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Abstract 35 

Understanding the genomic signatures, genes, and traits underlying local adaptation of organisms 36 

to heterogeneous environments is of central importance to the field evolutionary biology. Mixed 37 

linear models that identify allele associations to environment, while controlling for genome-wide 38 

variation at other loci, have emerged as the method of choice when studying local adaptation. 39 

Despite their importance, it is unclear whether this approach performs better than identifying 40 

environmentally-associated SNPs without accounting for population structure. To examine this, 41 

we first use the mixed linear model GEMMA, and simple Spearman correlations, to identify 42 

SNPs showing significant associations to climate with and without accounting for population 43 

structure. Subsequently, using Italy and Sweden populations, we compare evidence of allele 44 

frequency differentiation (FST), linkage disequilibrium (LD), fitness variation, and functional 45 

constraint, underlying these SNPs. Using a lenient cut-off for significance, we find that SNPs 46 

identified by both approaches, and SNPs uniquely identified by Spearman correlations, were 47 

enriched at sites showing genomic evidence of local adaptation and function but were limited 48 

across Quantitative Trait Loci (QTL) explaining fitness variation. SNPs uniquely identified by 49 

GEMMA, showed no direct or indirect evidence of local adaptation, and no enrichment along 50 

putative functional sites. Finally, SNPs that showed significantly high FST and LD, were 51 

enriched along fitness QTL peaks and cis-regulatory/nonsynonymous sites showing significant 52 

functional constraint. Using these SNPs, we identify genes underlying fitness QTL, and genes 53 

linking flowering time to local adaptation. These include a regulator of abscisic-acid (FLDH) and 54 

flowering time genes PIF3, FIO1, and COL5. 55 

 56 

 57 

  58 
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 59 

Introduction  60 

Populations of a species may inhabit different environments where local selection pressures 61 

favor a combination of (multivariate) phenotypes (Leimu and Fischer 2008; Conover, et al. 2009; 62 

Hereford 2009; Savolainen, et al. 2013). Once locally adapted, the resident genotype is expected, 63 

on average, to have a higher relative fitness than a foreign genotype (Kawecki and Ebert 2004).  64 

Despite the widespread evidence of local adaptation in many taxa (Leimu and Fischer 2008; 65 

Jeong and Di Rienzo 2014; Arguello, et al. 2016), our understanding of the traits involved, its 66 

genetic basis, and its environmental underpinnings is still at an infant stage (Savolainen, et al. 67 

2013; Tiffin and Ross-Ibarra 2014; Wadgymar, et al. 2017).  68 

 69 

In a variety of species, reciprocal transplant and common garden/laboratory experiments have 70 

showed significant adaptive differentiation between natural populations inhabiting different 71 

environments (Via 1991; Hendry, et al. 2002; Savolainen, et al. 2007; Ågren and Schemske 72 

2012; Kaufmann, et al. 2017; Phifer-Rixey, et al. 2018). Furthermore, in plants and animals, 73 

mapping experiments have uncovered Quantitative Trait Loci (QTL) for traits that are thought to 74 

underlie local adaptation (Colosimo, et al. 2004; Oakley, et al. 2014; Yang, et al. 2016; Ågren, et 75 

al. 2017), in addition to QTL explaining fitness differences across environments (Ågren, et al. 76 

2013; Anderson, et al. 2013). Despite the importance of QTL studies in providing direct 77 

evidence for local adaptation (Ågren, et al. 2013), in many instances they provide a low 78 

resolution for its genetic basis, and in practical terms are time consuming, expensive, and labor 79 

intense (Joosen, et al. 2009).   80 

 81 
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With the advent of low-cost, and fast, next generation sequencing (Henson, et al. 2012), higher 82 

resolution population genomics approaches have emerged as the new means for examining the 83 

genetic basis of local adaptation. (Lachance and Tishkoff 2013; Savolainen, et al. 2013; Tiffin 84 

and Ross-Ibarra 2014; Sork 2017). In brief, these methods include: (a) identifying single 85 

nucleotide polymorphisms (SNPs) showing significant allele frequency differentiation between 86 

populations (FST) (Beaumont and Balding 2004; Foll and Gaggiotti 2008; de Villemereuil and 87 

Gaggiotti 2015); (b) identifying genomic regions showing significant increases in linkage 88 

disequilibrium (Jacobs, et al. 2016) or composite likelihood ratios for recent sweeps (DeGiorgio, 89 

et al. 2016; Huber, et al. 2016); and (c) alleles showing significant correlations to 90 

environment/climate (Hancock, et al. 2011; Jones, et al. 2012; Lasky, et al. 2012; Lasky, et al. 91 

2014; Pluess, et al. 2016; Yeaman, et al. 2016; Monroe, et al. 2018; Price, et al. 2018). The latter 92 

approach has gained particular attention because it can be implemented on the basis of individual 93 

(as opposed to population-based) sampling, and furthermore it provides a direct link to 94 

ecologically relevant factors (e.g., climate). 95 

 96 

Despite the ability of population genomic methods to identify candidate genetic variation 97 

underlying local adaptation, it is hard to disentangle the effects of selection from demographic 98 

history (Lotterhos and Whitlock 2014; Hoban, et al. 2016). Geographically varying environments 99 

can generate population structure in the regions of genes involved in adaptation, even under 100 

conditions (e.g. high gene flow) that do not generate population structure at a genome-wide level 101 

