such as the position of the grid, the bin
size ∆x that should be fixed and optimized during the estimation procedure.

2.5 Correcting the drift estimation

We recall briefly here (see SI) a correction term to be added in order to
recover Ornstein-Uhlenbeck process of parameter λ and centered at µ (eq.
(12)). We derived in the SI that the drift term at position x and at resolution
∆t is given by

ã∆t(x) = −1− e−λ∆t

∆t
(x− µ). (17)

Hence, the first order moment at resolution ∆t computed from the displace-
ment X(t+∆t)−X(t) from the empirical data deviates from the expected
drift. When λ∆t is small, the first order Taylor expansion leads to the ap-
proximation

ã∆t(x) = a(x)(1− 1
2
λ∆t) + o(λ2∆t) (18)

and hence to recover the drift, we have to account for the factor 1 + 1
2
λ∆t

on the estimated drift.

2.6 Data processing

For the experimental data related to CaV2.2 data, we refer to [22], while the
GPI-GFP data have been described in [23]. Here, we used the following pro-
cedure to process both CaV and GPI datasets: to remove any possible motion
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of the wells due to cell motion or drift acquisition that would affect the anal-
ysis of the trajectories, we initially isolated trajectories in non-overlapping
time windows of 20s. For each time window, we use a square grid with bin
sizes ∆x around trajectories and isolated the 5% highest density bins as pos-
sible regions containing potential wells. For each selected bin, we detected
well as follows: we first used 90% of the local density (threshold α = 0.1) to
detect the center of the well from equation (21).

Using this initial possible point for the center, we computed by iteration,
the annulus starting at the radius rmin and ending at rmax, with a width
increment ∆r. We estimated the covariance ratio (eq. (24)) and density from
each annulus (r, r+∆r). To obtain the semi-axes ratio, we toke the maximum
value of the covariance ratio until a maximum distance rcov = 150nm. In that
case, the radius r0 is obtained by using the density curve at the level line
Tρ = 35%. Once the center and semi-axes of the well are found, the diffusion
coefficient is determined using eq. (16) using all displacements where the
initial points fall inside the well.

Results

3 Recovering a bounded potential well from

the point density of trajectories

We reconstruct the characteristics of the well from the distribution of points
resulting from SPTs. This approach ignores the time series of the trajectories
and relies on the a priori knowledge that the well is a truncated paraboloid.
To this end, we recover the center and covariance matrix of the steady-state
density distribution using the binning of trajectory points into a square grid
(Fig. 2A). We recall that the steady-state is the Boltzmann distribution,
which is the solution the Fokker-Planck equation 8: it is given inside the well
by

ρ(X) = N0 exp

{
−
A
(
(x−µx

a
)2 + (y−µy

b
)2
)

D

}
, (19)

where N0 is a normalization coefficient (the other parameters are defined in
subsection 2.2). To select parts of trajectories inside the well, we use the
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ensemble

Γα = {X i such that ρe(x) > α}, (20)

where ρe is the empirical point density estimated over the bins of the square
grid constructed from the ensemble of trajectories (Fig. 2B). The ensemble
Γα contains all trajectory points falling into a bin with a density greater than
the density threshold α.

3.0.1 Estimating the center (µx, µy) of the well

To recover the center of the distribution, we consider all points X i = (xi, yi)
located in Γα (see (20) and Fig. 2C) and use the empirical estimators:

µ̂(α)
x =

1

Np

Np∑
{k=1,Xk∈Γα}

xk, µ̂(α)
y =

1

Np

Np∑
{k=1,Xk∈Γα}

yk, (21)

where Np is the number of points in the ensemble Γα.

3.0.2 Estimating the covariance matrix of data

To estimate the covariance two-by-two matrix C(α), we start from the repre-
sentation

