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Clusters of cells can work together in order to follow a signal gradient, chemotaxing even when single cells
do not. Cells in different regions of collectively migrating neural crest streams show different gene expression
profiles, suggesting that cells may specialize to leader and follower roles. We use a minimal mathematical
model to understand when this specialization is advantageous. In our model, leader cells sense the gradient
with an accuracy that depends on the kinetics of ligand-receptor binding while follower cells follow the cluster’s
direction with a finite error. Intuitively, specialization into leaders and followers should be optimal when a
few cells have more information than the rest of the cluster, such as in the presence of a sharp transition in
chemoattractant concentration. We do find this – but also find that high levels of specialization can be optimal
in the opposite limit of very shallow gradients. We also predict that the best location for leaders may not be at
the front of the cluster. In following leaders, clusters may have to choose between speed and flexibility. Clusters
with only a few leaders can take orders of magnitude more time to reorient than all-leader clusters.

Eukaryotic cells commonly chemotax, moving in response
to a chemical gradient, to locate wounds and move in a de-
veloping embryo. Clusters of cells often chemotax differently
than single cells, cooperating to improve their sensing abili-
ties [1–5]. In cooperating, cells may specialize, with leaders
sensing the chemical gradient while others follow [2, 3, 6, 7].
We expect specialization to be most important if there is a
large difference between the information different cells have
about the gradient orientation, as in sharp transitions. This
may occur when cell clusters follow a gradient that is “self-
generated,” i.e. when cells near the rear degrade or sequester
chemoattractant [7–14], allowing a cell cluster to migrate
over distances much longer than its size during development
[7, 10, 13] and cancer metastasis [11, 14].

We develop a minimal model of cluster chemotaxis with
leaders and followers. Specializing improves chemotactic ve-
locity in both sharp transitions and near-linear gradients of
chemoattractant, but is not always beneficial. It is also not
always best for cells in the front of the cluster to lead—cells
near the middle or back of the cluster can have more infor-
mation. Specialization not only impacts migration speed, but
also strongly increases the cluster’s reorientation time.

Model.– We parameterize the chemoattractant profile:

C(x) =
1
2

Cmax

[
1 + tanh

( x
h

)]
, (1)

This function interpolates between step-like gradients and
near-linear gradients depending on h, the scale of the tran-
sition from 0 to Cmax (Fig. 1). We measure lengths in units of
the cell diameter, so h = 1 is nearly steplike on the scale of a
cell cluster. While the cluster moves in the xy plane, the po-
sition x in Eq. 1 is measured relative to the lead cell at x = 0
– the cluster does not move relative to the gradient even as it
moves in the lab frame. This is consistent with measurements
of Sdf1 gradients in the zebrafish lateral line, which reach a
steady-state in which they maintain their shape and move with
the cluster [7, 10].

Leader cells make a measurement of the chemoattractant
gradient direction. Earlier theory [15–20] and experiments
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2 [1 + tanh(x/h)]

P

FIG. 1. Geometry—The cell cluster is a rigid train with its front
defining the point x = 0. The cells move in the xy plane, with polarity
P = (cos θ, sin θ). h sets the width of the transition regime of the
gradient in units of the cell diameter.

[21–23] have established that a single cell sensing a chemi-
cal gradient is often limited in accuracy by the stochasticity of
ligand-receptor binding [21]. We extend the model of [16, 17],
assuming that leaders measuring the chemoattractant orienta-
tion have an angular error limited by ligand-receptor interac-
tions. In the shallow gradient limit, this error ∆2

φ is [16, 17]

∆2
φ ≈

8(C0 + Kd)2

Nr p2C0Kd
(leaders in shallow gradients), (2)

where C0 = C(x) is the mean concentration near the cell, Kd

is the ligand-receptor dissociation constant, Nr is the number
of receptors, and p = 1

C0
|∇C| is the percent change in concen-

tration across the cell. This shallow-gradient assumption may
fail at sharper transitions (e.g. h = 1), so we determine the
uncertainty ∆2

φ without this approximation by numerical inte-
gration [24]. We plot the leader angular error ∆l as a function
of the position within the cluster in Fig. 2. The follower un-
certainty ∆ f is independent of position – i.e. we assume this
noise arises from a process independent of chemosensing.

To relate uncertainties in sensing to cell motion, we de-
scribe cells as actively moving and reorienting particles. Each
cell i has an orientation θi, corresponding to the cell being po-
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FIG. 2. Directional Uncertainty of Leaders—(a) The uncertainty
∆φ in a leader’s measurement of the gradient direction as a function
of leader position x for sharp (h = 1), intermediate (h = 30), and
shallow (h = 100) gradients. Arrows indicate the minimum of the
curves, showing where the first leader will be added in a 50-cell train.
(b)–(d) show C(x) corresponding to h = 1, h = 30, and h = 100,
respectively. Cmax = 2Kd here and throughout the paper.

larized in the direction Pi = (cos θi, sin θi). Here, leader cells
align to the chemoattractant direction (x̂ or θ = 0), while fol-
lower cells follow the cluster’s direction θc (Eq. 5):

dθ`
dt

= −
1
τ`
θ` + σ`ξ`(t) (leaders) (3)

dθ f

dt
= −

1
τ f

(
θ f − θc

)
+ σ f ξ f (t) (followers). (4)

σ and τ for the leaders and followers depend on their accu-
racies ∆l, f , and may vary depending on cell position. ξi(t) is
Gaussian white noise with 〈ξi(t)〉 = 0, 〈ξi(t)ξ j(t′)〉 = δ(t−t′)δi j.
Angles θ` and θ f − θc are interpreted modulo 2π; we simu-
late Equations 3 and 4 by the Euler-Maruyama method with
∆t = 0.01 [24].

Collective migration is induced by having follower cells
align to the cluster velocity direction θc

Vcluster =
∣∣∣Vcluster

∣∣∣ (cos θc, sin θc) =
1
N

∑
i

Pi. (5)

The cluster center of mass velocity is Vcluster = 1
N

∑
i Pi when

cells are mechanically linked, and cell i would travel with ve-
locity Pi in the absence of mechanical linkage [25]. The align-
ment of follower cells to the cluster orientation (Eq. 4) is a
variant of the “self-alignment” [26] mechanism of Szabo et
al. [27], and others [28–30] who showed that when cells align
their polarity with their velocity, mechanical interactions be-
tween cells cause cells to align and migrate collectively. Our
follower model is precisely that of [27] if cell velocity and
cluster velocity are equal, i.e. the cluster is rigid.