(McKay and Latta 2002). The degree to which population structure influences the patterns of 102 

genome-wide LD and therefore the occurrence of false positives has emerged as a critical hurdle 103 

(Platt, et al. 2010). To limit the number of spurious associations, studies usually estimate 104 
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population structure using different methods (Price, et al. 2010), incorporate population structure 105 

(Yu, et al. 2006; Kang, et al. 2010; Wang, et al. 2011; Zhou and Stephens 2012) and/or 106 

geographic structure (Lasky et al. 2012)  into statistical models, and finally test whether certain 107 

loci explain significantly higher variation in environment/climate than population structure itself 108 

(Hancock, et al. 2011; Lasky, et al. 2012; Fischer, et al. 2013; Huber, et al. 2014; Lasky, et al. 109 

2014; Monroe, et al. 2016; Rellstab, et al. 2017; Frachon, et al. 2018; Lasky, et al. 2018; Price, et 110 

al. 2018). While such approaches may limit the number of false positives, they can also lead to 111 

false negatives (Bergelson and Roux 2010; Anderson, et al. 2011). According to simulations 112 

(Forester, et al. 2018), when selection is spatially autocorrelated, accounting for population 113 

structure reduces the power to detect loci under selection (Forester, et al. 2018). 114 

 115 

The negative effects of accounting for population structure, may explain the reduced signal of 116 

genetic convergence to climate among distantly related conifers (Yeaman, et al. 2016). 117 

Furthermore, in Arabidopsis thaliana, it may underlie the lack of significant associations 118 

between climate-correlated SNPs and fitness QTL exhibiting genetic tradeoffs (Price, et al. 119 

2018); and the lack of SNPs showing significant associations to drought survival among 120 

Eurasian accessions (Exposito-Alonso, et al. 2018). Finally, in the plant Capsella bursa‐pastoris, 121 

accounting for population structure explained all variation in gene expression among ecotypes 122 

that differed in important life-history traits such as flowering time and circadian rhythm 123 

(Kryvokhyzha, et al. 2016).  124 

 125 

In conjunction to population genomic signatures of selection or significant associations to 126 

climate, genetic variation underlying local adaptation is expected to be enriched along sites that 127 
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are functional and influence fitness. SNPs showing significant associations to climate were found 128 

to be significantly enriched among nonsynonymous, but also synonymous variation (Hancock, et 129 

al. 2011; Lasky, et al. 2012).  The enrichment among synonymous variation (which largely 130 

evolve neutrally) maybe the result of linkage disequilibrium due to neutral processes but also 131 

background selection (Charlesworth, et al. 1993) and/or hitchhiking (Gillespie 2000). A stricter 132 

enrichment test will be one that controls for sequence conservation along coding and non-coding 133 

sites. Sites that are highly conserved among species (Miller, et al. 2007; Haudry, et al. 2013; 134 

Hupalo and Kern 2013), are assumed to be under functional/selective constraint and functionally 135 

important — that is, due to purifying selection the number of tolerated mutations is limited 136 

(Graur 2016). Therefore, SNPs showing significant evidence of local adaptation across highly 137 

constraint sites are more likely to be true positives.  138 

 139 

In the current study, we first examine how accounting for population structure in genome-wide 140 

associations to climate may affect our ability to provide a comprehensive picture on the genetic 141 

basis of local adaptation; and secondly, we use an approach that accounts for genetic signatures 142 

of selection and functional constraint to detect potential genes underlying local adaptation.  143 

 144 

More specifically, during the first phase we use 875 A. thaliana Eurasian accessions and identify 145 

SNPs showing significant correlations to Minimum Temperature of Coldest Month 146 

(Min.Tmp.Cld.M) using a mixed linear model that accounts for population structure (Zhou and 147 

Stephens 2012) (GEMMA- Genome-wide Efficient Mixed Model Association) and simple 148 

Spearman correlations (Spearman 1987) that did not account for population structure (we mainly 149 

focused on Min.Tmp.Cld.M —a proxy to winter temperature— because of significant evidence 150 
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linking cold acclimation to local adaptation in wild populations (Ågren and Schemske 2012; 151 

Oakley, et al. 2014; Gienapp, et al. 2017; Oakley, et al. 2018)). Using the two sets of SNPs, we 152 

first separated them into ones identified by both methods (referred to as “Common” hereafter), 153 

and ones uniquely identified by each approach (referred to as “GEMMA” and “Spearman” 154 

hereafter). Thereafter, we compared evidence of local adaptation and function underlying the 155 

three sets of SNPs. More specifically, using Italy and Sweden re-sequenced genomes, and QTL 156 

explaining fitness variation between these populations (Ågren, et al. 2013), we examined: (a) the 157 

level of allele frequency differentiation and linkage disequilibrium underlying SNPs showing 158 

significant associations to climate before and after accounting for population structure; (b) how 159 

these SNPs were distributed along LOD score peaks of 20 fitness QTLs (Ågren, et al. 2013); and 160 