U(X) = (X − µ(α))TC(α)(X − µ(α)), (22)

and use the empirical estimators

Ĉ
(α)
ij =

1

Np − 1

Np∑
{k=1,Xk∈Γα}

X i,kXj,k, (23)

where X i,k is the i
th coordinates of Xk (Fig. 2C). The accuracy of estimators

(21) and (23) are analyzed by plotting the errors between the true and the
estimated centers ||µ̂α−µ|| and the covariance matrices ||Ĉα−C|| (L2 norm of
the matrix) versus the parameter α. We used various grid sizes, varying from
∆x = 10 to 90nm: when α decreases from one to zero, when the initial points
are located inside the well, the position of the estimated center converges
toward the true one and the fluctuations (SD computed over 100 realizations)
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are decreasing (Fig. 2D1-D2) with α. However, when the initial points were
chosen also outside the well, we found that there was an optimal threshold
value for α ≈ 0.3 for which the error in the center positions is minimum.
Below this value, the points falling outside the well are also contained in
Γα, thus contaminating the estimation. When the initial points only fall
inside the well (Fig. 2D3), the ensemble Γ0 contains external trajectories
that affect the estimation of covariance matrix C(α). As α increases, these
external points disappear from Γα and the error becomes minimal at the
value αopt = 0.05. When α continues to increase, the estimators become
less accurate. However, when the initial points were chosen also outside the
well, the error starts by decreasing because the computation accounts for
trajectories that are not inside the well (Fig. 2D4). As α increases, the
estimator converges toward an optimal value α 0.25, which minimizes the
error (that is 75% of the points are used). When α continues to increase, the
error increases slowly, similar to the case of Fig. 2D3.
To conclude, having trajectories mainly inside or also outside the high density
regions leads to different types of results. Moreover, while is it interesting
to use as many points as necessary to estimate the center, to estimate the
covariance matrix, we needed to truncate the density of points and found an
optimal value for α, in order to reject the points that do no fall inside the
well.

3.0.3 Estimating the boundary of the well

None of the estimators described in the previous subsections could be used
to reconstruct the boundary of the potential well, thus we started with the
recovery of a circular boundary and later on expand to an elliptic one in two
cases: when the initial points falls only inside the well and when they can
also fall outside.

The first step consists in discriminating the nature of the boundary be-
tween a circular and elliptical. To do so, we computed from the matrix (23),
the covariance ratio

Cv(r) =

√
C1,1(r)

C2,2(r)
(24)

estimated over the empirical data inside the annulus (r, r + ∆r). We recall
that the diagonal form can be found from equations (19) and (22), where the
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covariance matrix is given by

C =
D

A

[
a2 0
0 b2

]
, (25)

and thus in that case, we expect that the covariance ratio is Cv(r) =
√

C1,1(r)

C2,2(r)
=

a
b
: it is precisely equal to the semi-axes ratio and does not depend on any

other parameters. In the case of a disk, the ratio is Cv(r) = 1, as shown
in the simulation cases (Fig. 3A1-A2, A3-A4). Note that when the covari-
ance matrix is recovered, the coefficients λx and λy can be recovered using
equation (25) from the diffusion coefficient D and the semi-axes a, b

λ̃x =
Da2

C11

, λ̃y =
Db2

C22

. (26)

Once the well boundary has been identified as circular, to estimate the radius
of the boundary r0, we plotted the density of points ρ(r) versus r, the radial
distance with respect to the center µ̂ (estimated in subsection 3.0.1).

Interestingly, this procedure emphasizes a local minimum, due to the
difference between the Boltzmann distribution (attraction of the well) and the
uniform distribution of the trajectories outside the well (Brownian motion).
This difference in the distributions allows estimating r̂0 for the well radius
r0 (Fig. 3B1). When the initial points falls inside the well, the density
of points decays with the radius r and the boundary can be identified by
plotting − log ρ(r). Indeed, for points falling inside the well, we have the
approximation log ρ(r) ∼ C0 − (αx2 + βy2), where r2 = x2 + y2, with α =
2A/a2, β = 2A/b2 and expC0 is the maximum value of the distribution .
Outside the boundary, the distribution is usually sparse, generated by the
Brownian motion. When trajectories are confined to a square, the empirical
distribution outside the well converges to the uniform distribution as the
number of points increases. When there are no confinement mechanisms, but
trajectories have a finite length K, the distribution qK(x) of K successive
points of a Brownian motion starting at uniformly distributed outside the
well S − C is the sum

qK(x) =
K∑
k=1

pk∆t(X) =
K∑
k=1

∫
S−C

1

4πDk∆t
exp

{
−|X − Y |2

4Dk∆t

}
dY

|S − C|
. (27)