We choose a dependence σ(∆) and τ(∆) so that the correla-
tion time TP of a single cell’s polarity Pi is equal to 1 at all ∆
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FIG. 3. Cluster velocity depends on leader number—Trains of
N = 50 cells. Symbols are simulations with 95% confidence inter-
vals from bootstrapping; lines are the independent follower approxi-
mation [24]. (a) For sharp (h ∼ 1) and wide (h ∼ 100) gradients, the
cluster can migrate substantially more quickly in the gradient direc-
tion with fewer leaders. (b) The number of leaders that maximizes
〈Vx〉, Nmax

` , increases, then decreases as a function of gradient transi-
tion width h. (c) At fixed h = 30, raising the follower noise ∆ f lowers
〈Vx〉 at leader fractions less than one. (d) Nmax

` transitions from low to
high for medium and wide gradients, but remains relatively constant
for sharp gradients as the follower noise is increased.

[24]. This corresponds to the assumption that at all levels of
uncertainty, a cell reorients at the same timescale, which we
choose as our unit time.

Optimal leadership strategies depend on chemoattractant
profile and follower accuracy.— A cluster may, depending
on the chemoattractant profile C(x) and the accuracy of its
followers ∆ f , improve its mean velocity in the chemoattrac-
tant direction 〈Vx〉 by specializing to leader and follower roles
(Fig. 3) [31]. This is similar to results from a more complex
model [32]. We do not assume a specific mechanism that
determines which cells lead and which ones follow. Rather,
we explore how a cluster behaves as the number of leaders
changes. Here, and elsewhere, we add leaders from most to
least accurate. We initially study a linear train of cells (Fig. 1),
both for simplicity and as the most relevant geometry for nar-
row, extended systems like the zebrafish lateral line [33].

For sharp transitions (h = 1), 〈Vx〉 first increases and then
decreases as we increase the number of leaders, reaching a
maximum at Nmax

` ≈ 6 (Fig. 3a). Consistent with our intuition
that specialization will be most effective when transitions are
sharp, 〈Vx〉 increases monotonically in the number of leaders
for the wider transition (h = 30). By contrast, in the nearly-
flat concentration profile of h = 100, chemotactic velocity is
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FIG. 4. Cluster size and leader strategy alter the mean velocity and correlation time—Trains of N = 50 cells in sharp h = 1 gradient
with ∆ f = 36◦. Lines represent strategies of allocating leaders (not the independent follower approximation as in Fig. 3). The solid line (green
pluses) corresponds to the number of leaders which maximizes 〈Vx〉. The dashed line (orange circles) corresponds to a leader fractions of 1
and the dot-dashed line (blue squares) corresponds to a leader fraction of 2/5. (a) The mean velocity in the gradient direction 〈Vx〉 as a function
of cluster size and number of leaders. The corresponding slices are plotted in (c). (b) The cluster correlation time Tc as a function of cluster
size and number of leaders. At fixed cluster size, this time can vary over two orders of magnitude from low to high leader number. The
corresponding slices are plotted in (d). 95 % confidence intervals from bootstrapping in (c) and (d) are smaller than the symbol sizes.

maximized by having only a few cells be leaders (Fig. 3a).
To better understand how the optimal number of leaders de-

pends on the chemoattractant profile, we study Nmax
` , the num-

ber of leaders which maximizes 〈Vx〉 (Fig. 3b). Nmax
` is small

at sharp gradients, and initially increases as the transition size
h increases – reflecting that for sharp transitions, leaders even
a few cells away from the transition have extremely high levels
of uncertainty, and will not increase 〈Vx〉. We would expect
that further increasing h places more cells in the transition
region and would increase Nmax

` monotonically. Instead, we
see that Nmax

` decreases at large h as the profile C(x) becomes
nearly linear.

This apparently counter-intuitive result can be understood
directly from the leader uncertainty ∆` as a function of cell
position (Fig. 2). For gradients with a sharp transition regime
(h = 1), leader uncertainty steeply increases for cells further
away from the train front. At wider gradients (h = 30), there is
a smaller difference between the best and worst leader. In fact,
the most effective leaders tend to be in the middle of the clus-
ter. As the gradient becomes near-linear (h = 100), instead
of having cells with equal levels of uncertainty, cells near the
back of the cluster have significantly lower uncertainty. This
is because in linear gradients, the percentage change across
the cell p is maximized farther from the transition, where the
baseline concentration is lower, and p limits accuracy (Eq. 2).
Specialization is rewarded at large h because there is a rele-
vant difference in information available across the cluster.

Specialization relies on followers accurately using informa-
tion from the leaders; the follower noise ∆ f can qualitatively
change how 〈Vx〉 depends on the number of leaders (Fig. 3c).
If follower noise is very low (∆ f = 4◦), one leader can guide
the cluster more effectively than when all the cells are leaders.
For larger follower noises, 〈Vx〉 is maximized when every cell

is a leader (∆ f = 50◦, Fig. 3c). This leads to an even more
dramatic change in Nmax

` : at h = 30, there is a rapid switch
from Nmax

` = 1 to Nmax
` = N (Fig. 3d) as the follower noise

is increased. However, this switching depends on the gradient
width h. For the sharp h = 1 profile, Nmax

` does not change
much as ∆ f increases – having a small number of leaders is a
robust strategy in sharp transitions. In the wider h = 30 and
h = 100 gradients, increasing the follower noise level causes
the number of leaders which maximizes 〈Vx〉 to switch from
low to high. Again, this can be understood by referring to
Fig. 2. When there is a large difference between the best and
worst sensors (h = 1), the magnitude of follower noise is rel-
atively unimportant: ∆ f is usually larger than ∆` for the few
well-informed cells, but smaller than ∆` for the bulk of the
cells. By contrast, for h = 30, most cells have roughly the
same amount of information about the gradient direction, and
changing ∆ f can rapidly switch between ∆ f > ∆` for all cells,
in which case it is optimal to have all cells be leaders, and
∆ f < ∆` for all cells, when as few cells as possible should
lead.

Though our model of Eqs. 3-4 has a complex long-range
collective interaction, we can quantitatively understand Fig. 3
with a much simpler independent follower model (solid lines
in Fig. 3) [24]. Our independent follower model assumes
that the follower error θrel ≡ θ f − θc is independent of θc,
and also assumes θc ≈ θL, where θL is the angle of only the
leaders, PL =

∑̀
P`. Effectively, each follower then indepen-

dently follows the leader cells. The independent follower ap-
proximation is most effective at high levels of follower noise
∆ f (where follower-follower correlations are shorter-lived and
less important), and sharp gradients (low h).

Cluster reorientation and leader strategy.— Because of the
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correlations between followers, a collectively sensing cluster
can be highly persistent – even if it is moving in an incorrect
direction. To understand this persistence, and the time it takes
to reorient, we compute the velocity autocorrelation function
〈δV(t) · δV(t′)〉 and fit it to an exponential to find the clus-
ter’s correlation time Tc [24]. A short correlation time could
be advantageous if cell clusters need to rapidly change direc-
tion (e.g. metastasizing clusters [34]), while long correlation
times could be preferred for cell clusters traveling in consis-
tent directions that must resist perturbations in the concen-
tration profile (e.g. the zebrafish primordium). Experimen-
tally, larger cell clusters exhibit slower reorientation in elec-
tric fields [35] and generally slower spontaneous reorientation
in confinement [36], so we study both the effect of the cluster
size and the number of leaders.