(c) how they were distributed along nonsynonymous and cis-regulatory sites showing significant 161 

functional constraint among plants species of the Brassicaceae family (Haudry, et al. 2013). 162 

 163 

During the second phase, we use SNPs showing significant evidence of local adaptation and 164 

function, to identify potential genes underlying fitness QTL and flowering time variation 165 

between Italy and Sweden populations. Flowering time is a life history trait that is thought to 166 

play a significant role in local adaptation to climate (Hall and Willis 2006; Verhoeven, et al. 167 

2008; Sandring and Agren 2009; Dittmar, et al. 2014; Ågren, et al. 2017), and whose genetic 168 

basis has been thoroughly studied (Salomé, et al. 2011; Sasaki, et al. 2017). To re-examine 169 

evidence linking flowering time to climate adaptation we used the following data: (1) a list of 170 

genes that were experimentally shown to affect flowering time; (2) high confidence QTL 171 

explaining flowering time variation between Italy and Sweden populations (Ågren, et al. 2017), 172 
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and (3) flowering time estimates for Arabidopsis Eurasian accessions (1001 Genomes 173 

Consortium 2016).   174 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/642306doi: bioRxiv preprint 

https://doi.org/10.1101/642306
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Materials and Methods  175 

 176 

Detecting associations to climate with and without accounting for population structure 177 

 178 

To compare allele associations to climate with and without accounting for population structure 179 

we focused on the climate variable Minimum Temperature of Coldest Month (Min.Tmp.Cld.M). 180 

Using a SNP genotype matrix for a panel of 1,135 globally distributed accessions downloaded 181 

from the 1001 Genomes database, we filtered out accessions from outside the native Eurasian 182 

and North African range of A. thaliana, as these accessions may have weaker patterns of local 183 

adaptation (Lasky, et al. 2012). We also filtered out accessions that were likely laboratory 184 

escapees or contaminants (Pisupati, et al. 2017), leaving 875 accessions. After we filtered for 185 

biallelic SNPs with minor allele frequency >0.05, we tested association with home climate of 186 

ecotype and tested for potential confounding effects of population structure using the software 187 

“gemma” (Zhou and Stephens 2012). The parameters used in gemma were a MAF of 0.05 188 

(default 0.01) and a missingness threshold of 0.05. For the linear mixed model option, we used 189 

Wald test (default) to test for significant associations to climate. We tested models where home 190 

climate was a function of SNP allele, and the association p-values we report are for the null 191 

hypothesis that the mean climate occupied by the two alleles is equal (Lasky, et al. 2014). Using 192 

the same set of SNPs we estimated correlations to climate using simple “Spearman” correlations 193 

(Spearman 1987) and not accounting for population structure. To estimate p-values for the 194 

Spearman correlations we used the ‘cor.test’ function implemented in R (Team 2009).  195 

 196 

 197 

Estimates of selection and candidate functional variation underlying populations in North 198 

Sweden and South Italy.  199 
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 200 

In addition to associations to climate, genomic signatures of selection were examined in North 201 

Sweden and South Italy populations that represent the most northern and southern tips of 202 

Eurasia. The accessions used, including latitude and longitude coordinates are found in the 203 

Supplementary data file. Evidence of local adaptation/selection across SNPs between Italy and 204 

Sweden populations was measured using absolute allele frequency differentiation (FST≈ 205 

|𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼|) and linkage disequilibrium (LD) between a SNP and its neighboring SNPs 206 

with a 20kb window. LD  was measured using the package ‘PLINK’ (Purcell, et al. 2007) and it 207 

was estimated as the mean square coefficient of correlation (𝑟𝑟2���). For evidence of recent sweeps 208 

we used previously calculated (Price, et al. 2018) Composite likelihood Ratios (CLR’s) that were 209 

computed using Sweepfinder2 (DeGiorgio, et al. 2016). We focused on CLR’s in North Sweden 210 

because in other populations signals identified were very weak (Long, et al. 2013; Huber, et al. 211 

2014; Price, et al. 2018).  212 

 213 

To narrow down SNPs to ones that are more likely to underlie differences in function/expression 214 

of protein-coding genes we focused on cis-regulatory and nonsynonymous variation that was 215 

found along sites showing significant functional constraint. We regarded cis-regulatory SNPs as 216 

those found within 1 kb upstream from the transcriptional start site of a gene (Zou, et al. 2011; 217 

Pass, et al. 2017), unless these sites were found in transcribed regions of other genes (in which 218 

case they were excluded). To call nonsynonymous variation we used bi-allelic sites, we used a 219 

publicly available python script (callSynNonSyn.py; archived at https://github.com/kern-lab/), 220 

and gene models downloaded from the TAIR database (TAR10 genome release) (Berardini, et al. 221 

2015). To annotate regions showing significant functional constraint across the A. thaliana 222 
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genome we used phastCons scores (Siepel, et al. 2005)  derived using a nine-way alignment of 223 