In the limit ∆t small, the Ornstein-Ulhenbeck and the uniform distributions
are continuous at the boundary of the well, but the derivative is discon-
tinuous. In practice, for the case of a circle, we can find the boundary by
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fitting a parabola C0 − C1r
2 (with parameters C0 and C1) to − log ρ(r))

starting from zero and estimate the first point r0 of deviation of the error∫ r

0
(C0 − C1s

2 + log ρ(s))2ds.
In the case of an elliptic well, we modified the previous method as follows.
The covariance ratio Cv(r) reaches a maximum when the radius r is equal
to the smallest axis b of the ellipse (Fig. 3C, for a true ratio a/b = 2).
After we found the maximum value for the ratio and estimated the length

r = b, we constructed the elliptic distance re =

√
x2 +

√
C11(b)
C22(b)

y2, for any

point P = (x, y). We then plotted the distribution of points according to
the distance re (Fig. 3D). This procedure allows us to estimate the second
elliptic semi-axis using the same procedure we have used for the disk (Fig.
3D1-D3).
To conclude, the present method based on density of points allows to re-
construct a finite parabolic potential well (center, boundary, small and large
axes) with an elliptic base from the empirical density of points. In SI Figs.
S1 and S2, we compare this density method with the classical MLE, which
is used to recover the center and the axes, but not the boundary.

4 Estimating the characteristics of the well

using the velocity distribution

In this section, we present a second method based on displacements to recover
the drift of the vector field and reconstruct the following parameters of the
potential wells: center µ, the two axes a, b and the boundary of the well. This
method is based on least square quadratic error (LSQE), where we optimize
the error

Errb(µx, µy, λx, λy) =
N∑
i=1

∥ − ∇U(Xi)− b(Xi)∥2 (28)

between the empirical drift b and the parabolic well U .
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4.1 Estimating the center and the field coefficients of
the potential well

By minimizing the error 28, we obtain the estimators for the center

µ̃x =

N∑
i=1

bix + λxxi

Nλx

, µ̃y =

N∑
i=1

biy + λyyi

Nλy

. (29)

and for the eigenvalues of the covaraince matrix:

λ̃x =

N∑
i=1

bix(xi − µx)

N∑
i=1

(xi − µx)2
, λ̃y =

N∑
i=1

biy(yi − µy)

N∑
i=1

(yi − µy)2
(30)

Combining equations 30 and 29 leads to an explicit expression of each pa-
rameter µ and λ (see SI). In Fig. 4A, we compare the reconstructed and
the true drift based on equation (15) for various grid sizes. At this stage,
we estimated the drift for bins that are falling inside the well (we assumed

here that the boundary was known). The error of the norm ⟨||b̄−b||⟩
⟨||b||⟩ is plotted

for multiple time steps ∆t and for three grid sizes ∆x = 10; 50 and 90nm in
Fig. 4B. Having both a small grid size and time step ∆t produces a large
error that quickly decreases with increasing the time step. Interestingly, for
a large grid size, we found a slow increase of the error when increasing ∆t.
To better understand which parts of the field contribute to the error, we
plotted the error versus the distance to the center in Fig. 4C, showing that
for small size ∆x = 10nm, a contribution comes from the center, while for
large step ∆x = 50, 90nm, an error can come also from the estimations at
the boundary.

Finally, to estimate the boundary of the well from the drift distribution
(Fig. 5A), we plotted the drift amplitude as a function of the distance to
the well center (Fig. 5B, blue cross representing the drift amplitude in one
bin at distance r). As expected, from the distribution and the average (Fig.
5B lower panel), the boundary can be recovered from the local maximum:
indeed, after the boundary is past, the contribution of the deterministic field
disappears and it only remains in the statistics, the fluctuations due to the
Brownian nature of the motion. We apply the same procedure for the case of
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an ellipse (Fig. 5C-D) and recover the boundary after we used the covariance
ratio Cv (relation 24) to plot the elliptic distance to the boundary.

To evaluate the influence of bin location, we estimated the center µ, and
eigenvalues λx and λy in four cases: when all bin falling inside the well, all
bins except the center, all bins except the boundary and finally removing the
center and the boundary bins (Fig. 5E). At this stage, we found that the best
estimation is obtained by removing the center bin and the ones intersecting
the boundary of the well.

5 Interpretation high-density regions for CaV

and GPI-GFP as potential wells

The nature of high-density regions found in SPTs for various channels moving
on neuronal cell membrane remains unclear. We recently reported that they
could be associated with potential wells, as revealed from the voltage-gated
calcium channels CaV2.1 isoform [11]. We analyze here the isoform CaV2.2
or N-type by using the three methods presented here: density (eq. (26)),
least-square (equation (30)) and maximum-likelihood (see SI). We use in
Fig. 6 and in table 5 only wells that contain at least 50 points from at least
5 different trajectories. All three estimators produce reasonable values of
the coefficient A and the energy, obtained from the different methods when
< 7kT. Finally, when two potential wells overlap, only one was kept. The
values of the parameters are summarized in Table 5.