Cluster velocity and correlation time vary significantly with
cluster size N and the number of leaders (Fig. 4). For sharp
gradients (h = 1), specialization N` < N improves 〈Vx〉 for
all N > 5; chemotactic velocities decrease sharply for the all-
leader (N` = N) case at larger cluster sizes, as more and more
uninformed cells are leading. Most strikingly, in larger clus-
ters, as the number of leaders is decreased from N` = N, the
correlation time Tc increases over two orders of magnitude
(Fig. 4b). These changes are reminiscent of those observed in
a much more complex model of [37]. Tc also increases with
smaller leader numbers at large h [24].

Experiments often track gradient-sensing responses as a
function of cluster size [1, 3, 35, 38, 39]. Our results show
that, without specifying how leaders are chosen, even the
qualitative dependence of chemotactic velocity or correlation
time on cluster size are not known. We show how 〈Vx〉 and
Tc depend on cluster size with three leader allocation strate-
gies (100% leaders, 40% leaders, and choosing the number
of leaders that maximizes 〈Vx〉) in Fig. 4cd. When all cells
are leaders, 〈Vx〉 monotonically decreases while Tc remains
constant. If a fixed fraction 2/5 of cells are leaders, 〈Vx〉 first
increases, then decreases in cluster size, while Tc increases.
And if we choose the leaders to maximize 〈Vx〉, we see that
larger clusters do not slow much – but they do see a steep
increase in Tc. These effects depend on the gradient shape,
and the situation is much different for wider gradients, where
increasing cluster size can increase 〈Vx〉 or even decrease Tc

[24].
Though our results so far are for linear clusters, the most

critical qualitative features (e.g. Fig. 3c) are consistent be-
tween compact and linear clusters [24]. The deviations be-
tween compact and extended clusters are easily understood in
terms of the curves for ∆`. For instance, in sharp transitions
(h = 1), compact clusters have a higher Nmax

` , because there
are more cells close to the transition x = 0.

We have also assumed that the only source of leader er-
ror in gradient sensing is ligand-receptor binding. Intracel-
lular noise may also be significant at sharp enough gradients
[21]. We study adding a downstream intracellular noise in
quadrature, ∆2

` = ∆2
φ + ∆2

int. The qualitative dependence of
Nmax
` does not significantly change for low (∼ 4◦) or moderate

(∼ 18◦) levels of downstream noise, but becomes substantially
washed out at high (∼ 36◦) levels [24]. This is expected: if the
primary source of measurement error does not depend on the
environment, specialization to leaders and followers will not
be environmentally-dependent.

Our results show that choosing whether to specialize to
leader and follower cells in a chemotaxing cluster is subtle.
Clusters can chemotax more quickly if some cells sense and
some cells follow, but the number of leaders to maximize di-
rected migration depends heavily on the gradient and the ac-
curacy of follower cells. In addition, cells at the front of the
cluster may not be the most informed. Cells near the middle or
back may be provide more accurate directional cues, consis-
tent with experiments indicating that collectives are not neces-
sarily steered by the cells at their front [40]. Our work shows
rear-steering might be optimal in shallow gradients. Cluster
persistence times are dramatically increased by leader special-
ization, and different strategies of allocating leaders trade off

chemotactic speed with a cluster’s ability to reorient.
Are chemosensitive cells within clusters positioned accord-

ing to our model? Experiments on the zebrafish lateral line
primordium demonstrated that a small fraction of chemosens-
ing cells at the front can restore the migration of a cluster
when the rest of the cells have reduced chemosensing abil-
ity [41], suggesting that small numbers of sensing cells at the
front can guide a cluster – consistent with our results. The
scale of the transition from low to high concentration is set by
the ratio between D, the effective diffusion coefficient of the
ligand, and the degradation rate k− [10]. [10] found D = 5
µm2/s for Sdf1 and k− = 0.0003s−1 led to good agreement
with their data, giving h ∼

√
D/k− ∼ 130µm ∼ 10 cell diame-

ters [42]—consistent with leaders near the front of the cluster.
Future experiments determining how varying the chemosens-
ing ability of cells at different positions within a cluster will
be an important way to test the leader-follower mechanism
and whether the cells best able to sense the gradient are the
ones that drive the cluster’s directionality.
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Rädler, Physical Review Letters 114, 1 (2015).
[37] L. Coburn, L. Cerone, C. Torney, I. D. Couzin, and Z. Neufeld,

Physical Biology 10 (2013), 10.1088/1478-3975/10/4/046002.
[38] D. Cai, W. Dai, M. Prasad, J. Luo, N. S. Gov, and D. J. Montell,

Proceedings of the National Academy of Sciences 113, E2134
(2016).

[39] D. Ellison, A. Mugler, M. D. Brennan, S. H. Lee, R. J. Hueb-
ner, E. R. Shamir, L. A. Woo, J. Kim, P. Amar, I. Nemenman,
A. J. Ewald, and A. Levchenko, Proceedings of the National
Academy of Sciences 113, E679 (2016).

[40] E. Theveneau and C. Linker, F1000Research 6 (2017),
10.12688/f1000research.11889.1.

[41] P. Haas and D. Gilmour, Developmental Cell 10, 673 (2006).
[42] D. Dalle Nogare, M. Nikaido, K. Somers, J. Head, T. Pi-

otrowski, and A. B. Chitnis, Developmental Biology 422, 14
(2017).

[43] R. Mclennan, L. J. Schumacher, J. A. Morrison, J. M. Teddy,
D. A. Ridenour, A. C. Box, C. L. Semerad, H. Li, W. Mcdowell,
D. Kay, P. K. Maini, and R. E. Baker, Development 142, 2014
(2015).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/642157doi: bioRxiv preprint 

https://doi.org/10.1101/642157


Supplemental Information for “Leader cells in collective chemotaxis:

optimality and tradeoffs”

Austin Hopkins, Brian A. Camley

1 Determining σ and τ as a function of angular noise ∆

We want Equations 3 and 4 to represent cells with given angular uncertainties ∆i. How can we map between
∆ and the parameters of the model for each cell, τ and σ? To answer this question, we have to understand
a bit more about the solutions of these equations, which are of the form

dθ(t)

dt
= −θ(t)

τ
+ σξ(t) for θ ∈ [−π, π]. (S1)

Without periodic boundary conditions, the dynamics of θ would follow an Ornstein-Uhlenbeck process [1],

which can be described in terms of a known steady state distribution (normal with mean 0 and variance σ2τ
2 ,

as in Equation S4) and a transition probability (Equation S6) which is the distribution of θ at a time t′ given
the value of θ at an earlier time t. However, the periodic boundary conditions mean that the dynamics of θ
are more complicated than a standard Ornstein-Uhlenbeck process. The steady state distribution becomes
a truncated normal distribution determined from renormalizing Eq S4 on an interval [−π, π]. This results in
the steady state probability distribution

p(θ) =

( [
σ
√
πτ
(
erf(
√

2π/σ2τ)
)]−1

exp
(
− θ2

σ2τ

)
θ ∈ [−π, π]

0 otherwise
. (S2)

On the other hand, the transition probability is not analytically tractable. Therefore, we use results from
the Ornstein-Uhlenbeck process in the limits of very small and very large noises ∆i, but must use numerical
methods for intermediate values of ∆i.

