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Abstract 
 

Microbial interaction networks support many ecosystem services, including the regulation of crop 

diseases. One of the current challenges is automatically reconstructing these networks from 

metabarcoding data and monitoring their responses to environmental change. Here, we evaluated the 

ability of network inference methods to detect changes in crop-associated microbial networks. We used 

grapevine as a model plant system and assessed the impact of vineyard management (conventional 

versus organic) on the alpha- and beta-diversity of the fungal communities of grapevine leaves. We 

also inferred replicated networks of fungal associations, to compare network alpha- and beta-properties 

between management systems and to generate hypotheses concerning fungus-fungus interactions. We 

found that the richness, diversity and evenness of fungal communities were significantly higher in 

organic plots, and that community composition differed between management systems. Erysiphe 

necator, the causal agent of grapevine powdery mildew, was significantly more abundant in 

conventional plots, consistent with visual records of disease symptoms, whereas several yeast species 

were significantly more abundant in organic plots. Vineyard management also had a significant impact 

on the beta-properties of fungal association networks, but the high turnover of associations between 

plots precluded the generation of robust hypotheses concerning interactions between fungal taxa, 

casting doubts on the relationship between microbial association networks and plant health. Network 

inference methods therefore require improvement and validation before use in the next-generation 

biomonitoring of disease control services provided by the crop microbiota. As things stand, 

community-level data appear to be a more reliable and statistically powerful option than network-level 

data for monitoring the ecosystem services provided by the plant microbiota. 
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1 Introduction 

Interactions between organisms and between organisms and their abiotic environment regulate the 

ecological processes underlying ecosystem services (Mace et al., 2012). Ecological interactions (e.g. 

predation, mutualism, parasitism) at a single point in space and time are usually represented as a 

network, with the organisms as nodes and the interactions as links (Pocock et al., 2012). Current 

challenges focus on understanding how and why these networks vary in space and time (Pilosof et al., 

2017; Pellissier et al., 2018), and which network properties should be conserved or enhanced to sustain 

ecosystem services (Tylianakis et al., 2010; Montoya et al., 2012; Raimundo et al., 2018). 

Global environmental changes due to human activities alter ecological networks by shifting species 

distributions and disrupting the interactions between species (Scheffers et al., 2016; Pecl et al., 2017). 

Agriculture, a key driver of global change (Tilman et al., 2002), has for instance an impact on both 

ecological communities (Tuck et al., 2014; Seufert and Ramankutty 2017) and ecological networks 

(Tylianakis et al., 2007; Macfadyen et al., 2009; Ma et al., 2019). Theoretical frameworks have been 

developed for the comparison of ecological networks between contrasting environmental conditions or 

along environmental gradients (Poisot et al., 2012; Tylianakis and Morris 2017; Pellissier et al., 2018; 

Delmas et al., 2019). By analogy with the α- and β-diversity of ecological communities, these 

frameworks define α- and β-properties for ecological networks, corresponding to whole-network 

metrics (e.g. connectance) and dissimilarities between pairs of networks, respectively (Pellissier et al., 

2018).  

Network ecology originates from the study of trophic links between macro-organisms (Ings et al., 

2009) and initially ignored smaller organisms (Lafferty et al., 2006), but the importance of 

microorganisms is now recognized, with microbial interactions supplying ecosystem services such as 

biogeochemical cycling,  provisioning services or disease regulation (Falkowski et al., 2008; van der 

Heijden et al., 2008; Berendsen et al., 2012). Microbial networks are affected by environmental 

changes (Creamer et al., 2016; Morriën et al., 2017), and it has been suggested that their properties 

could be used as potential bioindicators of environmental quality and ecosystem functioning (Karimi 

et al., 2017). The regulation of disease development in holobionts, defined as individual animals or 

plants together with all their associated microorganisms (Zilber-Rosenberg and Rosenberg 2008), is 

mediated by microbial interactions, including direct antagonistic interactions between the microbiota 

and pathogen species (Arnold et al., 2003; Koch and Schmid-Hempel, 2011; Kamada et al., 2013; 

Kemen 2014; Laur et al., 2018) and indirect interactions involving activation of the host immune system 

by the microbiota (Perazzolli et al., 2012; Kamada et al., 2013; Ritpitakphong et al., 2016; Vogel et al., 

2016; Hacquard et al., 2017). The subset of a host-associated microbial network consisting of a 

pathogen and its interacting partners is known as the pathobiome (Vayssier-Taussat et al., 2014; Brader 

et al., 2017). The biomonitoring of holobiont health requires elucidation of the microbial interactions 

forming pathobiomes (Durán et al., 2018), identification of the network-level indicators of host disease 

susceptibility (Agler et al., 2016, Poudel et al., 2016) and monitoring of the impact of anthropogenic 

environmental change on these indicators. A combination of next-generation sequencing and machine-

learning is required to achieve these objectives (Bohan et al., 2017; Derocles et al., 2018) and this study 

aimed to evaluate some of the methods developed to date. 

