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Abstract 

Background. Nearly all molecular sequence databases currently use gzip for data compression. Ongoing 

rapid accumulation of stored data calls for more efficient compression tool. Although numerous compressors 

exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive 

analysis of their comparative advantages for sequence compression was available. 

Findings. We systematically benchmarked 410 settings of 44 compressors (including 26 specialized 

sequence compressors and 18 general-purpose compressors) on representative FASTA-formatted datasets of 

DNA, RNA and protein sequences. Each compressor was evaluated on 17 performance measures, including 

compression strength, as well as time and memory required for compression and decompression. We used 25 

test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein 

datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database, 

http://kirr.dyndns.org/sequence-compression-benchmark/) that allows building custom visualizations for 

selected subsets of benchmark results. 

Conclusion. We found that modern compressors offer large improvement in compactness and speed 

compared to gzip. Our benchmark allows comparing compressors and their settings using a variety of 

performance measures, offering the opportunity to select the optimal compressor based on the data type and 

usage scenario specific to particular application. 
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Background 

Molecular sequence databases store and distribute DNA, RNA and protein sequences as compressed 

FASTA-formatted files. Biological sequence compression was first proposed in 1986 [1] and the first 

practical compressor was made in 1993 [2]. A lively field emerged that produced a stream of methods, 

algorithms, and software tools for sequence compression [3,4]. However, despite this activity, currently 

nearly all databases universally depend on gzip for compressing FASTA-formatted sequence data. This 

incredible longevity of the 26-year-old compressor probably owes to multiple factors, including 

conservatism of database operators, wide availability of gzip, and its generally acceptable performance. 

Through all these years the amount of stored sequence data kept growing steadily [5], increasing the load on 

database operators, users, storage systems and network infrastructure. However, someone thinking to replace 

gzip invariably faces the questions: which of the numerous available compressors to choose? And will the 

resulting gains be even worth the trouble of switching? 

Previous attempts at answering these questions are limited by testing too few compressors and by 

using restricted test data [6-11]. In addition, all of these studies provide results in form of tables, with no 

graphical outputs, which makes the interpretation difficult. Existing benchmarks with useful visualization 

such as Squash [12], are limited to general-purpose compressors. 
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The variety of available specialized and general-purpose compressors is overwhelming. At the same 

time the field was lacking a thorough investigation of comparative merits of these compressors for sequence 

data. Therefore we set out to benchmark all available and practically useful compressors on a variety of 

relevant sequence data. Specifically, we focused on the common task of compressing DNA, RNA and 

protein sequences, stored in FASTA format, without using reference sequence. The benchmark results were 

shown in the Sequence Compression Benchmark database (SCB database,  http://kirr.dyndns.org/sequence-

compression-benchmark/). 

Compressors and test data 

We tested all sequence compressors that are available and functional in 2019: dnaX [13], XM [14], 

DELIMINATE [15], Pufferfish [16], DNA-COMPACT [17], MFCompress [18], UHT [19], GeCo [20], 

GeCo2 [21], JARVIS [22], NAF [23], and NUHT [24]. We also included the relatively compact among 

homology search database formats: BLAST [25] and 2bit - a database format of BLAT [26]. 

Since compressors designed for FASTQ data can be trivially adopted for FASTA-formatted inputs, 

we also included a comprehensive array of compressors designed primarily or specifically for FASTQ data: 

BEETL [27], Quip [28], fastqz [10], fqzcomp [10], DSRC 2 [29], Leon [30], LFQC [31], KIC [32], ALAPY 

[33], GTX.Zip [34], HARC [35], LFastqC [36], and SPRING [37]. 

We also tested a comprehensive array of general purpose compressors: bcm [38], brotli [39], bsc 

[40], bzip2 [41], cmix [42], gzip [43], lizard [44], lz4 [45], lzop [46], lzturbo [47], nakamichi [48], pbzip2 

[49], pigz [50], snzip [51], xz [52], zpaq [53], zpipe [53] and zstd [54]. See Supplementary Table 1 for the 

list of compressors we used. 