For each cell i, the fluctuations of its angle θi about its mean value are characterized by the term
σ2
i τi
2

(Eq. S2). Therefore, we set the scale of these fluctuations equal to the angular noise ∆i through the equation

∆2
i =

σ2
i τi
2
. (S3)

We note here that ∆2
i can be larger than 2π – here, we are setting the variance of the parent normal that is

truncated to find Eq. S2.
If we applied only our formula for ∆i (Eq. S3), there would not be a unique way to choose both σi and

τi – we need to do more than just fix the variance of the angle 〈δθ2
i 〉. Therefore, we develop a procedure

to choose values for σi and τi so that the behavior of the cell is realistic at all noise levels. If we naively
chose σi ∼ ∆i, then as ∆i became large, the cell would undergo angular diffusion with a diverging diffusion
coefficient—physically unrealistic. We want to find functions σ(∆) and τ(∆) so that the correlation time TP
of a single cell’s polarity Pi is equal to 1 at all angular uncertainties. This corresponds to the idea that the
cell has a constant time to reorient, independent of how accurately it is measuring its environment.

We first consider a Gaussian approximation, which does not account for the periodicity of the angle θ,
to derive the asymptotic expressions for σ(∆) and τ(∆). Then, we numerically determine values for σ(∆)
and τ(∆) at intermediate levels of angular uncertainties.

1
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1.1 Gaussian approximation

For an angle θ(t) relaxing to 0 with noise σ and time constant τ , the equation governing θ is Equation S1.
However, in the Gaussian approximation, the periodicity of the variable θ is ignored. Although this result is
not generally applicable, it is asymptotically correct in the limits of very small and very large angular noise.
This is an Ornstein–Uhlenbeck process whose steady state distribution is a normal distribution with mean

0 and variance σ2τ
2

θ(t) ∼ N
(

0,
σ2τ

2

)
. (S4)

An angle at a later time θ(t+ t′), given the value of θ(t), will have the distribution

θ(t+ t′) ∼ N
(
θ(t)e−t

′/τ ,
σ2τ

2

(
1− e−2t/τ

))
. (S5)

The first equation is the marginal distribution of θ(t) and the second equation is the conditional distribution
of θ(t + t′) given θ(t), so the joint probability distribution p (θ(t+ t′); θ(t)) is just the product of the two
distributions. Let θ(t) = x1 and θ(t + t′) = x2 for ease of notation. Then, the joint probability density
function is

f(x1, x2) =
1

πσ2τ
√

1− e−2t′/τ
e−x

2
1/σ

2τe−(x2−x1e
−t′/τ )2/σ2τ(1−e−2t′/τ ). (S6)

For a polarity vector P(t) =
(
cosθ(t), sinθ(t)

)
, the time correlation function is given by

φ(t′) =
(
〈P(t) ·P(t+ t′)〉 − 〈P(t)〉 · 〈P(t+ t′)〉

)
/
(
〈P(t) ·P(t)〉 − 〈P(t)〉2

)
, (S7)

which in steady state only depends on the separation in time, and is normalized so that φ(0) = 1.
The term 〈P(t) ·P(t+ t′)〉 is given by the following expression:

〈P(t) ·P(t+ t′)〉 =

∞∫
−∞

dx1dx2f(x1, x2) [cos(x1)cos(x2) + sin(x1)sin(x2)] (S8)

=

∞∫
−∞

dx1dx2f(x1, x2)cos(x2 − x1) (S9)

To evaluate the this term, we change the variables in the joint density function in Equation S6 through the
following transformation:

y1 = x1

y2 = x2 − x1e
−t′/τ .

(S10)

The Jacobian from this transformation is 1, so the new joint probability distribution is

g(y1, y2) =
1

πσ2τ
√

1− e−2t′/τ
e−y

2
1/στe−y

2
2/σ

2τ(1−e−2t′/τ ). (S11)

We can apply this transformation to Equation S9 and use the distribution in Equation S11 to evaluate the
expectation value in the following way:

〈P(t) ·P(t+ t′)〉 =

∞∫
−∞

dx1dx2f(x1, x2)cos(x2 − x1) (S12)

=

∞∫
−∞

dy1dy2g(y1, y2)cos(y2 + y1(e−t
′/τ − 1)) (S13)

=

∞∫
−∞

dy1dy2
1

πσ2τ
√

1− e−2t′/τ
e−y

2
1/στe−y

2
2/σ

2τ(1−e−2t′/τ )cos(y2 + y1(e−t
′/τ − 1)). (S14)

2
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Applying the integral

1√
2πσ2

∞∫
−∞

cos(ax+ b)e−x
2/2σ2

dx = cos(b)e−a
2σ2/2 (S15)

twice (once for y1 and once for y2) to Equation S14 gives the result

〈P(t) ·P(t+ t′)〉 = exp
(σ2τ

2

(
− 1 + e−t

′/τ
))
. (S16)

In steady state, the mean polarities will be independent of time, and the identity

〈P(t)〉 = 〈P(t+ t′)〉 =

∞∫
−∞

1√
πσ2τ

cos (θ) e−θ
2/σ2τdθx̂+

∞∫
−∞

1√
πσ2τ

sin (θ) e−θ
2/σ2τdθŷ (S17)

= exp
(
−σ2τ/4

)
x̂+ 0ŷ (S18)

holds from applying Equation S15. Therefore, the term 〈P(t)〉 · 〈P(t+ t′)〉 evaluates as

〈P(t)〉 · 〈P(t+ t′)〉 = exp
(
−σ2τ/2

)
. (S19)

Thus, the final expression for φ(t′), normalized by its value at t′ = 0 is

φ(t′) =
exp
(
σ2τ

2

(
− 1 + e−t

′/τ
))
− exp

(
− σ2τ/2

)
1− exp

(
− σ2τ/2

) =
exp
(
σ2τ

2 e−t
′/τ
)
− 1

e
σ2τ
2 − 1

(S20)