Brassicaceae species from the study by Haudry et al. (2013). We defined conserved regions as 224 

those with a score >=0.8 over blocks of >=10 nucleotides.  225 

 226 

Fitness and flowering time QTL underlying Italy and Sweden populations 227 

Quantitative trait loci explaining fitness variation between natural A. thaliana Italy and Sweden 228 

populations were retrieved by the study of Ågren et al. (2013). These 20 fitness QTL were 229 

assembled into 6 genetic tradeoff QTL (Ågren, et al. 2013), however we treated them as 230 

independent given the very long genetic distances between fitness QTL peaks (Supplementary 231 

data). Furthermore, we retrieved high confidence QTL explaining flowering time variation 232 

between these populations (Ågren, et al. 2017) (Supplementary data).  233 

 234 

Circular permutation tests 235 

To test whether SNPs showing significant correlations to Min.Tmp.Cld.M and/or SNPs showing 236 

high FST and LD between Italy and Sweden populations are enriched along QTL peaks and 237 

among cis-regulatory/nonsynonymous variation at sites showing significant functional constraint 238 

we used a 1,000 circular permutations (Fig. 1).  239 

 240 
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 241 

 242 

Fig. 1 depicts the steps involved in the circular permutations. In brief, during the first step p-243 

values associated with climate correlations or allele frequency differentiations were shifted based 244 

on a random SNP along the genome. The second step involved choosing SNPs showing 245 

“significant” associations to climate (p-value < 1st percentile of Spearman/GEMMA p-value 246 

distributions), or high allele frequency differentiations and LD ( |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼|>0.70 and 247 

Fig. 1. Diagram of circular permutations used to build null distributions for various 

measures. The first step involves choosing a random location along the genome and shift p-

values or allele frequency differentiations. In the next step, when examining climate 

associations, we chose SNPs with a p-value less than a specified threshold. We also samples 

of SNPs showing a high FST and LD. SNPs showing “significant” correlations to climate 

were further partitioned into those showing “significance” using both Spearman and 

GEMMA correlations (“Common”) or were unique to each approach (“GEMMA” or 

“Spearman”). Using the final set of SNPs, we computed various measures of interest.   
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LD>0.19: 0.70 and 0.19 represent the 95th percentiles of the distributions).  For climate 248 

associations, SNPs were partitioned into those showing “significance” using both Spearman and 249 

GEMMA associations (“Common”) or those showing “significance” using only one approach 250 

(“GEMMA” or “Spearman”).  251 

 252 

The final sets of SNPs were used to estimate the following measures: (a): % of SNPs found 253 

within a certain distance (100, 200, ….600 kb) upstream and downstream of the 20 fitness QTL 254 

peaks; and (b) the proportion of cis-regulatory and nonsynonymous SNPs that were within 255 

regions showing significant functional constraint.  256 

 257 

Sliding window analysis of chromosomal variation SNPs showing evidence of local adaptation   258 

To detect chromosomal regions with a high proportion of SNPs showing significant evidence of 259 

local adaptation we used a sliding window approach. Specifically, for a window size of 20kb and 260 

a step size of 1kb we estimated the ratio of SNPs showing a specific requirement (e.g., 261 

𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼|>0.70 and LD>0.19) over the total number of SNPs within a 20kb window. 262 

 263 

Flowering time estimates for A. thaliana Eurasian accessions and candidate flowering time 264 

genes 265 

Estimates of flowering time for the 835 Eurasian A. thaliana accessions were downloaded from 266 

the study by Alonso-Blanco et. al (2016) (1001 Genomes Consortium 2016). In brief, plants 267 

were grown in growth chambers with the following settings: after 6 days of stratification in the 268 

dark at 4ºC, constant temperature of 16°C with 16 hours light / 8 hours darkness, 65% humidity. 269 

Flowering time was scored as days until first open flower. See Alonso-Blanco et al. (2016) for 270 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/642306doi: bioRxiv preprint 

https://doi.org/10.1101/642306
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

further details. A set of genes that were experimentally verified to affect flowering time was 271 

downloaded from Prof. Dr. George Coupland website 272 

(https://www.mpipz.mpg.de/14637/Arabidopsis_flowering_genes) 273 

 274 

Constructing rooted gene trees 275 
 276 

To build neighbor joining trees of genes showing significant local adaptation we downloaded 1:1 277 

orthologs between Arabidopsis thaliana and outgroups Arabidopsis lyrata and Capsella rubella from 278 

the Phytozome database (Goodstein, et al. 2012)  and after aligning the coding sequences with 279 

MAFFT (Katoh and Toh 2008) we used MEGA (Tamura, et al. 2013) to build a rooted gene trees.   280 

 281 

Results  282 

 283 

Genomic signatures of local adaptation and selection captured by climate associations in Italy 284 

and Sweden populations 285 

 286 

Genome wide correlations to Minimum Temperature of Coldest Month (Min.Tmp.Cld.M) were 287 

examined using simple Spearman correlations (Spearman 1987)  and a mixed model called 288 

GEMMA (Zhou and Stephens 2012) that accounted for putative population structure. Fig. S1 289 

depicts the p-value distributions that were obtained when testing for significance using GEMMA 290 

and Spearman correlations. P-values underlying Spearman correlation were skewed towards very 291 

low p-values; many of which are likely false positives. Nonetheless, we compared the results 292 

obtained by the two methods using different percentiles of the p-value distributions as cutoffs for 293 

significance (10th, 5th, 1st percentiles). For significant SNPs that were segregating between North 294 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/642306doi: bioRxiv preprint 

https://www.mpipz.mpg.de/14637/Arabidopsis_flowering_genes
https://doi.org/10.1101/642306
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