Ecological networks have long been built on the basis of observations of ecological interactions. Meta-

barcoding approaches are now providing additional information (Evans et al., 2016), and making it 

possible to generate hypotheses about interactions between organisms that are difficult to observe, such 

as microorganisms (Faust and Raes 2012; Berry and Widder 2014). Hypotheses concerning microbial 

interactions can be formulated on the basis of co-abundance data derived from environmental DNA 
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metabarcoding data (i.e. the sample × taxa matrix) via statistical or machine-learning approaches 

(Vacher et al., 2016). The representation of all positive and negative statistical associations between 

abundances for microbial taxa generally gives rise to a network resembling a hairball (Röttjers and 

Faust 2018). The challenge is to go beyond networks of this type, by removing spurious associations 

not due to microbial interactions and linking the remaining positive and negative associations to 

possible interaction mechanisms (Derocles et al., 2018). In a metabarcoding dataset, the total number 

of sequences per sample is arbitrary, imposed by the sequencer. Sequence counts contain only relative 

abundance information for species, and comparisons not taking this feature, known as 

compositionality, into account can result in the identification of artifactual associations (Gloor et al., 

2017). Early methods of microbial network inference, such as SparCC (Friedman and Alm 2012), made 

use of log ratios of counts to overcome this bias. The second cause of spurious associations is the joint 

response of microbial taxa to abiotic or biotic factors, creating indirect associations reflecting taxon 

requirements, particularly for samples collected in heterogeneous environments (Röttjers and Faust 

2018). Early studies dealt with this issue by first using regression to eliminate the environmental factors 

from the sequence counts and then inferring networks from the residuals (Jaskuschkin et al., 2016; 

Biswas et al., 2016). Several methods of network inference  integrating environmental covariates, such 

as HMSC (Ovaskainen et al., 2017), PLN (Chiquet et al., 2018), FlashWeave (Tackmann et al., 2018) 

and MAGMA (Cougoul et al., 2018), have since been developed. Last, but not least, the taxonomic 

resolution of the nodes must be fine enough to capture variations in ecological interactions between 

microbial strains (Röttjers and Faust 2018). Novel bioinformatics approaches fully exploiting the 

resolution of molecular barcodes, such as DADA2 (Callahan et al., 2017), therefore seem highly 

appropriate. However, despite these advances, the inference of microbial networks from 

metabarcoding data is still in its infancy (Layeghifard et al., 2017), and inferred interactions should be 

interpreted with caution (Weiss et al., 2016; Röttjers and Faust 2018; Freilich et al., 2018; Barner et 

al., 2018; Zurell et al., 2018), because only a few validation experiments to date have been successful 

(Das et al., 2018; Wang et al., 2017).  

In this study, we investigated whether changes in crop-associated microbial networks could be detected 

by combining current metabarcoding and network inference approaches. The monitoring of these 

changes is important, because these microbial networks possess intrinsic properties that hinder their 

invasion by pathogens (Murall et al., 2017) and form a barrier to disease development (Brader et al., 

2017; Hacquard et al., 2017). Our objectives were (1) to assess the influence of crop management 

(conventional versus organic agriculture) on network α- and β-properties, (2) to investigate whether 

network-level properties are more sensitive to change than community-level properties and (3) to 

determine whether microbial networks can generate robust hypotheses concerning microbial 

interactions. We inferred microbial networks from multiple samples collected in homogeneous, 

replicated agricultural plots, using DADA2 (Callahan et al., 2016) and SparCC (Friedman and Alm 

2012). We used grapevine as a model plant species and focused on the fungal component of its foliar 

microbiota, which contains several major pathogens.  

 

2 Materials and methods 

2.1 Study site and sampling design 

Samples were collected in 2015, from an experimental vineyard (Fig. 1) located near Bordeaux (INRA, 

Villenave d’Ornon, France; 44°47'32.2"N 0°34'36.9"W). The experimental vineyard was planted in 

2011 and was designed to compare three cropping systems: sustainable conventional agriculture 

(CONV), organic farming (ORGA) and pesticide-free farming (RESI) (Delière et al., 2014). The latter 

used a disease-resistant cultivar and was therefore not included in this study. The experiment had a 

randomized block design (Schielzeth and Nakagawa 2013) consisting of three blocks, each composed 
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of three plots, one for each of the cropping systems tested. Each plot covered an area of 2100 m2 and 

was composed of 20 rows of 68 vines each, with a 1.60 m between rows and 0.95 m between vines in 

a single row.  

 
 
Figure 1 – Experimental design. Foliar fungal communities were characterized in three conventional (CONV) 

and three organic (ORGA) vineyard plots by a metabarcoding approach. We analyzed 20 foliar samples per plot. 

For each plot, we thus obtained 20 community profiles (described in terms of amplicon sequence variants 

(ASV)) and one association network (inferred with the SparCC software developed by Friedman et al., 2012). 

More networks were then obtained by varying network reconstruction parameters (Fig. 5). The effects of 

cropping system (CONV versus ORGA) on the grapevine foliar microbiota were assessed with both community 

and network α- and β-properties.  

 

The same cultivar – Vitis vinifera L. cv. Merlot noir grafted onto a 3309 C rootstock – was used in both 

the CONV and ORGA cropping systems. CONV plots were managed according to the general 

principles of integrated pest management (IPM), as listed in Appendix III of the 2009/128/EC Directive 

(European Commission 2009). ORGA plots were managed according to European Council Regulation 

(EC) No 834/2007 (European Commission 2007). ORGA plots were treated with copper and sulfur-

based products, whereas additional phytosanitary products were allowed in CONV plots (Table S1). 

The cropping systems differed in terms of the types of pesticides applied and the timing of applications, 

but not in terms of doses (Table S1). All products and active ingredients were applied between the end 

of April and mid-August of 2015. Grapes were harvested on September 10, 2015. The incidence and 

severity of disease at harvest were higher in CONV plots than in ORGA plots for both powdery mildew 

(caused by the fungal pathogen Erysiphe necator) and black rot (caused by the fungal pathogen 

Guignardia bidwellii). Downy mildew symptoms (caused by the oomycete pathogen Plasmopara 

viticola) did not differ significantly between cropping systems (Table S2). 

Grapevine leaves were collected a couple hours before grape harvest, from 20 vines per plot in the 

CONV and ORGA plots. Edge effects were avoided by selecting the 20 vines from the center of each 

plot. The third leaf above the grapes was collected from each vine, placed in an individual bag and 

immediately transported to the laboratory. In total, 120 leaves, corresponding to 1 leaf × 20 vines × 3 

plots × 2 cropping systems, were therefore collected. Leaves were processed on the day of collection, 
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with sterilized tools in the sterile field of a MICROBIO electric burner (MSEI, France). Three 

contiguous discs, each 6 mm in diameter, were cut from the center of each leaf, approximately 2 cm 

from the midrib. They were placed in the well of a sterile DNA extraction plate. The leaf disks were 

then freeze-dried overnight (Alpha 1-4 DA Plus, Bioblock Scientific). 