For the test data, we selected a variety of commonly used sequence datasets in FASTA format: (1) 

Individual genomes of various sizes, as examples of non-repetitive data; (2) DNA and RNA datasets, such as 

collections of mitochondrial genomes, influenza virus sequences, 16S rRNA gene sequences, and DNA 

alignments; (3) Standard protein datasets. Individual genomes are less repetitive, while other datasets are 

more repetitive. In total we used 25 test datasets. See Supplementary Table 2 for the list of test data. 

Benchmark 

We benchmarked each compressor on every test dataset, except in cases of incompatibility (e.g., 

DNA compressors cannot compress protein data) or excessive time requirement (some compressors are so 

slow that they would take weeks on larger datasets). For compressors with adjustable compression level, we 

tested the relevant range of levels. We tested both 1 and 4-thread variants of compressors that support multi-

threading. In total, we used 410 settings of 44 compressors. We also included the non-compressing "cat" 

command as control. For compressors using wrappers, we also benchmarked the wrappers. 

Currently many sequence analysis tools support gzip-compressed files as input. Switching to another 

compressor may require either adding support of new format to those tools, or passing the data in 

uncompressed form. The latter solution can be achieved with the help of Unix pipes, if both the compressor 

and the analysis tool support streaming mode. Therefore, we benchmarked all compressors in streaming 

mode (streaming uncompressed data in both compression and decompression). 

 For each combination of compressor setting and test dataset we recorded compressed size, 

compression time, decompression time, peak compression memory and peak decompression memory. The 

details of the method and raw benchmark data are available in Supplementary Methods and Supplementary 

Data, respectively. We share benchmark results and scripts via the SCM database at 

http://kirr.dyndns.org/sequence-compression-benchmark/. 

The choice of measure for evaluating compressor performance depends on prospective application. 

For data archival, compactness is the single most important criterion. For public sequence database, the key 
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measure is how long time it takes from initiating the download of compressed files until accessing the 

decompressed data. This time consists of transfer time plus decompression time (TD-Time). Corresponding 

transfer-decompression speed (TD-Speed) is computed as Original Size / TD-Time. In this use case 

compression time is relatively unimportant, since compression happens only once, while transfer and 

decompression times affect every user of the database. For one-time data transfer, all three steps of 

compression, transfer and decompression are timed (CTD-Time), and used for computing the resulting 

overall speed (CTD-Speed). 

A total of 17 measures, including the above-mentioned ones, are available in our results data (See 

Supplementary Methods for the list of measures). Any of these measures can be used for selecting the best 

setting of each compressor and for sorting the list of compressors. These measures can be then shown in a 

table and visualized in column charts and scatterplots. This allows tailoring the output to answer specific 

questions, such as what compressor is better at compressing particular kind of data, or which setting of each 

compressor performs best at particular task. The link speed that is used for estimating transfer times is 

configurable. The default speed of 100 Mbit/sec corresponds to the common speed of a fixed broadband 

internet connection. 

Fig.1 compares the performance of best settings of 35 compressors on human genome. It shows that 

specialized sequence compressors achieve excellent compression ratio on this genome. However, when total 

TD-Speed or CTD-Speed is considered (measures that are important in practical applications), most 

sequence compressors fall behind the general-purpose ones. The best compressors for this dataset in terms of 

compression ratio, TD-Speed and CTD-Speed are "fastqz-slow", "naf-22" and "naf-1", respectively (numbers 

in each compressor name indicate compression level and other settings). Interestingly, the non-compressing 

"cat" command used as control, while naturally showing at the last place on compression ratio (Fig.1A), is 

not the slowest in terms of TD-Speed and CTD-Speed (Figs.1B and 1C, respectively). In case of CTD-

Speed, for example, it means that some compressors are so slow that their compression + transfer + 

decompression time turns out to be longer than time required for transferring raw uncompressed data (using 

particular link speed, in this case 100 Mbit/sec). 