The correlation time is defined as the integral of this correlation function from t′ = 0 to t′ =∞. Only the
numerator of Equation S20 needs to be evaluated since the denominator does not depend on t′. Therefore,
the integral to evaluate is the integral I:

I =

∞∫
0

(
exp

(
σ2τ

2
e−t

′/τ

)
− 1

)
dt′. (S21)

With the substitution u = σ2τ
2 e−t

′/τ , du = − 1
τ udt

′, the expression for the integral becomes

I = τ

σ2τ
2∫

0

(eu − 1)

u
du. (S22)

This integral can be solved and gives

I = Ei

(
σ2τ

2

)
− γ − log

(
σ2τ

2

)
(S23)

where γ is the Euler–Mascheroni constant and the exponential integral Ei is defined as

Ei(x) =

x∫
−∞

et

t
dt. (S24)

Thus, the correlation time, TP, of the polarity P is

TP =

∞∫
0

φ(t′)dt′ =
I

exp
(
σ2τ

2

)
− 1

= τ
−γ + Ei(σ

2τ
2 )− log(σ

2τ
2 )

exp
(
σ2τ

2

)
− 1

(S25)
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in terms of the angular relaxation time τ and angular noise σ.
To ensure that at every level of angular noise the polarity correlation time is constant, the polarity

correlation time is set equal to 1 and the angular relaxation time τ and angular noise σ are chosen so that
the angular uncertainty is as required. This can be described by the following equations

TP = 1 (S26)

σ2τ

2
= 〈δθ2〉 = ∆2

φ (S27)

so that once a cell’s angular uncertainty ∆2
φ is known, the correct τ and σ for that cell can be chosen to set

its polarity correlation time equal to 1. Thus, the formulas for τ(∆φ) and σ(∆φ)

τ(∆φ) =
exp(∆2

φ)− 1

−γ + Ei(∆2
φ)− log(∆2

φ)
(S28)

σ(∆φ) = ∆φ

√
2

τ(∆φ)
(S29)

However, these formulas are only asymptotically correct because they do not account for periodic bound-
ary conditions. Thus, the two limits we use give the following equations for the asymptotic forms

τ(∆φ) ≈ 1, σ(∆φ) ≈
√

2∆φ for ∆φ → 0 (S30)

τ(∆φ) ≈ ∆2
φ, σ(∆φ) ≈

√
2 for ∆φ →∞ (S31)

1.2 Numerical Interpolation

For intermediate values of ∆2
φ, the parameters τ and σ determined from the Gaussian approximation can

give real correlation times that deviate by up to 25% from the desired value of 1. This deviation is due to
the wrapping of θ on the interval [−π, π], which is not accounted for in the Gaussian approximation. To
accurately incorporate the effects of periodic boundary conditions, we want to numerically find values for

the parameters τ(∆φ) and σ(∆φ) so that the relations TP = 1 and ∆2
φ = σ2τ

2 are both true. We simulate
an angle following Equation S1. We ensure that θ remains on the interval [−π, π] by adding π, computing
θ modulo 2π, then shifting θ back to the interval [−π, π] by subtracting π. That is, on each time step, we
apply the following formula

θ` = ((θ` + π) mod 2π)− π (S32)

In the Gaussian approximation, the quantity ∆2
φ = σ2τ

2 is the variance in the steady-state Gaussian distribu-
tion of θ. With periodic boundaries, the steady-state distribution of θ is a truncated normal distribution on

[−π, π]. Therefore, ∆2
φ = σ2τ

2 is the variance of the parent normal distribution to truncated normal distribu-

tion for θ (as in Equation S2). Thus, small values of ∆2
φ result in an approximately Gaussian distribution of

θ around the gradient direction while very large values of ∆2
φ correspond to a uniformly distributed value of

θ, corresponding to a cell that chooses its direction randomly. However, the transition probability from one
angle to another is not analytically tractable with periodic boundaries, so we need simulations to determine
the correlation time TP.

As implied by the form of Equation S25 and the Buckingham Pi Theorem, the equation for the correlation
time can be written in terms of the parameters τ and σ as

TP
(
∆2
φ

)
= τf

(
σ2τ

2

)
. (S33)

This is also shown empirically in Figure S1, where for various values of τ and ∆2
φ the polarity correlation

time TP(∆2
φ) is determined from simulations with σ =

√
2∆φ/

√
τ . Therefore, without loss of generality, we

choose the parameter τ = 1 and σ =
√

2∆φ and simulate TP(∆φ) to find the function f
(
σ2τ

2

)
. This function

4
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Figure S1: Universality of the single-cell polarity correlation time scaling—The scaling between
the correlation time of the polarity T (∆2

φ) normalized by the parameter τ is universal for all values of τ .

Here, τ is chosen as a parameter and σ =
√

2∆φ/
√
τ .

is useful because choosing τ(∆φ) = 1/f
(
σ2τ

2

)
ensures that the correlation time of the polarity TP = 1 at

all values of ∆φ. Thus, we choose the parameters according to the rule

τ(∆φ) = 1/f

(
σ2τ

2

)
(S34)

σ(∆φ) = ∆φ

√
2f

(
σ2τ

2

)
. (S35)

To find the correlation time, we simulate an angle relaxing to 0 with periodic boundaries enforced (see
Simulation Details section below). We use a time step of ∆t = 0.01, as in the main simulations, and we
simulate to a time of 3000, which was found to generate good statistics for the correlation function. The
correlation time is found by fitting an exponential to the correlation function, though re-scaling the time
at which correlation function reaches 1/2 to determine when a 1/e decay would have occurred gives similar
trends. We repeat this procedure to generate 100 measurements of TP for each value of ∆2

φ. Then, the
parameters τ(∆φ) and are found through Equations S34 and S35 and linear interpolation. A grid is created
for 0.01 ≤ ∆2

φ ≤ 10 where, for each range of orders of magnitude, the grid spacing is 1/10 of the smallest
value. Outside those limits, we use the asymptotic forms.

5
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1.3 Verifying Numerical Scheme
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Figure S2: Simulated tests of the numerical scheme—The correlation time of the polarity TP for
a single cell relaxing to an angle of zero is plotted as a function of its uncertainty ∆φ. The parameters
σ(∆φ) and τ(∆φ) are chosen according the process described above. The correlation time remains within
two percent of the desired time of one.

To determine the accuracy of the numerical method, we compute TP for single cells of various angular
uncertainties ∆φ, where we choose the parameters τ and σ according to the procedure outlined in the
previous section. In Figure S2, we present values computed for angular uncertainty levels that lie in both
asymptotic limits and in the interpolation regime. The computed values are within at least 2% of the desired
time of 1. Values outside the range considered here will be at least this close to 1 because the asymptotic
limits will improve at very small or very large ∆φ.