Sweden and South Italy populations the percent of SNPs that were identified by both approaches 295 

(“Common”) at the three significance levels was ~20% (Fig. S2).   296 

 297 

 298 

Fig. 2. Comparing allele frequency differentiation and linkage disequilibrium across SNPs 299 
showing significant associations to Min.Tmp.Cld.M. (A-B) Average absolute allele frequency 300 
differentiation (|𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼|)  and linkage disequilibrium (𝑟𝑟2���) was significantly higher 301 
the genome average (dotted lines) across SNPs identified by both Spearman and GEMMA 302 
correlations (“Common”) and SNPs uniquely identified by Spearman correlations (“Spearman”). 303 
These sets of SNPs also showed a decrease in |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑦𝑦| and 𝑟𝑟2��� decreased as the the 304 
threshold for significance became more lenient (1→10 %) (95% CI’s which are not visible were 305 
estimated using a bootstrap approach). (C-E) A positive association between |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 −306 
𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| and 𝑟𝑟2��� across the three sets of SNPs showing significant correlations to Min.Tmp.Cld.M 307 
when using the 1st percentile of the p-value distributions (Fig. S1) as the significance level.   308 
 309 

When comparing the average absolute allele frequency differentiation |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| and 310 

LD (𝑟𝑟2���) across SNPs that were unique to each approach (“Spearman” or “GEMMA”) and SNPs 311 
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identified by both methods (“Common”) the set of “Common” and “Spearman” SNPs showed 312 

significantly higher allele frequency differentiation and LD than the genome average (Fig 2A-313 

2B). On the other hand, SNPs that were unique to “GEMMA” did not show any large differences 314 

in FST and LD from the genome average (Figs 2A-2B). Furthermore, across “Common” and 315 

“Spearman” SNPs we see a decrease in (|𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼|) and LD as the threshold of 316 

significance becomes less stringent (Figs 2A-2B). This is indicative that stronger associations 317 

capture SNPs showing stronger evidence of local adaptation and recent selection. Therefore, for 318 

any further tests we used the set of SNPs that were significant using the 1st percentile of the p-319 

value distributions as the cutoff.  320 

 321 

Local adaptation is expected to lead to an increase in allele frequency differentiation and LD at 322 

and near the site under selection; in other words, we would expect a positive correlation between  323 

|𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| and LD. As shown in Figs 2C-2E all three sets of SNPs showed significant 324 

associations between   |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| and LD.  On the other hand, while “Spearman” 325 

SNPs were enriched in SNPs showing a |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| near fixation (>0.90) the level of 326 

LD was lower (Fig. 2D) (also reflected in Fig. 2B). Finally, as expected given the small 327 

deviations from the genome average (Figs 2A-2B), “GEMMA” SNPs showed the poorest 328 

associations with a small sample of SNPs showing a |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼|  between 0.60-0.80 329 

and LD between 0.30-0.40 (Fig. 2E). Taken together, indicate indicate that “Common” and 330 

“Spearman” SNPs capture higher population genomic evidence of local adaptation, than SNPs 331 

uniquely identified by GEMMA.  332 

 333 

Detecting recent selection underlying fitness QTL is significantly reduced when accounting for 334 

population structure in GWA to climate  335 
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 336 

Direct evidence of local adaptation was shown in a study by Ågren et al. (2013) in which they 337 

identified 20 QTL explaining fitness variation between Italy and Sweden populations 338 

(Supplementary data). To examine population genomic evidence of local adaptation underlying 339 

these QTL we first examined |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| and LD which are measures specific to Italy 340 

and Sweden populations. If the peaks of the QTL identified, are on average, near the site under 341 

selection we would expect a significant enrichment of high FST and LD SNPs. Using different 342 

window sizes (100, 200, ….600 kb) from the QTL peaks we compared the observed proportion 343 

of high FST SNPs (|𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| >0.70 —0.70 represents the 95th percentile of the 344 

distribution), and the proportion of high FST and LD SNPs (LD>0.19 — 0.19 represents the 95th 345 

percentile of the distribution ) to the expected proportion derived using a circular permutation 346 

test. As expected, we observed a significantly high proportion of high FST (>0.70) SNPs and 347 

high FST and high LD SNPs (Figs 3A-3B). A significant proportion was also observed at 200 kb, 348 

but as window sizes became larger the proportions became insignificant (<95th percentile) and 349 

normalized to the genome average. 350 

 351 

Next, we performed the same test using SNPs showing significant associations to climate, and 352 

SNPs that showing significant associations to climate and a high FST and high LD.  When 353 

considering only associations to climate (Fig. S3) we find an enrichment of “Common” and 354 

“Spearman” SNPs (Fig. S3), but not “GEMMA” SNPs. On the other hand, when we also 355 

considered high FST and high LD, none of the SNPs showed an enrichment (Fig. 3C). Among the 356 

three sets, Spearman SNPs showed the highest observed proportion (>80th percentile).  To 357 

determine whether the significantly lower proportion of  “Common” SNPs showing a high FST 358 

and high LD was due to the stringency of our cutoff, we calculated the average FST and LD for 359 
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SNPs with an |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|<0.70  and  𝑟𝑟2���<0.19. The average |𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| 360 