Fig.2 compares all compressor settings on the same data (human genome). Fig.2A shows that the 

strongest compressors often provide very slow decompression speed (shown using logarithmic scale due to 

the enormous range of values), which means that quick data transfer (resulting from strong compression) 

offered by those compressors is offset by significant waiting time required for decompressing the data. 

Fig.2B shows TD-Speed plotted against CTD-Speed. Similar figures can be constructed for other data and 

performance measures on the SCB database website. 

Visualizing results from multiple test datasets simultaneously is possible, with or without 

aggregation of data. With aggregation, the numbers will be summed or averaged, and a single measurement 

will be shown for each setting of each compressor. Without aggregation, the results of each compressor 

setting will be shown separately on each dataset. Since the resulting number of data points can be huge, in 

such case it is useful to request only best settings of each compressor to be shown. The criteria for choosing 

the best setting is selectable among the 17 measurements. In case of a column chart, any of the 17 measures 

can be used for ordering the shown compressors, independently of the setting used for selecting best version, 

and independently for the measure actually shown in the chart. 

One useful capability of the SCB database is showing measurements relative to specified compressor 

(and setting). This allows selecting a reference compressor and comparing the other compressors to this 

reference. For example, we can compare compressors to gzip as shown on Fig.3. In this example, we 

compare only best settings of each compressor, selected using specific measures (transfer+decompression 

speed and compression+transfer+decompression speed on Figs.3A and 3B, respectively). We also used fixed 

scale to show only range above 0.5 on both axes, which means that only performances that are at least half as 

good as gzip on both axes as shown. In this example, we can see that some compressors improve 
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compactness and some improve speed compared to gzip, but few compressors improve both at the same 

time, such as lizard, naf, pigz, pbzip, and zstd. 

It is important to be aware of the memory requirements when choosing a compressor (Fig.4). In 

these charts we plotted data size on the X axis, and disabled aggregation. This allows seeing how much 

memory a particular compressor used on each test dataset. As this example shows memory requirement 

reaches saturation point for most compressors. On the other hand, some compressors have unbounded 

growth of consumed memory, which makes then unusable for large data. Interestingly, gzip apparently has 

the smallest memory footprint, which may be one of the reasons for its popularity. Most compressors can 

function on a typical desktop hardware, but some require larger memory, which is important to consider 

when choosing a compressor that will be run by the consumers of distributed data. 

Wide variety of charts can be produced on the benchmark website by selecting specific combinations 

of test data, compressors, and performance measures. At any point the currently visualized data can be 

obtained in textual form using Table output option. Also, all charts can be downloaded in SVG format. 

Conclusions 

Our benchmark reveals complex relationship between compressors and between their settings, based 

on various measures. We found that continued use of gzip is usually far from an optimal choice. 

Transitioning from gzip to a better compressor brings significant gains for genome and protein data, and is 

especially beneficial with repetitive DNA/RNA datasets. Overall, our data suggests using naf-22 as the 

default compressor to archive FASTA-formatted sequences, because it combines good compression strength 

with very quick decompression. However, it is best to check the results for specific data types and 

performance measures. 

The Sequence Compression Benchmark (SCB) database will help in navigating the complex 

landscape of data compression. With dozens of compressors available, making an informed choice is not an 

easy task and requires careful analysis of the project requirements, data type and compressor capabilities. 

Our benchmark is the first resource providing a detailed practical evaluation of various compressors on a 

wide range of molecular sequence datasets. Using the SCB database, users can analyze compressor 

performances on variety of metrics, and construct custom reports for answering project-specific questions. 

In contrast to previous studies that showed their results in static tables, our project is dynamic in two 

important senses: (1) the result tables and charts can be dynamically constructed for a custom selection of 

test data, compressors, and measured performance numbers, and (2) our study is not a one-off benchmark, 

but marks the start of a project where we will continue to add compressors and test data. 