We report (Fig. 6A-C) that the high density regions can be characterized
as potential wells with the following characteristics: the two main axes are
a = 90nm, b = 75nm associated with a mean energy of 3.3kT estimated
for the density method, showing some differences with the CaV2.1 isoform
[11]. Note that the distribution of energy varied with the statistical method
(Fig. 6C) as we reported E = 3.1 ± 0.5 for the MLE and E = 1.6 ± 0.7 for
the LSQ. At this stage, we think that the density method is more robust.
To conclude, this statistical analysis suggests that to trap calcium channels,
specific long-range molecular mechanisms are present in the active zone of
the pre-synaptic terminal, probably associated to vesicular release molecules
such as synaptotagmin. These sites retain channels for a time long enough
to increase the probability of vesicular release.

We also apply our statistical methods to the case of GPI-anchored fluo-
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rophores (GFP) integrated into the membrane (Fig. 6D-F), which are con-
sidered to be non-interactive molecules. However, we found many regions
(N=181) of high densities, which are characterized by potential wells. The
elliptic axes are a = 140nm and b = 120nm, associated with an energy of
E = 3.6, 1.5 and 3.5 for the density, LSQ and MLE methods. To conclude,

Parameter GPI dataset CaV dataset
∆x 40 (nm) 30 (nm)
rmin 30 (nm) 20 (nm)
rmax 300 (nm) 400 (nm)
∆r 20 (nm) 10 (nm)

Table 1: Parameters used for CaV and GIP analysis.

although it is surprising to detect region of high densities for GPI, we found
here that they can be characterized as potential wells. Possibly they corre-
spond to regions where lipids are removed or inserted. The exact nature of
these regions remain unclear and should be further investigated.

6 Summary and Discussion

6.1 Two statistical methods to recover the nature of
high density regions

We presented here two statistical methods to reconstruct from high-density
regions revealed by single particle trajectories, the characteristics of a bounded
potential well. The first method is based on the density of points, ignoring
the causality between the successive points of the trajectories. The method
is based on assuming that the potential well is generically a parabola with
an elliptic base, where the diffusion coefficient is constant. In that case, the
distribution of points is Gaussian Boltzmann distribution, solution of the as-
sociated Fokker-Planck equation. To recover the main parameters, we used
Gaussian estimators and develop a novel strategy to recover the location of
the boundary, predicted by the differences of the distribution of points: inside
the well the distribution is Gaussian and outside it is uniform. We compared
also the result to the classical MLE (see figure SI). The second method is
based on estimating the vector field distribution at a given bin resolution
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∆x. We use an optimal estimator to recover the characteristic of the field
and the boundary is found at the discontinuity between the field computed
from the energy (Ornstein-Ulhenbeck) and the fluctuations of the drift for
pure Brownian motion.

At this stage, the two methods are complementary and provide certain
advantages compared to classical MLE, PCA: in all cases, the center could
be retrieved from simulations. However, the presence of two close wells in the
automatic detection (see section 2.6) could lead to an erroneous center, which
should be discarded. However, obtaining good estimtions for the gaussian
parameters were clearing dependent on the methods. In particular, changing
the time ∆t and the spatial ∆x steps influenced the recovery process as shown
in Figs. 3 and 5. The advantage of the first (density) method based on the
distribution is that we do not need to introduce an artificial grid of size ∆x,
which could be a serious constraint in the second (drift) method because the
size of the bin defines the resolution to recover the well and its boundary.

6.2 Nature of high density regions in empirical SPT
data

Not all high density regions revealed by SPTS are due physical forces and po-
tential wells[3]. However, when it is the case, we can recover the geometry of
the well (center, curvature and boundary) and the stochastic dynamics. We
applied the two methods to two types of empirical data: first, the CaV chan-
nels that mediate vesicular release at neuronal synapses and GPI-anchored
control molecules that move on the surface membrane of cells. We found that
high density regions for CaV have mean axes a = 90 and b = 75nm and an
energy of 3.3kT (density method), while in principle we were expecting no
regions of high density for GPI, we found some of them. There are however
much less wells than CaV associated mean axes a = 90 and b = 75nm and
energy 3.6kT (Fig. 6). Possibly the high energy of GPI well is due to a small
amount of trajectories in the well, leading to a large variance.