(≈0.26) and LD (≈0.06) were near or lower than the genome average (Fig. 2A-2B) to be 361 

considered as strong candidates underlying local adaptation.  362 

 363 

 364 

 365 

Fig. 3. Distribution of SNPs showing population genomic evidence of local adaptation along 366 
fitness QTL peaks. (A) The observed proportion of SNPs showing significantly high allele 367 
frequency differentiation (�𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼� > 0.70) (red line) in comparison to a 368 
permutation distribution of random proportions. The observed proportion was greater than the 369 
95th percentile. (B) The observed proportion of SNPs showing a  �𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼� > 0.70  370 
and significantly high linkage disequilibrium (𝑟𝑟2���>0.19), was also greater than the 95th percentile 371 
of random proportions. (C) The observed proportions of SNPs showing significant associations 372 
to climate, in addition to a �𝑓𝑓𝑁𝑁.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑆𝑆.𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼� > 0.70  and a 𝑟𝑟2���>0.19. The proportion of 373 
“Common” and “GEMMA” SNPs near QTL peaks was very low, while the proportion 374 
“Spearman” SNPs was greater than the 80th percentile of the distribution but less than the 95th.  375 
 376 

Given that “Common” SNPs did not show an enrichment within 100kb of the 20 fitness QTL 377 

peaks examined (Supplementary data), we searched whether any of these were within the six 378 
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tradeoff QTL that each span a large genomic region (Supplementary data). As shown in Fig. S4, 379 

most of the high FST and high LD “Common” SNPs (181/209) were found within a 60kb region 380 

(14,719-14,781Mb) of a single genetic tradeoff (GT) QTL (GT QTL 2:2) (Fig. S4).  Apart from 381 

being limited to a single  GT QTL, given the multiple fitness QTL within GT QTL 2:2 (which 382 

spanned a length of ~4Mb); the multiple regions showing significant recent sweeps in Sweden; 383 

and the large number of windows showing a high proportion of high FST and LD SNPs; it is 384 

highly unlikely that the “Common” set of SNPs cover all the causative genetic variation within 385 

GT QTL 2:2.  386 

 387 

To further test for enrichment of “GEMMA” SNPs showing significant associations to climate 388 

and within 100 kb of fitness QTL peaks, we used an additional three climate variables (Table 389 

S1). Using a lenient cutoff for significance (FDR<0.1), we only identified a few additional SNPs 390 

within 100 kb of fitness QTL.  391 

 392 

All in all, our results indicate that accounting for population structure when performing GWA to 393 

climate significantly reduces our ability to capture recent selection underlying fitness QTL.  394 

 395 

All but “GEMMA” SNPs show enrichment at cis-regulatory and nonsynonymous sites showing 396 

significant functional constraint 397 

SNPs underlying local adaptation are expected to be significantly enriched at sites that affect 398 

function and/or expression of protein coding genes. Using the three sets of SNPs showing 399 

significant associations to climate ( “Common”, “GEMMA”, and “Spearman”) and SNPs 400 

showing high FST and LD ( abbreviated as “FST&LD”) we examined their distribution among 401 
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cis-regulatory and nonsynonymous SNPs at sites showing significant functional constraint 402 

among Brassicaceae plants (Haudry, et al. 2013) (phastCons>0.8).  403 

 404 

Fig. 4. Proportion of cis-regulatory and nonsynonymous SNPs showing population genomic 405 
evidence of local adaptation and function (A) Red dots indicate the observed proportion of 406 
nonsynonymous SNPs showing associations to climate (“Common”, “GEMMA”, “Spearman”) 407 
or high FST and LD (“FST &LD”) and within coding regions showing significant functional 408 
constraint (phastCons>0.8). Expectations and 95% CI’s were derived using circular permutations 409 
(B) The observed proportions of cis-regulatory SNPs showing population genomic evidence of 410 
local adaptation and found within conserved regions. 411 
  412 

As shown in Figs 4A & 4B, the proportions of nonsynonymous/cis-regulatory “Common”, 413 

“Spearman”, and high “FST&LD” SNPs, was significantly higher than expected by chance. On 414 

the other hand, “GEMMA” SNPs did not show a significant enrichment in any of the categories.  415 

When considering all the results obtained so far (Figs 2-4), unique “Spearman” SNPs seem to 416 

capture additional genetic variation underlying local adaptation (i.e., in addition to “Common” 417 