Making an informed choice of compressor with the help of our benchmark will lead to increased 

compactness of sequence databases, with shorter time required for downloading and decompressing. This 

will reduce the load on network and storage infrastructure, and increase speed and efficiency in biological 

and medical research. 
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Fig. 1. Comparison of 35 compressors on human genome. Best settings of each compressor are selected 

based on different aspects of performance: (A) compression ratio, (B) transfer + decompression speed, and 

(C) compression + transfer + decompression speed. Specialized sequence compressors are shown in orange 

color, and general-purpose compressors are shown in blue. The copy-compressor ("cat" command), shown in 

red color, is included as a control. The selected settings of each compressor are shown in their names, after 

hyphen. Multi-threaded compressors have "-1t" or "-4t" at the end of their names to indicate the number of 

threads used. Test data is the 3.31 GB reference human genome (accession number GCA_000001405.28). 

Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was used for estimating the 

transfer time. 
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Fig. 2. Comparison of 335 settings of 36 compressors on human genome. Each point represents a 

particular setting of some compressor. Panel A shows the relationship between compression ratio and 

decompression speed. Panel B shows the transfer + decompression speed plotted against compression + 

transfer + decompression speed. Test data is the 3.31 GB reference human genome (accession number 

GCA_000001405.28).  Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was 

used for estimating the transfer time. 
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Fig. 3. Comparison of compressor settings to gzip. Genome datasets were used as test data. Each point 

shows the performance of a compressor setting on specific genome test dataset. All values are shown relative 

to representative setting of gzip. Only performances that are at least half as good as gzip on both axes are 

shown. Panel A shows settings that performed best in Transfer+Decompression speed, B - settings that 

performed best in Compression+Transfer+Decompression speed. Link speed of 100 Mbit/s was used for 

estimating the transfer time. The grid lines crossing the (1,1) coordinate are highlighted. 
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Fig. 4. Compressor memory consumption. Strongest setting of each compressor is shown. On the X axis is 

the test data size. On the Y axis is the peak memory used by the compressor, for compression (A) and 

decompression (B).  
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Supplementary Table 1. Compressor versions 

A) Specialized sequence compressors 

Compressor Version 

2bit "faToTwoBit" and "twoBitToFa" binaries dated 2018-11-07 

alapy ALAPY 1.3.0, 2017-07-25 

beetl BEETL, commit 327cc65, 2019-11-14 

blast 
"convert2blastmask", "makeblastdb" and "blastdbcmd" binaries from 

BLAST 2.8.1+, 2018-11-26 

dcom DNA-COMPACT, latest public source 2013-08-29 

dlim DELIMINATE, version 1.3c, 2012 

dnaX dnaX 0.1.0, 2014-08-03 

dsrc DSRC 2.02, commit 5eda82c, 2015-06-04 

fastqz fastqz 1.5, commit 39b2bbc, 2012-03-15 

fqzcomp fqzcomp, 4.6, commit fb056c3, 2019-02-08 

geco 
GeCo: v.2.1, 2016-12-24 

GeCo2: v.1.1, 2019-02-02 

gtz GTX.Zip binary, version PROFESSIONAL-2.1.2-V-2019-11-13 

harc HARC, commit cf35caf, 2019-10-04 

jarvis JARVIS v.1.1, commit d7daef5, 2019-04-30 

kic KIC binary, 0.2, 2015-11-25 

leon Leon, 1.0.0, 2016-02-27, Linux binary 

lfastqc LFastqC, commit 60e5fda, 2019-02-28, with fixes 

lfqc LFQC, commit 59f56e0, 2016-01-06 

mfc MFCompress,s1.01, 2013-09-03, 64-bit Linux binary 

naf NAF, 1.1.0, 2019-10-01 

nuht NUHT, commit 08a42a8, 2018-09-26, Linux binary 

pfish Pufferfish, v.1.0 alpha, 2012-04-11 

quip Quip, commit 9165bb5, 1.1.8-8-g9165bb5, 2017-12-17 

spring SPRING, commit 6536b1b, 2019-11-28 

uht UHT, binary from 2016-12-27 

xm XM (eXpert-Model), 3.0, commit 9b9ea57, 2019-01-07 

B) General-purpose compressors 

Compressor Version 

bcm 1.30, 2018-01-21 

brotli 1.0.7, 2018-10-23 

bsc 3.1.0, 2016-01-01 

bzip2 1.0.6, 2010-09-06 
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cmix 17, 2019-03-24 