2.2 DNA extraction and sequencing 

Leaf disks (Fig. 1) were ground with a single-glass ball mill (TissueLyser II, Qiagen) and DNA was 

then extracted with a CTAB chloroform/isoamyl alcohol (24:1) protocol. A dozen “empty” wells (i.e. 

containing nothing but extraction reagents) were included on each plate as negative control samples 

for DNA extraction. Three of these negative control samples were randomly selected and pooled before 

sequencing. Three replicates of a fungal mock community, each consisting of an equimolar pool of 

DNA from 189 pure fungal strains, were also included as positive control samples (Pauvert et al., 

2019). 

The nuclear ribosomal internal transcribed spacer (ITS) region, which is considered to be the universal 

barcode region for fungi (Schoch et al., 2012), was then amplified with the ITS1F (5’-

CTTGGTCATTTAGAGGAAGTAA-3’, Gardes and Bruns 1993) and ITS2 (5’-

GCTGCGTTCTTCATCGATGC-3’, White et al., 1990) primer pair, which targets the ITS1 region. 

PCR was performed in an Eppendorf thermocycler (Eppendorf), with a reaction mixture (25 µl final 

volume) consisting of 0.04 U Taq polymerase (SilverStar DNA polymerase, Eurogentec), 1X buffer, 

2 mM MgCl2, 200 µM of each dNTP, 0.2 µM of each primer, 1 ng.µl-1 bovine serum albumin (New 

England BioLabs) and 2 µl DNA template. A pseudo-nested PCR protocol was used, with the following 

cycling parameters: enzyme activation at 95°C for 2 min; 20 (1st PCR with regular primers; Table S3) 

and then 15 (2nd nested PCR with pre-tagged primers; Table S3) cycles of denaturation at 95°C for 30 

s, 53°C for 30 s, 72°C for 45 s; and a final extension phase at 72°C for 10 min. “Empty” wells (i.e. 

containing nothing but PCR reagents) were included on each plate as a negative control for PCR. Three 

negative control samples were randomly selected and pooled before sequencing. In addition, the six 

PCR products corresponding to the 24th leaf of the six plots under study (three CONV plots, three 

ORGA plots) were split in two, with each half of the sample sequenced independently to serve as 

technical replicates for sequencing.  

We checked the quality of all the PCR products by electrophoresis in 2% agarose gels. PCR products 

were purified (CleanPCR, MokaScience), multiplex identifiers and sequencing adapters were added, 

and library sequencing on an Illumina MiSeq platform (v3 chemistry, 2×250 bp) and sequence 

demultiplexing (with exact index search) were performed at the Get-PlaGe sequencing facility 

(Toulouse, France).  

2.3 Bioinformatic analysis 

Based on the mock community included in the sequencing run, we found that analyzing single forward 

(R1) sequences with DADA2 (Callahan et al., 2016) was a good option for fungal community 

characterization (Pauvert et al., 2019).  Using DADA2 v1.6, we retained only R1 reads with less than 

one expected error (based on quality scores; Edgar and Flyvbjerg, 2015) that were longer than 100 bp, 

and we then inferred amplicon sequence variants (ASV) for each sample. Chimeric sequences were 

identified by the consensus method of the removeBimeras function. Taxonomic assignments were 

performed with RDP classifier (Wang et al., 2007), implemented in DADA2 and trained with the 

UNITE database v. 7.2 (UNITE Community 2017). Only ASVs assigned to a fungal phylum were 

retained. The ASV table was then filtered as described by Galan et al., (2016) with a homemade script 

(https://gist.github.com/cpauvert/1ba6a97b01ea6cde4398a8d531fa62f9). The script removed ASVs 

from all samples for which the number of sequences was below the cross-contamination threshold, 
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defined as their maximum number in negative control samples (Galan et al., 2016).  Finally, we 

checked the compositional similarity of the technical replicates (Fig. S1), retaining the sample with the 

largest number of sequences for each replicate. The final ASV table contained 1116 ASVs, 112 samples 

and 4,760,068 high-quality sequences (Table S4).  

2.4 Statistical analyses  

Statistical analyses were performed with R software v3.4.1 (R Core Team 2017), with the packages 

lme4 (Bates et al., 2015), vegan (Oksanen et al., 2018), permute (Simpson 2016), phyloseq (McMurdie 

and Holmes 2013) including the DESeq2 extension (Love et al., 2014), and igraph (Csardi and Nepusz 

2006). Data were manipulated and plots were created with reshape2, plyr and ggplot2 (Wickham 2007; 

2011; 2016), cowplot (Wilke 2018), ggraph (Pedersen 2018) and VennDiagram (Chen 2018). 

2.4.1 Effect of cropping system on community α-diversity 

Generalized linear mixed models (GLMMs) were used to test the effect of cropping system on the 

richness, diversity and evenness of fungal communities. The models included the cropping system as 

a fixed treatment effect, the block and its interaction with the cropping system as random factors, and 

the sampling depth (defined as the total number of raw sequences per sample) as an offset (Bálint et 

al., 2015; McMurdie and Holmes 2014). Community richness was defined as the number of ASVs per 

sample. We used a logarithmic link function to model these count data, assuming a negative binomial 

distribution to deal with overdispersion (Zuur et al., 2009). Community diversity was measured with 

the Inverse Simpson index (Simpson 1949) and modeled with a Gaussian distribution and the 

logarithmic link function. Evenness was estimated with Pielou's index (Pielou 1966) and modeled with 

a Gaussian distribution and the logarithmic link function. The offset was transformed according to the 

link function. The significance of the fixed treatment effect was finally assessed with the Wald χ² test 

(Bolker et al., 2009). 