SNPs), while unique “GEMMA” SNPs do not.   418 

 419 

Flowering time genes showing significant evidence of local adaptation and underlying flowering 420 

time QTL.  421 
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 422 

Given the significant enrichment of high FST and LD SNPs, along QTL peaks (Fig. 3B) and 423 

conserved cis-regulatory and nonsynonymous sites (Figs 4A & 4B), we used them to detect 424 

potential genes that may underlie fitness QTL (note: we only focused on variants within 100kb of 425 

their peaks), in addition to examining evidence of local adaptation underlying a list of ~170 426 

genes  affecting flowering time (Supplementary data). To further narrow down on SNPs that are 427 

more likely to underlie the fitness QTL examined, we only considered variation that segregated 428 

between the parents used to derive the RIL’s (Ågren, et al. 2013). SNPs between the parental 429 

genomes were called in a previous study (Price, et al. 2018).  430 

 431 

Our analysis resulted in 25 genes within 100 kb of fitness QTL peaks and spanning three genetic 432 

tradeoff QTL (2:2, 4:2, 5:5) (Table S2). Many of these were involved in interesting biological 433 

processes such as: response to different abiotic stress factors and the abscisic-acid signaling 434 

pathway which is important in abiotic stress response (Tuteja 2007) (Table S2). Among these 435 

genes, two of them (AT4G33360 (FLDH), AT4G33470 (HDA14)) showed strong expression 436 

GxE interactions (GxE interactions were identified in a previous study (Price, et al. 2018)) when 437 

Italy and Sweden plants were grown under cold acclimation conditions (4 °C) for two weeks 438 

(Gehan, et al. 2015). Interestingly, FLDH is a negative regulator of the abscisic acid signaling 439 

pathway (Bhandari, et al. 2010) . As shown in Fig. 5A this gene was within a region of a genetic 440 

tradeoff QTL that showed a significantly high proportion of high FST and high LD SNPs. 441 

Expression of FLDH under control and cold acclimation conditions was significantly lower in 442 

Sweden than Italy plants (Fig. 5A).  443 

 444 
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Among the set of flowering time genes, we identified three (AT1G09530 (PIF3), AT2G21070 445 

(FIO1), and AT5G57660 (COL5)) that contained high FST and LD nonsynonymous SNPs within 446 

conserved coding regions. Among the three genes, PIF3 was found along a chromosomal region 447 

that showed the highest CLR for a recent sweep in Sweden and a high density of SNPs showing 448 

high FST and high LD (Fig. 5B).   449 

 450 

 451 

Fig. 5. Fitness QTL and flowering time genes showing significant evidence of local adaptation 452 
along conserved cis-regulatory and nonsynonymous sites. (A) FLDH a negative regulator of 453 
ABA (Bhandari, et al. 2010) was found within a genetic tradeoff QTL 4:2 and 100 kb from a 454 
fitness QTL peak (red and blue arrows represent QTL where the Sweden genotype had lower 455 
fitness in Italy and higher fitness in Sweden, respectively). FLDH was found within a region 456 
showing a high proportion of high FST and high LD SNPs. In Italy and Sweden plants it showed 457 
strong expression GxE interactions under control and cold acclimation conditions for two weeks 458 
(FPKM: Fragments Per Kilobase Million). (B) PIF3 is a phytochrome interacting factor that has 459 
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been found to affect flowering time (Oda, et al. 2004) and was found underlying a region along 460 
chromosome 1 that showed the largest Composite Likelihood Ratio (CLR) of a recent sweep in 461 
Sweden and windows with a high proportion of high FST and high LD SNPs. A rooted phylogeny 462 
of the PIF3 coding region indicated that Eurasian accessions sharing the same allele as the 463 
Sweden parent (blue dot) show significantly higher flowering time than accessions sharing the 464 
same allele as the Italy parent (red dot). (C) COL5 is another gene that has been found to affect 465 
flowering time (Hassidim, et al. 2009) and in which Eurasian accessions show significant genetic 466 
differentiation and segregation in flowering time. This gene is also found within previously 467 
identified flowering time QTL (FlrT-5:4) (Ågren, et al. 2017) in which the Sweden genotype was 468 
associated with longer flowering time in both Italy and Sweden 469 
 470 

Eurasian accessions sharing a similar allele as the Sweden parent showed longer flowering time 471 

than accessions sharing the same allele as the Italy parent (Fig. 5B). The same pattern was 472 

observed when examining COL5 (Fig. 5C), a flowering time gene which was also found within a 473 

flowering time QTL (FlrT-5:4, Supplementary data). According to FlrT-5:4, the Sweden 474 

genotype was associated with longer flowering time in both Italy and Sweden (Ågren, et al. 475 

2017). In conjunction, with its overlap to a genetic tradeoff QTL (Ågren, et al. 2017), indicates a 476 

possible role in fitness tradeoffs. Studies have attributed flowering time variation within FlrT-5:4 477 

to VIN3 (1001 Genomes Consortium 2016; Ågren, et al. 2017). Although it may be an additional 478 

candidate we did not find any significant genetic differentiation and selection along coding and 479 

cis-regulatory sites of VIN3.  480 

 481 

When examining flowering time genes with high FST  and LD along cis-482 

regulatory/nonsynonymous sites that did not show significant functional constraint we identified 483 

an additional nine genes;  four of which were found within flowering time QTL (FlrT): 484 

AT1G14920 (GAI); AT1G53090 (SPA4); AT2G22540 (SVP); AT2G47700 (RFI2); 485 

AT4G32980 (ATH1-FlrT4:1); AT5G24470 (PRR5-FlrT5:2); AT5G62640 (ELF5); 486 

AT5G65050 (MAF2- FlrT5:5); and AT5G65060 (MAF3- FlrT5:5).  ATH1 was found in 487 
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genetic tradeoff QTL 4:2, while genes MAF2, and MAF3 were found within genetic tradeoff 488 