gzip 1.6, 2013-06-09 

lizard 1.0.0, 2019-03-08 

lz4 1.9.1, 2019-04-24 

lzop 1.04, 2017-08-10 

lzturbo 1.2, 2014-08-11 

nakamichi 2019-Aug-06 

pbzip2 1.1.13, 2015-12-18 

pigz 2.4, 2017-12-26 

snzip 1.0.4, 2016-10-02 

xz 5.2.2, 2015-09-29 

zpaq 7.15, 2016-08-17 

zpipe  2.01, 2010-12-23 

zstd 1.4.0, 2019-04-17 

Supplementary Table 2. Test datasets 

A) Genome sequence datasets 

Category Organism Accession Size 

Virus Gordonia phage GAL1 GCF_001884535.1 50.7 kB 

Bacteria WS1 bacterium JGI 0000059-K21 GCA_000398605.1 522 kB 

Protist Astrammina rara GCA_000211355.2 1.71 MB 

Fungus Nosema ceranae GCA_000988165.1 5.81 MB 

Protist Cryptosporidium parvum Iowa II GCA_000165345.1 9.22 MB 

Protist Spironucleus salmonicida GCA_000497125.1 13.1 MB 

Protist Tieghemostelium lacteum GCA_001606155.1 23.7 MB 

Fungus Fusarium graminearum PH-1 GCF_000240135.3 36.9 MB 

Protist Salpingoeca rosetta GCA_000188695.1 56.2 MB 

Algae Chondrus crispus GCA_000350225.2 106 MB 

Algae Kappaphycus alvarezii GCA_002205965.2 341 MB 

Animal Strongylocentrotus purpuratus GCF_000002235.4 1.01 GB 

Plant Picea abies GCA_900067695.1 13.4 GB 

B) Other DNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

Mitochondrion 9,402 245 MB 

RefSeq: 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondri

on/mitochondrion.1.1.genomic.fna.gz 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondri

on/mitochondrion.2.1.genomic.fna.gz 

2019-03-15 
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Influenza 700,001 1.22 GB 

Influenza Virus Database 

ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/influen

za.fna.gz 

2019-04-27 

Helicobacter 108,292 2.76 GB 
NCBI Assembly 

https://www.ncbi.nlm.nih.gov/assembly 
2019-04-24 

C) RNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

SILVA 132 

LSURef 
198,843 610 MB 

Silva database 

https://ftp.arb-

silva.de/release_132/Exports/SILVA_132_LSURef_tax_

silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef Nr99 
695,171 1.11 GB 

Silva database 

https://ftp.arb-

silva.de/release_132/Exports/SILVA_132_SSURef_Nr9

9_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef 
2,090,668 3.28 GB 

Silva database 

https://ftp.arb-

silva.de/release_132/Exports/SILVA_132_SSURef_tax_

silva.fasta.gz 

2017-12-11 

D) DNA alignments 

Dataset 
Number of 

sequences 
Size Source Date 

UCSC hg38 7way 

knownCanonical-

exonNuc 

1,470,154 340 MB 

UCSC 

https://hgdownload.soe.ucsc.edu/goldenPath/hg3

8/multiz7way/alignments/knownCanonical.exon

Nuc.fa.gz 

2014-06-06 

UCSC hg38 20way 

knownCanonical-

exonNuc 

4,211,940 969 MB 

UCSC 

https://hgdownload.soe.ucsc.edu/goldenPath/hg3

8/multiz20way/alignments/knownCanonical.exo

nNuc.fa.gz 

2015-06-30 

E) Protein databases 

Dataset 
Number of 

sequences 
Size Source Date 

PDB 109,914 
67.6 

MB 

PDB database 

ftp://ftp.ensembl.org/pub/release-

96/fasta/homo_sapiens/pep/Homo_sapiens.G

RCh38.pep.all.fa.gz 

2019-04-09 

Homo sapiens 

GRCh38 
105,961 

73.2 

MB 

NCBI 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.