2.4.2 Effect of cropping system on community β-diversity 

Permutational analyses of variance (PERMANOVAs; Anderson 2001) were used to evaluate the effect 

of cropping system on compositional dissimilarities between fungal communities detected with the 

quantitative and binary versions of the Jaccard dissimilarity index (Chao et al., 2006; Jaccard 1900). 

The models included cropping system, sampling depth (log-transformed) and their interaction as fixed 

effects. Permutations (n = 999) were constrained within blocks. ASVs differing in abundance between 

cropping systems were identified with DESeq2 (Love et al., 2014), by calculating the likelihood ratio 

between a full model including block and cropping system as fixed effects and a simplified model 

including only the block factor. The estimated fold-changes in abundance were considered significant 

if the p-value was below 0.05 after Benjamini and Hochberg adjustment. 

2.4.3 Effect of cropping system on network α-properties 

Fungal association networks were inferred at plot level (Fig. 1) with the SparCC algorithm (Friedman 

and Alm 2012) implemented in FastSpar (Watts et al., 2019) with default SparCC values. Ten networks 

per plot were constructed by varying the percentage P of ASVs included in the network (with P ranging 

from 10% to 100% of the most abundant ASVs in the plot). Networks had ASVs as nodes and a positive 

or negative link between ASVs in cases of significant associations between abundance. Six α-

properties were calculated for all networks: number of links, network density, number of connected 

components, diameter of the largest component, mean node degree and proportion of negative links 

(Table S5). The effect of cropping system on these properties was investigated by performing 

Wilcoxon rank-sum tests for every value of P. The Benjamini-Hochberg procedure was used to correct 

p-values for multiple testing. 
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2.4.4 Effect of cropping system on network β-properties 

The topological distance between networks was calculated for all pairs of networks, with the D index 

defined by Schieber et al., (2017) for binary networks. The dissimilarity of associations between 

networks, βWN according to the framework described by Poisot et al., (2012), was then calculated for 

all pairs of networks with the binary Jaccard dissimilarity index. βWN was then partitioned into two 

components (Poisot et al., 2012): the dissimilarity of associations between ASVs common to both 

networks (βOS) and the dissimilarity of associations due to species turnover (βST). PERMANOVA was 

used to evaluate the effect of cropping system on the topological distance between networks (D) and 

the dissimilarity of associations between networks (βWN, βST and βOS). The models included cropping 

system, P and their interactions as fixed effects. The permutations (n=999) were constrained within 

blocks. Consensus networks were built to identify robust associations that could indicate biotic 

interactions between fungal strains. 

3 Results 

The foliar fungal communities were dominated by Ascomycota in both ORGA (87.2% of sequences) 

and CONV (96.8%) plots. They were largely colonized by an ASV assigned to the Aureobasidium 

genus. More than half the sequences belonged to this ASV (Table 1), whatever the cropping system. 

The causal agent of powdery mildew, Erysiphe necator, was among the 10 most abundant fungal 

species. The proportion of sequences assigned to this pathogen species was higher in CONV than in 

ORGA plots (Table 1), consistent with the visual records of disease symptoms (Table S2).  

 

ASV taxonomic assignment 
TOTAL ORGA CONV 

Rank RA Rank RA Rank RA 

Aureobasidium sp. 1 61.4 1 55.8 1 66.7 

Cladosporium delicatulum 2 6.3 4 6.9 2 5.8 

Filobasidium sp. 3 5.1 2 9.7 9 0.7 

Alternaria sp. 4 4.4 5 3.9 4 5.0 

Epicoccum nigrum 5 4.1 7 2.7 3 5.4 

Cladosporium ramotenellum 6 3.5 3 7 46 <0.1 

Mycosphaerella tassiana 7 3.3 8 1.8 5 4.8 

Didymella sp. 8 1.4 6 2.7 33 0.1 

Erysiphe necator 9 1.1 38 <0.1 6 2 

Vishniacozyma victoriae 10 0.9 9 1.6 17 0.3 

Table 1 - Most abundant amplicon sequence variants (ASVs) in grapevine foliar fungal communities 

according to cropping system. The relative abundances (RA, in %) and ranks of ASVs were calculated for all 

leaf samples (TOTAL; n = 112) and for samples collected from organic (ORGA; n = 55) and conventional plots 

(CONV; n = 57). 
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3.1 Effect of cropping system on community α- and β-diversity  

Fungal community richness, diversity and evenness were significantly higher in ORGA than CONV 

plots (Wald χ2 = 4.74, p = 0.029; Wald χ2 = 8.28, p = 0.004; Wald χ2 = 12.88, p < 0.001, respectively; 

Fig. 2). The composition of foliar fungal communities differed significantly between cropping systems 

(Table 2), in terms of both the relative abundance (Fig. 3A) and presence-absence of ASVs (Fig. 3B). 

DESeq2 analysis revealed that four ASVs, including the fungal pathogen Erysiphe necator, were 

significantly more abundant in CONV plots, whereas 10 other ASVs, including several yeast species 

(from the genera Vishniacozyma, Sporobolomyces and Filobasidium), were significantly more 

abundant in ORGA plots (Fig. 3C). Principal coordinate analysis (PCoA) with the Jaccard quantitative 

index (Fig. 3A) revealed large differences in the relative abundances of ASVs between samples within 

a cropping system. The first axis of the PCoA accounted for 32.5% of the variance in community 

composition but did not discriminate between cropping systems. It was significantly correlated with 

the relative abundance of the dominant ASV (assigned to the Aureobasidium genus) (Spearman ρ = 

0.96; p < 0.001).  