2 Extending the Hu et al. result beyond the shallow gradient
approximation

As in [2, 3], we consider a circular cell with Nr receptors uniformly spaced along its perimeter. Let φ denote
the direction of the gradient. We model the receptors on the cell x1...xNr as Nr independent Bernoulli
trials that can be occupied with value 1 or unoccupied with value 0. For simple ligand-receptor kinetics,
the probability of receptor n being occupied given concentration Cn at the receptor and ligand-receptor
dissociation constant Kd is Cn

Cn+Kd
and the probability of being unoccupied is Kd

Cn+Kd
. The probability that

the nth receptor is occupied is a function of the gradient direction φ. Thus, the probability distribution
function for the nth receptor is

fn,φ(xn) =

(
Cn

Cn +Kd

)xn ( Kd

Cn +Kd

)1−xn
(S36)

The likelihood function for a cell estimating the gradient direction φ given the values at the receptors is

L (φ|x1...xn) =

Nr∏
1

fn,φ(xn). (S37)
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The log-likelihood function is

lnL =
∑
n

[
xnln

Cn
Cn +Kd

+ (1− xn)ln
Kd

Cn +Kd

]
(S38)

=
∑
n

[
xnln

Cn
Kd

+ ln
Kd

Cn +Kd

]
(S39)

=
∑
n

[xn (lnCn − lnKd) + lnKd − ln (Cn +Kd)] (S40)

For an estimation of the gradient direction, we are interested in computing the second derivative of the
log-likelihood function with respect to φ. Therefore, let a prime ′ denote a derivative taken with respect to
φ. Then, the first derivative of the log-likelihood function with respect to φ is

∂

∂φ
lnL =

∑
n

[
xn
C ′n
Cn
− C ′n
Cn +Kd

]
. (S41)

Taking another derivative gives

∂2

∂φ2
lnL =

∑
n

[
xn
CnC

′′
n − (C ′n)

2

C2
n

− (Cn +Kd)C
′′
n − (C ′n)

2

(Cn +Kd)
2

]
. (S42)

To find the expectation value, first note the for the Bernoulli trials xn, the expectation value is just the
probability of occupancy 〈xn〉 = Cn

Cn+Kd
. With this expression, the expectation value of the second derivative

becomes 〈
∂2

∂φ2
lnL
〉

=
∑
n

[
〈xn〉

CnC
′′
n − (C ′n)

2

C2
n

− (Cn +Kd)C
′′
n − (C ′n)

2

(Cn +Kd)
2

]
(S43)

=
∑
n

[
Cn

Cn +Kd

CnC
′′
n − (C ′n)

2

C2
n

− (Cn +Kd)C
′′
n − (C ′n)

2

(Cn +Kd)
2

]
(S44)

=
∑
n

−

[
Kd (C ′n)

2

Cn (Cn +Kd)
2

]
. (S45)

This expression holds true for any gradient profile and does not make any assumptions about its steepness.
In this work, the goal is to compute the uncertainty for leader cells with the gradient varying the in x

direction given by C(x) = 1
2Cmax

(
1 + 1

2 tanh
(
x
h

))
. For the ith cell in the cluster, the x position of the center

is 1-i, where i ranges from 1 to the cluster size N . Since we are working in units in which the cell diameter
is 1, the x positions of the receptors are given by

x(i, αn) = 1− i+
1

2
cos(αn − φ), (S46)

where αn is the angular position of the nth receptor. The sum in Equation S45 can be approximated as an
integral for a large number of receptors. Therefore, for a given cell i, the Fisher information is

I(i) = −
〈
∂2

∂φ2
lnL(i)

〉
≈ Nr

2π

2π∫
0

Kd (C ′n(α, i))
2

Cn(α, i) (Cn(α, i) +Kd)
2 dα (S47)

where the concentration and its derivative is written in terms of α and i using Equation S46. This expression
does not depend on the gradient direction φ because the receptors are evenly spaced, and in the cell is
symmetric under rotations in the continuum limit. We numerically integrate Equation S47 with Gaussian
quadrature to determine the Fisher information for each cell in the cluster. With the Fisher information,
the Cramér-Rao bound gives the minimum uncertainty for the gradient direction estimated by the ith cell
as

∆φ(i) = (I (i))
−1/2

. (S48)
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3 Independent Follower Approximation

The cluster velocity is given by the mean polarity of all the cells in the cluster, which can be decomposed
into leader and follower contributions

Vc =
1

N

∑
i

Pi =
1

N

∑
`

P` +
∑
f

Pf

 . (S49)

Therefore, the mean x velocity of the cluster is given by

〈V xc 〉 =
1

N

∑
`

〈P x` 〉+
∑
f

〈P xf 〉

 =
1

N

∑
`

〈cos(θ`)〉+
∑
f

〈cos(θf )〉

 (S50)

in terms of the leader angle θ` and follower angle θf . The followers relax towards the angle of the cluster
θc with some noise. The angle of a follower θf can be written in terms of the angle of the cluster and some
angle θrel,f , which is the angle of follower f relative to the cluster angle

θf = θc + θrel,f . (S51)

The x polarity of a follower is just the cosine of the follower angle, which can be rewritten using Equation
S51 as

cos(θf ) = cos(θc + θrel,f ) = cos(θc)cos(θrel,f ) + sin(θc)sin(θrel,f ), (S52)

and the mean is given by

〈cos(θf )〉 = 〈cos(θc)cos(θrel,f )〉+ 〈sin(θc)sin(θrel,f )〉. (S53)

So far, the above results are exact. To develop the approximation, we make 2 key assumptions. First,
we assume (1) that the relative angle of the follower θrel,f is independent of the cluster angle θc, this can be
simplified as

〈cos(θf )〉 = 〈cos(θc)〉〈cos(θrel,f )〉 (S54)

because both θc is symmetric about 0 so 〈sin(θc)〉 = 0. To evaluate the expectation value 〈cos(θrel,f )〉, we
note that its dynamics are essentially that of the follower angle θf in a reference frame in which θc = 0.
Therefore, the distribution of θrel,f will be a truncated normal distribution on [−π, π] with mean 0 and
whose parent normal has a standard deviation ∆f . From this result, an exact expression for 〈cos(θrel,f )〉
can be applied to find

〈cos(θf )〉 = 〈cos(θc)〉〈cos(θrel,f )〉 (S55)

= 〈cos(θc)〉
π∫
−π

cos(θ)

σ
√
πτ
(
erf(π/

√
2)
)exp

(
−θ2/2∆2

f

)
dθ (S56)

= 〈cos(θc)〉e−∆2
f/2Re

(
erf
(

(π + i∆2
f )/
√

2∆f

))
/erf

(
π/
√

2∆f

)
. (S57)

Let the contribution to the polarity from the leaders be defined as the total leader polarity vector PL