gz 

2019-03-12 

UniProtKB 

Reviewed 

(Swiss-Prot) 

560,118 
277 

MB 

UniProt 

ftp://ftp.uniprot.org/pub/databases/uniprot/cu

rrent_release/knowledgebase/complete/unipr

ot_sprot.fasta.gz 

2019-04-02 
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Supplementary Methods 

Compression task 

The task is to compress and decompress a FASTA-formatted file containing DNA, RNA or protein 

sequences. The process should be lossless, i.e., decompressed data should be identical to the original data. 

Compression and decompression are done without using any reference genome. Each compression and 

decompression runs in Linux in a command line interface. Input data for compression and output data during 

decompression are streamed using Unix pipes. 

Compressor selection 

We used all specialized sequence compressors that we could find and make to work for the above 

specified task. For general-purpose compressors we used only the major ones, in terms of performance, 

historical importance, or popularity. For each compressor with configurable compression level (or other 

parameters related to compression strength of speed), we used the relevant range of settings, including the 

default. 

Benchmark machine 

 CPU: dual Xeon E5-2643v3 (3.4 GHz, 6 cores), hyperthreading: off 

 RAM: 128 GB DDR4-2133 ECC Registered 

 Storage: 4 x 2 TB SSD, in RAID 0, XFS filesystem, block size: 4096 bytes (blockdev --getbsz) 

 OS: Ubuntu 18.04.1 LTS, kernel: 4.15.0 

 GCC: 7.4.0 

Compressor/dataset combinations that were tested 

Each setting of each compressor is tested on every test dataset, except when it's difficult or 

impossible due to compressor limitations: 

 Due to their extreme slowness, these compressors are not tested on any data larger than 10 MB: cmix, 

DNA-COMPACT, GeCo, JARVIS, Leon, and XM. 

 UHT fails on the 245 MB dataset and on larger data. 

 Nakamichi was only used on data smaller than 100 MB due to its slowness and memory resultements. 

 Among sequence compressors, only DELIMINATE, MFCompress and NAF support alignments. 

 Among sequence compressors, only BLAST and NAF support protein sequences. 

 Some settings of XM crash and/or produce wrong decompressed output on some data - such results are 

not included. 

 NUHT's memory requirement makes it impossible to use on 13.4 GB Picea abies genome. 

Benchmark process 

The entire benchmark is orchestrated by a perl script. This script loads the lists of compressor 

settings and test data, and proceeds to test each combination that still has its measurements missing in the 

output directory. For each such combination (of compressor setting and test dataset), the following steps are 

performed: 

1. Compression is performed by piping the test data into the compressor. Compressed size and 

compression time is recorded. For compressed formats consisting of multiple files, sizes of all files are 

summed together. 

2. If compression time did not exceed 10 seconds, 9 more compression runs are performed, recording 

compression times. Compressed data from previous run is deleted before each next compression run. 

3. The next set of compression runs is performed to measure peak memory consumption. This set 

consists of the same number of runs as in steps 1-2 (either 1 or 10 runs). That is, for fast compressors 

and for small data the measurement is repeated 10 times. 
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4. Decompression test run is performed. In this run decompressed data is piped to the "md5sum -b -" 

command. The resulting md5 signature is compared with that from the original file. In case of any 

mismatch this combination of compressor setting and dataset is disqualified and its measurements are 

discarded. 

5. Decompression time is measured. This time decompressed data is piped to /dev/null. 

6. If decompression completed within 10 seconds, 9 more decompression runs are performed and timed. 

7. Peak decompression memory is measured. The number of runs is same as in steps 5-6. 

8. The measurements are stored to a file. All compressed and temporary files are removed. 

Measurement methods 

Measuring time: Wall clock time was measured using Perl's Time::HiRes module (gettimeofday and 

tv_interval subroutines). The resulting time was recorded with millisecond precision. 