 

 

Dissimilarity index PERMANOVA 

Quantitative 
Jaccard 

Variable Df F R2 Pr(>F) 

Sequencing_Depth (SD) 1 4.49 0.04 <0.01 

Cropping_System (CS) 1 9.42 0.08 <0.01 

SD × CS 1 1.17 0.01 0.26 

Residuals 108  0.854  

Total 111  1  

Binary 
Jaccard 

Variable Df F R2 Pr(>F) 

Sequencing_Depth (SD) 1 1.05 0.01 0.29 

Cropping_System (CS) 1 5.21 0.05 <0.01 

SD × CS 1 1.03 0.01 0.41 

Residuals 108  0.937  

Total 111  1  

Table 2 – Effect of cropping system — conventional versus organic — on the β-diversity metrics of 

grapevine foliar fungal communities. Dissimilarities in community composition between samples were 

assessed with both the quantitative and binary Jaccard indices. The effects of sequencing depth (SD, log-

transformed) and cropping system on composition dissimilarities between communities were evaluated in 

permutational analyses of variance (PERMANOVA). The number of permutations was set to 999 and 

permutations were constrained by block.  
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Figure 2 - Effect of cropping system —conventional (CONV) versus organic (ORGA) — on the α-diversity 

metrics of grapevine foliar fungal communities. (A) Community richness, defined as the number of ASVs. 

(B) Community diversity, measured with the inverse Simpson index. (C) Community evenness, measured with 

Pielou's index. Differences in α-diversity metrics between cropping systems were evaluated in Wald χ2 tests (* 

p<0.05; **p<0.01; ***p<0.001). 

 

 

 

Figure 3 - Effect of cropping system — conventional (CONV) versus organic (ORGA) — on the β-diversity 

metrics of grapevine foliar fungal communities. Principal coordinate analyses (PCoA) were used to represent 

dissimilarities in composition between samples, as assessed with the (A) quantitative and (B) binary Jaccard 

indices. The effect of cropping system on both β-diversity metrics was significant (Table 2). Green circles, 

squares and triangles correspond to samples collected in the ORGA1, ORGA2 and ORGA3 plots, respectively. 

Orange circles, squares and triangles correspond to the CONV1, CONV2 and CONV3 plots, respectively (Fig. 

1). (C) Log-transformed ratio of ASV relative abundance in CONV plots over that in ORGA plots, for 14 ASVs 

identified as differentially abundant between cropping systems by DESeq2 analysis followed by Benjamini-

Hochberg adjustment (Love et al., 2014). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642199doi: bioRxiv preprint 

https://doi.org/10.1101/642199
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

3.2 Effect of cropping system on network α- and β-properties  

In total, we obtained 60 fungal association networks, corresponding to six plots (Fig. 1) per P category 

(Fig. 4A). None of the six network α-properties (Table S5) differed between cropping systems (Table 

S6), but all were significantly correlated with the percentage P of ASVs included in the network (Table 

S7). The total number of links and the mean degree increased with P, whereas the number of connected 

components, network diameter, connectance and the proportion of negative links decreased (Fig. 4B; 

Table S7). Similarly, the topological distance between networks did not differ between cropping 

systems, but was influenced by P (Table 3). By contrast, cropping system had a significant effect on 

the overall dissimilarity of associations (βWN) and the dissimilarity of associations between shared 

ASVs (βOS; Table 3 and Fig. 5). Fungal associations also varied considerably between plots within a 

cropping system (Fig. 4A and Fig. 6). When all ASVs were used for network construction (P=100%), 

only two associations were common to all three network replicates of the ORGA system (Fig. 6A; Fig. 

S2A) and only six were common to all three network replicates of the CONV system (Fig. 6B; Fig. 

S2B). The two associations replicated in the ORGA system were negative associations between the 

dominant ASV (assigned to the genus Aureobasidium) and Cladosporium ramotenellum, and between 

Vishniacosyma victoriae and Neofusicoccum parvum (Fig. S2A). Five of the six associations replicated 

in the CONV system were positive, the remaining negative association being that between the 

dominant ASV (assigned to the genus Aureobasidium) and Epicoccum nigrum (Fig. S2B). No 

association common to all six networks was identified (Fig. 6C).  

 

Figure 4 - Effect of cropping system — conventional (CONV) versus organic (ORGA) — on the α-

properties of grapevine foliar fungal networks. (A) Association networks inferred from fungal metabarcoding 

data with SparCC (Friedman and Alm 2012). A total of 60 networks were inferred, corresponding to 2 cropping 

systems × 3 replicates (blocks) × 10 P values, with P the percentage of most abundant ASVs used for network 

inference. Only four values of P are shown on the figure. (B) Variations in network α-properties. The following 

properties (Table S5) were calculated for each network: the number of links (L) and connected components 

(CC), the network diameter (DIA) and connectance (C) and the mean degree (DEG) and negative link ratio 

(NLR). The percentage P of ASVs used for network reconstruction had a significant influence on all properties 

(Table S7), whereas cropping system did not (Table S6). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642199doi: bioRxiv preprint 

https://doi.org/10.1101/642199
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

Dissimilarity index PERMANOVA 

Topological 

dissimilarity 

(Schieber’s D) 

Variable Df F R2 Pr(>F) 

Percent_ASV (P) 1 57.75 0.50 <0.01 

Cropping_System (CS) 1 1.72 0.01 0.19 

P × CS 1 0.65 0.01 0.51 

Residuals 56  0.48  

Total 59  1  

Overall dissimilarity 

of associations 

(βWN) 

 

Variable Df F R2 Pr(>F) 

Percent_ASV (P) 1 2.41 0.04 <0.01 

Cropping_System (CS) 1 5.0 0.08 <0.01 

P × CS 1 2.21 0.03 <0.01 

Residuals 56  0.85  

Total 59  1  

Dissimilarity of 

associations 

between shared ASVs 

(βOS) 