PL =
∑
`

P` = |PL|
(

cos(θL), sin(θL)
)
. (S58)

Then, we assume (2) that the average x component of the cluster is approximated by the average x component
of PL, ie,

〈cos(θc)〉 ≈ 〈cos(θL)〉. (S59)

This assumption is generally good since the follower polarities align with the leaders in steady-state. However,
it breaks down when the follower correlations contribute significantly to the accuracy of the cluster direction.
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Explicitly, the term we use to approximate cos(θc) is

cos(θL) =

∑̀
cos(θ`)√(∑̀

cos(θ`)

)2

+

(∑̀
sin(θ`)

)2
. (S60)

We compute 〈cos(θL)〉 numerically. We draw the leader angles θ` from their respective steady-state truncated
normal distributions and the compute the mean value of Equation S60 from the draws. We use 100,000 draws
for h ≤ 100 and 500,000 draws for h = 125. Once this term has been computed numerically, Equation S57
gives the follower contribution P xf to the mean cluster velocity 〈Vx〉, where we approximate the term 〈cos(θc)〉
as 〈cos(θL)〉. Then, the leader contribution P x` to 〈Vx〉 is simply

〈P x` 〉 = 〈cos(θ`)〉 (S61)

=

π∫
−π

cos(θ)

σ
√
πτ
(
erf(π/

√
2)
)exp

(
−θ2/2∆2

`

)
dθ (S62)

= e−∆2
`/2Re

(
erf
(

(π + i∆2
`)/
√

2∆`

))
/erf

(
π/
√

2∆`

)
(S63)

because the leaders independently align to the gradient direction. Thus, the final expression for the gradient
velocity is

〈Vx〉 =
1

N

∑
`

〈P x` 〉+
∑
f

〈P xf 〉

 (S64)

=
1

N

[∑
`

e−∆2
`/2Re

(
erf
(

(π + i∆2
`)/
√

2∆`

))
/erf

(
π/
√

2∆`

)
+
∑
f

〈cos(θL)〉e−∆2
f/2Re

(
erf
(

(π + i∆2
f )/
√

2∆f

))
/erf

(
π/
√

2∆f

)]
,

(S65)

where 〈cos(θL)〉 is computed numerically through S60, as described above. Once we have 〈Vx〉 as a function
of leader number, we can compute Nmax

` .
To illustrate the signal that the followers respond to in this approximation, we plot cos (θL) as leaders are

added in Figure S3. This quantity does not vary as strongly as the x velocity because diffusing leaders do not
distort the direction in a consistent way, which mitigates an inaccurate leader’s impact on the directionality
of PL.
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Figure S3: Leader signals in the independent follower approximation—In the independent follower
approximation, the signal to the followers is the cosine of the polarity vector of all the leaders. For sharp
gradients (h ∼ 1), the leaders are first accurate and the cosine is near 1, but it decreases as essentially
random leaders are added. For intermediate gradients (h ∼ 30), the curve is flat and large as all the leaders
have similar and low uncertainty in the gradient direction. For wide gradients (h ∼ 100), the direction of
the leaders becomes more accurate as more are added, with diminishing returns on additional leaders.

4 Follower Noise and Correlation Time

In the main paper, we show that the cluster correlation time Tc depends strongly on the leader number and
the cluster size. However, one might suspect that the correlation time might also depend on the follower noise
level ∆f because the followers maintain the cluster velocity at any instant, driving its persistence. Therefore,
at a fixed gradient, we show the dependence of Tc on leader number for low (∆f = 36◦), intermediate
(∆f = 72◦), and high (∆f = 120◦) levels of follower noise in Figure S4. In the sharp (h = 1), medium
(h = 30), and wide (h = 100) gradients, the trend is the same—increasing the follower noise decreases the
correlation time at leader fractions less than one. Also, even at the highest level of follower noise considered
here, there is still a significant change in Tc from a small leader number to the all leader case, and this effect
persists at each gradient.
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Figure S4: The cluster correlation time decreases with increasing follower noise—The cluster
correlation time Tc decreases as a function of follower noise ∆f . Although the extent of the difference in
cluster correlation time between the few leader and all leader case quantitatively depends on the follower
noise, the trend does not. Shown are the gradients h = 1, h = 30, and h = 100 respectively in (a)-(c).

5 Cluster Geometry

We compare the train geometry considered in the main text to clusters with a compact geometry. We
examine the geometry of a 4-layer oligomer (as considered in previous work [4, 5]), in which 61 cells are
hexagonally packed in the cluster, as illustrated in Figure S5.

Figure S5: Illustration of a hexagonally packed cluster with 61 cells.

To exactly isolate the effects of geometry, we also simulate trains of N = 61 cells to compare with the more
compact geometry. First, we examine how the geometry affects the mean migration speed, 〈Vx〉. In Figure
S6, we compare the mean velocity curves as a function of the leader number between trains and oligomers for
small (h = 1), medium (h = 30), and large (h = 100) gradient widths at a fixed follower noise level ∆f = 36◦.
For the sharp gradient, the hexagonally packed cluster has many more cells near the transition region, so
it has many cells that can accurately measure the gradient. Therefore, adding leaders continues to increase
its velocity for a larger number of leaders than the N = 61 train, and it can migrate more quickly than the
train. In the medium gradient width, the accuracy of the leaders does not change significantly as a function
of position. This is reflected in the very similar velocities between the geometries at all leader numbers in
the h = 30 gradient. In the wide h = 100 gradient, the cells that can most accurately sense the gradient
are near the back of each cluster. Therefore, the train migrates more quickly than the packed cluster, as
the more extended geometry gives access to more accurate leaders. However, the differences between the
geometries are not as striking as in the sharp gradient case because the h = 100 uncertainty curve does not
vary as dramatically with position.
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Figure S6: Cluster velocities for compact and extended clusters—We compare the mean velocity
in the gradient direction 〈Vx〉 between N = 61 trains and Q = 4 oligomers. The follower noise level is 36◦.
Circles represent the trains and Xs represent the oligomers. In the sharp h = 1 gradient of (a), the oligomer
geometry places more cells near the sharp gradient transition, so there are more accurate leaders and the
cluster can chemotax faster than the train. The h = 30 gradient in (b) produces a relatively flat leader
uncertainty curve, so the geometry does not have a large impact. The wide h = 100 gradient in (c) means
that the most information about the gradient direction is far from the transition regime, so the larger extent
of the train geometry allows it to chemotax slightly faster than the oligomer.