QTL 5:5 and within 100 kb of fitness QTL peaks. 489 

 490 

Discussion  491 

In the quest to study the genetic basis of local adaptation using genome wide associations to 492 

environment, linear mixed models have emerged as a powerful tool given their ability to account 493 

for population structure while testing for significant associations (Yu, et al. 2006; Kang, et al. 494 

2008; Kang, et al. 2010; Zhou and Stephens 2012). Although they provide a robust statistical 495 

framework for removing many false positives, the current study shows that such an approach 496 

may significantly limit our ability to understand the polygenic basis of local adaptation.  497 

 498 

SNPs showing significant associations to climate after accounting for population structure, were 499 

not in line with high FST and LD SNPs that showed a significant enrichment along fitness QTL 500 

peaks and coding/noncoding sites under functional constraint. Since these QTL are of large 501 

effect (Ågren, et al. 2013), the lack of significant associations is less likely to be a result of many 502 

alleles having a small effect on fitness. A more likely explanation is that accounting for 503 

population structure using genetic relatedness estimated from genome-wide SNPs, can lead to a 504 

significant number of false negatives. Arabidopsis thaliana however, is a simple, highly inbred 505 

species —to correctly assess the impact of accounting for population structure when examining 506 

the genetic basis of local adaptation there needs to be examination of other species with more 507 

complex life-history traits and evolutionary dynamics.  508 

 509 

A large portion of SNPs that showed significant associations to climate, and SNPs that showed 510 

high FST and LD between Italy and Sweden populations were enrichment among 511 
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nonsynonymous/cis-regulatory variation at sites showing significant functional constraint. These 512 

results, further support an important role of cis-regulatory (Lasky, et al. 2014; Siepel and Arbiza 513 

2014; Li and Fay 2017; Price, et al. 2018; Sackton, et al. 2019) and nonsynonymous variation 514 

(Nachman, et al. 2003; Coop, et al. 2009; Lasky, et al. 2012; Huber, et al. 2014; Svetec, et al. 515 

2016; Price, et al. 2018) in adaptation. Among the list of candidate genes underlying fitness QTL 516 

and showing significant evidence of local adaptation at functionally constraint sites, we 517 

identified FLDH. FLDH is a negative regulator of abscisic-acid signaling (Bhandari, et al. 2010), 518 

that showed strong GxE interactions between Italy and Sweden plants under cold acclimation 519 

conditions. Abscisic-acid signaling is known to play an important role in abiotic stress response 520 

(Tuteja 2007), with many studies supporting its role in local adaptation to climate (Keller, et al. 521 

2012; Lasky, et al. 2014; Kalladan, et al. 2017; Ristova, et al. 2017). 522 

 523 

In addition to abscisic-acid signaling, our results provide further support for the important role of 524 

flowering time in local adaptation to climate. Among a list of genes that were experimentally 525 

shown to affect flowering time, we identified three genes (PIF3, FIO1, and COL5) that showed 526 

significant evidence of local adaptation and functional constraint along nonsynonymous sites. 527 

FIO1 was previously shown to contain SNPs that showed significant associations to flowering 528 

time among natural Swedish lines  (Sasaki, et al. 2015) and COL5 was located within a QTL that 529 

explains flowering time variation among Sweden and Italy recombinant inbred lines (Ågren, et 530 

al. 2017). Finally, PIF3, a transcription factor that interacts with phytochromes (Soy, et al. 531 

2012), has been implicated in multiple biological processes including early hypocotyl growth 532 

(Monte, et al. 2004), photomorphogenesis (Dong, et al. 2017), flowering time (Oda, et al. 2004), 533 

and regulation of physiological responses to temperature (Jiang, et al. 2017).  This highly 534 
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conserved transcription factor was found within a large region that showed significant evidence 535 

of local adaptation. This chromosomal region may involve a single causative variant, or a group 536 

of linked genes that interact with PIF3 and were under selection because they contributed to 537 

building an advantageous phenotype (Barton and Bengtsson 1986; Yeaman and Whitlock 2011).  538 

 539 

When ignoring functional constraint, we identify a list of addition flowering time genes showing 540 

significant evidence of local adaptation along nonsynonymous/cis-regulatory sites. Genes such 541 

as SVP, MAF2, and MAF3 were previously associated with flowering time variation among 542 

natural Arabidopsis accessions (Caicedo, et al. 2009; Sasaki, et al. 2015). Although adaptation 543 

may involve sites that are not deeply rooted and/or under strong functional constraint, including 544 

additional plant genomes when estimating sequence conservation across species may increase 545 

our power to detect functionally important regions. As shown by studies examining adaptation in 546 

species ranging from bacteria (Maddamsetti, et al. 2017) to birds (Sackton, et al. 2019), 547 

addressing functional constraint can improve our understanding of its genetic basis.  548 

 549 

Finally, the current study shows that we need a new statistical framework to examine genome 550 

wide associations to environment, and furthermore, it increases our understanding on the genes 551 

and traits that may underlie local adaptation in A. thaliana.  552 

 553 

 554 

  555 
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