 

Variable Df F R2 Pr(>F) 

Percent_ASV (P) 1 0.53 0.01 0.61 

Cropping_System (CS) 1 11.07 0.16 <0.01 

P × CS 1 0.56 0.01 0.57 

Residuals 56  0.798  

Total 59  1  

Dissimilarity of 

associations 

due to ASV turnover 

(βST) 

Variable Df F R2 Pr(>F) 

Percent_ASV (P) 1 1.30 0.02 <0.01 

Cropping_System (CS) 1 0.27 <0.01 1.00 

P × CS 1 1.30 0.02 <0.01 

Residuals 56  0.95  

Total 59  1  

Table 3 – Effect of cropping system — conventional versus organic — on the β-properties of grapevine 

foliar fungal networks. The D index quantifies the topological dissimilarity between networks (Schieber et al., 

2017) whereas the other three metrics (βWN, βOS and βST), which were calculated with the binary Jaccard index, 

quantify differences in associations between networks (Poisot et al., 2012). The effect of the percentage P of the 

most abundant ASVs used for network inference, and the effect of cropping system on the dissimilarities 

between networks were evaluated in permutational analyses of variance (PERMANOVA). The number of 

permutations was set to 999 and permutations were constrained by block.  
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Figure 5 - Effect of cropping system —conventional (CONV) versus organic (ORGA) — on the β-

properties of grapevine foliar fungal networks. Principal coordinate analysis (PCoA) representing 

dissimilarities between networks, measured with the βOS index (Poisot et al., 2012) calculated with the binary 

Jaccard index. βOS measures the dissimilarity between two networks in terms of the presence-absence of 

associations between shared ASVs. The centroids for each cropping system are represented by gray circles. The 

effect of cropping system on βOS was significant (Table 3). 

 

 

 
Figure 6 - Venn diagrams showing the number of fungal associations common to network replicates. (A) 

Associations common to the three network replicates inferred for the organic cropping system (ORGA1, 

ORGA2, ORGA3) and (B) the three network replicates inferred for the conventional cropping system (CONV1, 

CONV2, CONV3), regardless of the sign of the association, in the situation in which all ASVs were used for 

network construction (P=100%). (C) Associations common to the six networks.  
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4 Discussion 

Plant-associated microbial interaction networks protect plants against disease (Kemen 2014; Hassani 

et al., 2018). There is, therefore, a crucial need to monitor their responses to drivers of environmental 

change, such as agricultural practices. Here, we assessed the effects of cropping system (organic versus 

conventional) on plant-associated microbial communities and networks, using grapevine as a model 

plant. We focused on the fungal component of the grapevine foliar microbiota because it contains 

several pathogen species. We analyzed both microbial community α- and β-diversities and microbial 

network α- and β-properties, to determine whether network-level metrics were better indicators of 

environmental change than community-level metrics (Karimi et al., 2017, Ma et al., 2018).  We found 

that the α-properties of microbial networks (i.e. whole-network metrics; Pellissier et al., 2018) did not 

differ between cropping systems. Their variations were correlated with the percentages of the most 

abundant taxa included in the network, which is a network inference methodological parameter. By 

contrast, some β-properties of microbial networks differed significantly between cropping systems, 

revealing a difference in microbial associations between organic and conventional vineyards. This 

difference remained significant when network pairwise comparisons were based on shared taxa only, 

suggesting that the differences between organic and conventional networks were due to re-associations 

of fungal taxa rather than a turnover of taxa. As expected from previous results, microbial community 

α- and β-diversities differed significantly between cropping systems. Our results therefore indicate that 

both community-level and network-level metrics can be used to monitor changes in the crop 

microbiota. Using our findings, we tried to determine which metrics were most likely to contain 

information about plant health. 
  

Community-level analyses showed that the richness, diversity and evenness of the grapevine foliar 

microbiota were significantly higher in organic than conventional vineyards, consistent with the recent 

findings of Kernaghan et al. (2017) (but see Castañeda et al., 2018). The cropping system also 

significantly affected the composition of grapevine foliar fungal communities, as reported in previous 

studies (Schmid et al., 2011; Pancher et al., 2012; Varanda et al., 2016; Kernaghan et al., 2017; 

Castañeda et al.,, 2018). Several fungal taxa differed significantly in abundance between cropping 

systems. For instance, Erysiphe necator, the causal agent of grapevine powdery mildew, was 

significantly more abundant in conventional than in organic plots. These results are consistent with 

visual assessments of disease symptoms, indicating that, despite their numerous biases, metabarcoding 

data do contain some quantitative information useful for monitoring plant disease development 

(Sapkota et al., 2015; Jakuschkin et al., 2016; Makiola et al., 2018). Several yeast strains, assigned to 

the genera Vishniacozyma, Sporobolomyces and Filobasidium, were significantly more abundant in 

organic plots. These yeast genera are frequently detected on leaf surfaces due to their tolerance of 

irradiation and they might influence plant growth by producing plant hormone-like metabolites 

(Kemler et al., 2017).  

 

Network-level comparisons revealed an unexpectedly high degree of variability between network 

replicates within each cropping system. Replicate microbial networks for the same cropping system 

had very few associations in common, and no association was consistent found to be common to both 

cropping systems. Only two associations were common to all three replicates of the organic system. 

Both were negative and involved two plant pathogens — Neofusicoccum parvum (Bruez et al., 2014) 

and Cladosporium ramotenellum (Swett et al., 2016) — and two other species known to have 

antagonistic effects on plant pathogens: Vishniacozyma victoriae and Aureobasidium sp (Pertot et al., 

2017; Gramisci et al., 2018). These hypothetical fungus-fungus interactions appear to be relevant but 

require experimental validation, to demonstrate that networks do contain information about plant 

health-related mechanisms. Several methodological biases might account for the high variability of 
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fungal associations within a cropping system (i.e. the low replicability of microbial association 

networks). First, each network was built from 20 samples, whereas a minimum of 25 samples is 

generally recommended to obtain reliable networks (Berry and Widder 2014). Second, network nodes 

(i.e. amplicon sequence variants) may group together fungal strains with different interaction traits 

(McLaren and Callahan, 2018), despite their fine-scale taxonomic resolution (Callahan et al., 2017). 