One feature of the curves considered in Figure S6 is that the non-monotonic behavior of the velocity as a
function of leader number is present in both geometries. We look to see if the non-monotonicity in the Nmax

`

as a function of gradient width h also is robust to geometry. Figure S7 shows that for the Q = 4 layered
oligomer Nmax

` first increases, then decreases as a function of gradient width h. The hexagonally packed
cluster starts out with a higher Nmax

` at low h because more of its cells are near the transition region. It also
experiences a steeper initial decrease in Nmax

` as h increases as the uncertainty curve changes from having a
minimum near the transition regime to having a minimum far from the transition regime. This change more
sharply affects the oligomer cluster because it does not extend as far in the x direction as the train. Finally,
each has a similar number of leaders to maximize migration in the wide gradient limit. In this regime, the
follower contribution becomes important relative to the leader signal. This is reflected in the breakdown of
the independent follower approximation and the similar simulated values of Nmax

` for both geometries.
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Figure S7: The number of leaders to maximize migration speed for compact and extended
clusters—We compare Nmax

` for N = 61 trains and Q = 4 oligomers. The follower noise level is 36◦.
Circles represent the trains and Xs represent the oligomers. Both geometries follow a similar trend - the
number of leaders first increases then decreases as the gradient transition widens.

We also consider the cluster correlation time Tc for each geometry. The main qualitative trend that the
correlation time can change dramatically from a small leader fraction to the all leader case, is robust to the
geometry, as in Figure S8.
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Figure S8: Cluster correlation time for compact and extended clusters—We compare the cluster
correlation time Tc between N = 61 trains and Q = 4 oligomers. The follower noise level is 36◦. Circles
represent the trains and Xs represent the oligomers.

6 Intracellular Noise

In the main paper, we assume that the uncertainty in the leaders’ direction is due entirely to effects of the
stochastic binding between ligands and receptors. However, additional noise may be introduced as the cell
processes the information from the bound and unbound receptors. We vary the level of intracellular noise
∆int that the leaders experience. We assume that this noise is independent of the ligand-receptor noise, and

add it in quadrature with the directional uncertainty so that a leader’s uncertainty is ∆` =
√

∆2
φ + ∆2

int. As

the level of intrinsic noise increases, the effect of the gradient on leadership strategy washes out, as shown in
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Figure S9. However, the effects do not completely wash out until the level of intracellular noise approaches
extremely high levels (∼ 72◦).
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Figure S9: Qualitative features of leadership are robust to realistic levels of intracellular
noise—Increasing the intracellular noise ∆int eventually washes out the effects of the gradient on the number
of leaders to maximize 〈Vx〉, but for physically realistic values the qualitative features remain. The symbols
are data for N = 50 trains with a follower noise of ∆f = 36◦, and the lines are the independent follower
approximation predictions.

7 Additional Cluster Size Dependence Data

In the main text, we present data on how cluster size and leadership strategy affect the velocity and correlation
time for a sharp gradient. Here, we consider the case of a wide h = 100 gradient. Unlike in the sharp gradient,
the global maximum in velocity is achieved at the largest cluster size considered, N = 50, because larger
clusters are more extended in the −x direction which gives them access to the cells that can most accurately
sense the gradient.
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Figure S10: Cluster size and leader strategy in a wide gradient—Simulation data for a train of
N = 50 cells in a wide h = 100 gradient with follower noise ∆f = 36◦. The solid line (green pluses)
corresponds to the number of leaders which maximizes 〈Vx〉. The dashed line (orange circles) corresponds
to a leader fractions of 1 and the dot-dashed line (blue squares) corresponds to a leader fraction of 2/5. (a)
The mean velocity in the gradient direction 〈Vx〉 as a function of cluster size and number of leaders. The
corresponding slices are plotted in (c), where the symbols are the data. (b) The cluster correlation time Tc
as a function of cluster size and number of leaders. At fixed cluster size, this time can vary over two orders
of magnitude from low to high leader number. The corresponding slices are plotted in (d). 95 % confidence
intervals from bootstrapping in (c) and (d) are smaller than the symbol sizes..

8 Simulation Details

The cluster velocities are simulated until t=5,200 for various gradient widths, cluster sizes, follower noises,
and number of leaders. Steady-state is considered to be reached after t=200, since that is approximately
the longest correlation time encountered. From the steady-state data, we compute the correlation function
ϕ(t′) = 〈Vc(t) ·Vc(t+ t′)〉 − 〈Vc(t)〉2 and determine a correlation time by fitting an exponential function
to ϕ(t′)/ϕ(0). We show a representative example in Figure S11, which is the steady-state cluster velocity
autocorrelation and its exponential fit for a train of N = 50 cells in an h = 10 gradient with 10 leader cells
and followers with ∆f = 36◦. Re-scaling the time at which correlation function reaches 1/2 to determine
when a 1/e decay would have occurred gives similar trends. After the correlation time Tc for the cluster
has been measured for a run, the steady-state velocity data is broken up into intervals of 3Tc so that the
mean of each interval is an independent measurement of the steady-state velocity. We repeat the simulation
50 times to generate 50 measurements of the correlation time and many measurements of the steady-state
velocity. 95% confidence intervals are generated for the mean velocity in the gradient direction 〈Vx〉 and
the correlation time Tc from the 50 samples using bootstrap methods [6]. To determine the error bars on
Nmax
` , we use the distributions of 〈Vx〉 generated from the bootstrap procedure. For fixed gradient and

cluster properties, we draw a value of 〈Vx〉(N`) for each possible value of N`. Then, for each draw we record
which value of N` gives the highest 〈Vx〉. We draw 10,000 times to generate a distribution for Nmax

` . This
procedure produces a distribution of the number of leaders which optimizes a given quantity.

We account for periodic boundary conditions for both the leader and the follower cells. For follower cells,
we compute θf − θc with the arctan2 function as

θf = arctan2 (VxPf,y − VyPf,x, VxPf,x + VyPf,y) (S66)

where the first term is the cross product Vc ×Pf = |Vc||Pf |sin(θf − θc) and the second is the dot product
Vc ·Pf = |Vc||Pf |cos(θf − θc) and arctan2(b,a) returns the arc tangent of a vector v = ax̂+ bŷ. Therefore,
Equation 8 will return θf − θc, and the function is defined so that the angle is on the interval [−π, π]. For
leader cells, we apply Equation S32 to their angles at each time step. This is equivalent to the procedure
in Equation if Vx = 1 and Vy = 0—in either case, the angle relative to the x axis wrapped on [−π, π] is
returned.
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To avoid numerical errors associated with division by zero, the minimum of the concentration is taken as
10−14 to avoid dividing by zero when computing the leader cell uncertainty for cells far from the transition
region. Since that is a value much lower than the dissociation constant, the leaders are just as random as
they would be if the value were truly 0, and this does not impact the results.
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Figure S11: Representative exponential fit for autocorrelation function—The correlation function
and an exponential fit are compared for a train of N = 50 cells in an h = 10 gradient with 10 leader cells
and followers with ∆f = 36◦. We use the exponential fit to determine the correlation time.
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