Measuring peak memory consumption: First, each compression command was stored in a temporary 

shell script file. Then it was executed via GNU Time, as /usr/bin/time -v cmd.sh >output.txt. "Maximum 

resident set size" value was extracted from the output. 1638 was then subtracted from this value and the 

result was stored as peak memory measurement. 1638 is the average "Maximum resident set size" measured 

by GNU Time in the same way for an empty script. 

Memory consumption and time were measured separately because measuring memory makes the 

task noticeably slower, especially for very fast tasks. 

Collected measurements 

For each combination of compressor and dataset that was tested, the following measurements were 

collected: 

 Compressed size (in bytes) 

 Compression time (in milliseconds) 

 Decompression time (in milliseconds) 

 Peak compression memory (in GNU Time's "Kbytes") 

 Peak decompression memory (in GNU Time's "Kbytes") 

In cases where 10 values are collected, the average value is used by the benchmark web-site. 

Computed values 

The following values were calculated based on the measured values: 

 Compressed size relative to original (%) = Compressed size / Uncompressed size * 100 

 Compression ratio (times) = Uncompressed size / Compressed size 

 Compression speed (MB/s) = Uncompressed size in MB / Compression time 

 Decompression speed (MB/s) = Uncompressed size in MB / Decompression time 

 Compression + decompression time (s) = Compression time + Decompression time 

 Compression + decompression speed (MB/s) = Uncompressed size in MB / (Compression 

time + Decompression time) 

 Transfer time (s) = Uncompressed size / Link speed in B/s 

 Transfer speed (MB/s) = Uncompressed size in MB / Transfer time 

 Transfer + decompression time (s) = Transfer time + Decompression time 

 Transfer + decompression speed (MB/s) = Uncompressed size in MB / (Transfer time + 

Decompression time) 

 Compression + transfer + decompression time (s) = Compression time + Transfer time + 

Decompression time 

 Compression + transfer + decompression speed (MB/s) = Uncompressed size in MB / 

(Compression time + Transfer time + Decompression time) 

Rationale for non-constant number of runs 
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Variable number of runs is the only way to have both accurate measurements and large test data 

(under the constraints of using one test machine, and running benchmark within reasonable time). 

On one hand, benchmark takes lot of time. So much that some compressors can't be even tested at all 

on dataset larger than 10 MB in reasonable time. Therefore repeating every measurement 10 times is 

impractical. Or, it would imply restricting the test data to only small datasets. 

On the other hand, measurements are slightly noisy. The shorter measured time, the more noisy its 

measurement. Thus for very quick runs, multiple runs allow for substantial noise suppression. For longer 

runs it does not make much difference, because the relative error is already small with longer times. 

Using a threshold of 10 seconds seems a reasonable compromise between suppressing noise and 

including larger test data (and slow compressors). 

Compressor setup 

For compression, each compressor was reading the input data streamed via unix pipe ("|" in the 

command line). For decompression, each compressor was set up to stream the decompressed data via pipe. 

This was done to better approximate the common pattern of using a compressor in a practical application. In 

an actual sequence analysis workflow, often the decompressed data is piped directly into the downstream 

analysis command. Also, when compressing the sequences, often the data is first pre-processed with another 

command, which then pipes the processed sequences to the compressor. 

Wrappers 

Since some compressors do not support such streaming mode of operation, we used them via 

wrapper scripts. Our wrapper scripts also work around other deficiencies of many compressors, and add the 

following features to the compressors missing them: 

 Supporting RNA input for DNA-only compressors. 

 Supporting 'N' in DNA/RNA sequences. 

 Supporting IUPAC's ambiguous nucleotide codes. 

 Saving and restoring line lengths. 

 Saving and restoring sequence names. 

 Saving and restoring sequence mask (upper/lower case). 

 Supporting FASTA-formatted input. 

 Supporting input with more than 1 sequence. 

All our wrappers and commands are available at the SCB database website 

(http://kirr.dyndns.org/sequence-compression-benchmark/). 
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