Third, microbial associations may be triggered by spatial variations in environmental conditions (i.e. 

microclimate or leaf traits) rather than by biotic interactions (Derocles et al., 2018; Freilich et al., 2018). 

However, this third hypothesis is not particularly likely in our experimental system because the 

vineyard plots were adjacent to each other and planted with grapevine clones. The sampling design 

also limited microclimate variations, because we collected all leaves in less than two hours and 

controlled for the position of the sampled leaf on the vine. Alternatively, the associations detected may 

reflect the real interactions between fungal taxa. The turnover of associations might, in that case, be 

due to the functional redundancy of fungal taxa. Taxonomically different communities, involving 

different interactions between members, may have similar functions (Louca et al., 2016) and protect 

plant health in a similar way. 

 

Based on these findings, we cannot recommend the use of network properties for monitoring the 

disease regulation services provided by the microbiota. The replicated microbial association networks 

inferred from metabarcoding data were highly variable within each set of environmental conditions 

and generated few robust hypotheses concerning interactions between fungi, precluding their use to 

monitor the barrier effect of microbial interactions against pathogens. By contrast, community-level 

metrics revealed clear-cut changes in the plant microbiota in response to environmental change and 

reflected the disease status of the plant. Moreover, they were more statistically powerful than network-

level metrics, because many samples were required to infer each microbial network replicate. Hence, 

as things stand, machine-learning approaches using community-level microbial metabarcoding data 

(Cordier et al., 2018) appear to be a more reliable option for the next-generation biomonitoring of 

ecosystem services than microbial network inference.  
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Supplementary Material 

 

1. Supplementary Figures 

 

 

Figure S1 - Dendrogram plot of compositional dissimilarities between technical replicates for 

sequencing. Technical replicates were created by splitting six lots of PCR products in half and 

sequencing the two halves independently. The PCR products used were those corresponding to leaf 24 

(L24) of the six plots studied (ORGA1, ORGA2, ORGA3, CONV1, CONV2, CONV3; see Figure 5). 

Compositional dissimilarities between samples were computed with the binary Jaccard index. The 

dendrogram was built using a hierarchical clustering algorithm (complete linkage method). 

Compositional dissimilarities between the two technical replicates of the same sample were 

significantly smaller than the dissimilarities among samples (PERMANOVA: F = 39.98; R2 = 0.97; p 

= 0.001).   
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Figure S2 - Consensus fungal networks for (A) the organic (ORGA) and (B) the conventional 

(CONV) cropping systems. Network nodes represent fungal ASVs and links represent significant 

positive (+) or negative (-) associations shared bycommon to the three network replicates (Fig. 6A and 

6B, respectively). The fungal ASVs absent from a network are indicated in gray. 
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2. Supplementary Tables 

Table S1 - List of phytosanitary products and active ingredients applied in the year of the sampling 

campaign, together with the normalised dose or the treatment frequency index. PM = powdery mildew 

(caused by the fungal pathogen Erysiphe necator) and DM = downy mildew (caused by the oomycete 

pathogen Plasmopara viticola). Leaf sampling was performed on September 10 2015 (more than one 

month after the last phytosanitary treatment and a couple of hours before grape harvest). The treatment 

frequency index did not differ between cropping systems (ANOVA: df = 21; F = 0.436; p = 0.516). 
 

Date 
Cropping 

System 
Fungicides Active ingredients 

Target disease 

PM DM 

2015-04-30 ORGA Heliocuivre© Copper  0.145 

2015-04-30 ORGA Citrothiol DG© Micronized sulfur 0.371  

2015-05-07 CONV Chaoline© Fosetyl aluminum + metirame  0.292 

2015-05-07 CONV Dynali© Cyflufenamid + difenoconazole 0.289  

2015-05-13 ORGA Heliocuivre© Copper  0.167 

2015-05-13 ORGA Citrothiol DG© Micronized sulfur 0.400  

2015-05-19 CONV Cabrio Top© Metirame-zinc + pyraclostrobin 0.500  

2015-05-28 ORGA Citrothiol DG© Micronized sulfur 0.800  

2015-05-28 ORGA Bouillie Bordelaise RSR® Disperss® NC Copper  0.533 

2015-06-04 CONV Vivando© Metrafenone 0.833  

2015-06-04 CONV Chaoline© Fosetyl aluminum + metirame  0.708 

2015-06-09 ORGA Bouillie Bordelaise  RSR® Disperss® NC Copper  0.533 

2015-06-09 ORGA Citrothiol DG© Micronized sulfur 0.600  

2015-06-25 ORGA Citrothiol DG© Micronized sulfur 0.600  

2015-06-25 CONV Citrothiol DG© Micronized sulfur 0.600  

2015-07-01 ORGA Bouillie Bordelaise  RSR® Disperss® NC Copper  0.533 

2015-07-01 CONV Cabrio Top© Metirame-zinc + pyraclostrobin 0.750  

2015-07-17 ORGA Bouillie Bordelaise  RSR® Disperss® NC Copper  0.400 
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2015-07-17 ORGA Heliocuivre© Copper  0.083 

2015-07-17 CONV Bouillie Bordelaise  RSR® Disperss® NC Copper  0.400 

2015-07-17 CONV Heliocuivre© Copper  0.083 

2015-08-03 ORGA Bouillie Bordelaise  RSR® Disperss® NC Copper  0.533 

2015-08-03 CONV Bouillie Bordelaise  RSR® Disperss® NC Copper  0.533 
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Table S2 - Effect of cropping system —conventional (CONV) versus organic (ORGA) — on the 

incidence and severity of foliar disease symptoms at harvest time (2015-09-07). Disease incidence 

is defined as the percentage of leaves displaying symptoms, whereas disease severity is defined as the 

percentage leaf damage. Symptom incidence and severity were estimated visually on 40 grapevines for 

each plot (40 × 3 per cropping system). The mean values are reported for each cropping system as a 

percentage. Wald χ2 tests were used for comparisons after linear mixed model analysis with cropping 

system as a fixed effect and block as a random effect. 