Although the interpretation of high density regions as potential wells for
AMPA receptors was first anticipated in [24] and discovered in [3], the na-
ture of these wells and others in general, remains unclear [13]. Potential wells
were found for membrane proteins such CaV [11], GAG [12, 25] and recently
for G-protein [26]. Potential wells could be generated by protein clusters,
or by membrane cusp of vesicle fusion points, by membrane-membrane con-
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tact at location of organelle interactions [27]. In general, potential wells are
characterized long-range interaction, of the order of hundreds of nanometers.
These forces could be mediated by membrane curvature, local molecular or-
ganization leading to or a combination of both.

The role of wells could vary: they retain receptors for hundreds of mil-
liseconds to seconds at specific locations in order to increase the probability of
an optimal signal transduction, such as during synaptic transmission. Tran-
sient wells allow to trap proteins to create aggregates as proposed for capsid
assembly [12, 25]: once the energy of the well decreases, molecules are not
interacting with the well. Another possible role is that wells could regulate
the fluxes of receptors in micro-compartments such as dendritic spines [16].
They can also trap proteins in the endoplasmic reticulum [11].

Finally, it is usually difficult to identify structures hidden in SPTs. How-
ever, flows along spine neck have also been detected [3] and recently in the
tubule of the endoplasmic reticulum [11]. Correlating undefined membrane
geometry with an energy landscape remains difficult, because a physical
model is needed to interpret them. Thus, the dynamics of receptors out-
side potential wells that deviates from Brownian motion is still challenging
to comprehend.

7 Figures
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Uhlenbeck stochastic process truncated to well and Brownian outside used to gen-

erate single trajectories. B Model of a truncated potential well with two axes

a, b and energy U(X) with a boundary. C Trajectories generated with equation

presented in A. The initial points (black dots) can either be located inside or

outside the boundary of the well (dashed red). Parameters: D = 0.042µm2/s,

λx = 10, λy = 17.78.
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Figure 2: Recovering a truncated potential well from the density of points. A
Density maps (in log(points)/µm2) for two different grid sizes ∆x = 10 (left)
and 50nm (right) when the initial points are located inside the well (A1) or
uniformly distributed in a square of size 1µm (A2). B Normalized three-
dimensional empirical density function ρ obtained from (A). We plotted the
ensemble Γα = {X|ρ(X) > α} for α = 0.1 (black) and α = 0.4 (pink) and
the projected area (red) in the well in the two cases (B1) and (B2) associated
to (A1) and (A2) respectively. C Empirical estimators used to recover the
characteristics of the well U : the center of the well and the covariance matrix
are estimated by µ(α) and C(α) respectively, which are the average of the
points and the quadratic sum, restricted to the ensemble Γα. D: Influence
of the grid size ∆x and threshold α on the well characteristics estimations.
D1,D3 (resp. D2, D4) panels are obtained by computing with the initial
distribution described in A1 (resp. A2).
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Figure 3: Estimating the potential well boundary. A. Covariance ratio

Cv(r) =
√

C11(r)
C22(r)

estimated in the annulus r, r + ∆r. Panel A1 (resp. A3)

are for initial points distributed in a square (target disk resp). Panel A2 and
A4 show the cumulative

∫ r

0
Cv(s)ds. B. Point density estimated from the

distance r to center. B1: Log of the density, showing a clear inflection point
at the boundary of the well (criteria of selection) when the initial points of
trajectories falls inside the circular well. B2: Estimation of the radius r̂0
using a threshold at 4% of the total mass. B3: density of points obtained
when the initial points start inside a square. The minimum is achieved
near the boundary where we estimated radius r̂0 of the circular well. C-D.
Generalization to the case of an ellipse of panels A-B. C1: the covariance
ratio has a maximum when the moving disk of radius r becomes tangent to
the smallest axis (inset boxplot for 100 simulations), from which we estimated
the radius b. C2 cumulative. C3,C4 same as C1, C2 but for initial points
inside the ellipse. D. Density of points is estimated inside the annulus using
a corrected distance r =

√
x2 + cra(b)y2 using the width of the elliptic base,

estimated in panel C. The panel D1,D2 and D3 are equivalent to B1,B2 and
B3.
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