 

Disease  ORGA (%) CONV (%) χ2 p-value 

Downy 

Mildew 

Incidence 0.749 0.688 0.57 0.450 

Severity 0.037 0.030 1.93 0.164 

Powdery 

Mildew 

Incidence 0.113 1.346 12.49 <0.001 

Severity 0.003 0.102 7.97 0.005 

Black 

rot 

Incidence 0.188 0.354 19.02 <0.001 

Severity 0.007 0.014 5.49 0.019 
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Table S3 - Primer pairs used to amplify the fungal ITS1 region 

1st PCR with regular primers (bold) 

Forward ITS1F: 5’-CTTGGTCATTTAGAGGAAGTAA-3’ 

Reverse ITS2: 5’-GCTGCGTTCTTCATCGATGC-3’ 

2nd nested PCR with pre-tagged primers (italics) 

Forward ITS1F-pre-tag: 5’-

CTTTCCCTACACGACGCTCTTCCGATCTCTTGGTCATTTAGAGGAAGTAA-3’ 

Reverse ITS2-pre-tag: 5’-GGAGTTCAGACGTGTGCTCTTCCGATCTGCTGCGTTCTTCATCGATGC-3’ 
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Table S4 – Filtered ASV table. Samples are shown in columns, with amplicon sequence variants 

(ASV) in rows. The values indicated are sequence counts. 

(Attached as csv file)  
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Table S5 - List of network α-properties calculated in this study 

Network metric Definition Reference 

Number of links (L) Total number of links  

Connectance (C) Fraction of the total number of possible 

links actually realized 

Coleman and Moré 1983 

10.1137/0720013 

Number of connected 

components (CC) 

Number of groups of nodes connected 

together 

Martinez 1992 

10.1086/285382 

Diameter (DIA) The longest of all the shortest paths 

between two nodes 

Barabási et al., 2000 

10.1016/S0378-4371(00)00018-2 

Mean node degree (DEG) Mean number of links per node  Martinez 1992 

10.1086/285382 

Proportion of negative 

links (NLR) 

Proportion of links for which the 

SparCC correlation is negative 

Faust et al., 2015 

10.3389/fmicb.2015.01200 
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Table S6 - Effect of cropping system on the α-properties of fungal association networks. Properties 

(as defined in Table S3) were compared between cropping systems for every value of the percentage 

P of the most abundant ASVs used for network inference. The U and p-values of Wilcoxon rank-sum 

tests are reported. The p-value is not available (NA) for situations in which property values were equal 

for all networks. The p-values after Benjamini-Hochberg adjustment are not reported because all were 

equal to one. 
 

P (%) L CC DIA C DEG NLR 

10 U = 3; p = 0.658 U = 5; p = 1 U = 6; p = 

0.505 

U = 3; p = 

0.663 

U = 2; p = 

0.383 

U = 5; p = 1 

20 U = 1; p = 0.19 U = 6.5; p = 

0.48 

U = 8; p = 

0.157 

U = 2; p = 

0.383 

U = 1; p = 0.19 U = 9; p = 0.081 

30 U = 1; p = 0.19 U = 4.5; p = NA U = 6; p = 

0.619 

U = 1; p = 0.19 U = 1; p = 0.19 U = 6; p = 0.663 

40 U = 1; p = 0.19 U = 4.5; p = NA U = 7; p = 

0.302 

U = 2; p = 

0.383 

U = 1; p = 0.19 U = 5; p = 1 

50 U = 3; p = 0.663 U = 4.5; p = NA U = 7; p = 

0.302 

U = 3; p = 

0.663 

U = 3; p = 

0.663 

U = 6; p = 0.663 

60 U = 2; p = 0.383 U = 4.5; p = NA U = 4.5; p = 1 U = 2; p = 

0.383 

U = 1; p = 0.19 U = 5; p = 1 

70 U = 3; p = 0.663 U = 4.5; p = NA U = 9; p = 

0.047 

U = 2; p = 

0.383 

U = 2; p = 

0.383 

U = 5; p = 1 

80 U = 3; p = 0.663 U = 4.5; p = NA U = 6; p = 

0.505 

U = 4; p = 1 U = 3; p = 

0.663 

U = 4; p = 1 

90 U = 4; p = 1 U = 4.5; p = NA U = 6; p = 

0.505 

U = 4; p = 1 U = 3; p = 

0.663 

U = 3; p = 0.663 

100 U = 3; p = 0.663 U = 4.5; p = NA U = 4.5; p = 

NA 

U = 2; p = 

0.383 

U = 4; p = 1 U = 4; p = 1 
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Table S7 - Effect of the percentage P of the most abundant ASVs used for network inference on 

the α-properties of fungal association networks. Spearman’s correlation coefficient and the results 

of Spearman’s rank correlation tests are reported for each network property. The p-values are reported 

after Benjamini-Hochberg adjustment. 

 

 

Property Correlation (ρ) S p-value 

L 0.98 862 <0.001 

CC -0.61 57987 <0.001 

DIA -0.85 66635 <0.001 

C -0.67 60144 <0.001 

DEG  0.95 1635 <0.001 

NLR -0.56 56116 <0.001 
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