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Abstract 

 

Microbial decomposition of soil organic matter is a key component of the global 

carbon cycle. As Earth’s climate changes, the response of microbes and microbial 

enzymes to rising temperatures will, though emission of additional CO2, largely 

determine the soil carbon feedback to climate. However, while increasing attention 

focuses on physiological and ecological mechanisms of microbial responses, the role of 

evolutionary adaptation to warming has been little studied. To address this gap, we 

developed an eco-evolutionary model of a soil microbe-enzyme system under 

warming. Constraining the model with observations from five contrasting biomes 

reveals that evolution will likely aggravate soil carbon losses to the atmosphere, a 

positive feedback to climate change. The model reveals a strong latitudinal gradient in 

evolutionary effects, driven mostly by initial temperature, from small evolutionary 

effects at low (warm) latitudes to large effects at high (cold) latitudes. Accounting for 

evolutionary mechanisms will likely be critical for improving projections of Earth 

system responses to climate change. 
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Introduction 

Microorganisms are key drivers of global biogeochemical cycles1. In terrestrial ecosystems, 

soil microbes decompose organic matter, returning carbon to the atmosphere as carbon 

dioxide (CO2) 2. In vitro and in situ  experiments suggest that changes in microbial 

decomposition with warming are an important feedback to climate3–5. Soil microbial 

populations may respond to increasing temperature through physiological mechanisms such 

as individual metabolic adjustment6,7 and ecological mechanisms such as shifts in 

population abundance or community composition8,9. Given the short generation time, large 

population sizes and standing genetic variation of many microbial organisms, evolutionary 

adaptive responses of microbial populations to warming are also likely10,11. However, how 

microbial evolutionary adaptation may contribute to carbon-climate feedbacks is 

unknown 12.  

Key to microbial decomposition of soil organic matter is the production by microbes of 

extracellular enzymes (exoenzymes), that diffuse locally in the soil and bind to soil organic 

matter compounds13. Because the fitness cost of exoenzyme production14 (reduced 

allocation to growth, Fig. 1a) is paid by individual microbes whereas fitness benefits (larger 

resource pool) are enjoyed by microbial collectives15, we expect genetic variation in 

exoenzyme production16 to be under strong selection15,17. Our objective is to evaluate how 

exoenzyme production responds to selection under environmental warming, and how the 

evolutionary response of exoenzyme production impacts the response of soil organic 

carbon stock (SOC). To this end, we develop and analyze a novel eco-evolutionary model, 

modified from that of  ref. 1818 (Fig. 1a), to take microbial evolutionary adaptation into 

account.  

In this novel eco-evolutionary model, the focal microbial adaptive trait is the fraction 

of assimilated carbon allocated to exoenzyme production19,20, or ‘exoenzyme allocation 

fraction’, hereafter denoted by φ. The balance of assimilated carbon, 1−φ , is allocated to 

microbial growth. Allocated carbon is then converted to exoenzymes or microbial biomass 

with, respectively,  enzyme production efficiency γZ and microbial growth efficiency γM , 
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while the balance  is respired and lost as CO2 in order to produce the metabolic energy 

needed for enzyme or biomass production  (see Fig. 1a and Methods). Competition between 

microbial strains differing in enzyme allocation fraction φ drives adaptive evolution. The 

model predicts the adapted value, φ*, of the exoenzyme allocation fraction at any given 

temperature; the adaptive response of the exoenzyme allocation fraction to temperature 

rise; and how this response impacts the decomposition rate and SOC stock. By comparing 

the full eco-evolutionary (ECOEVO) response of SOC stock to the purely ecological (ECO) 

response in absence of evolution (in which φ is a fixed parameter that does not change), we 

can evaluate the contribution of microbial evolutionary adaptation (EVO effect) to the 

direction and magnitude of the SOC stock response to climate warming (Fig. 1b, c).  

 

Results 

Scenarios of microbial temperature dependence. Microbial decomposition is predicted 

to respond to warming due to the temperature sensitivity of intra- and extra-cellular 

enzymatic activity21–23. In our baseline ‘kinetics-only’ scenario of temperature-dependent 

decomposition, we assume that microbial uptake parameters (maximum uptake rate and 

half-saturation constant) and exoenzyme kinetics parameters (maximum decomposition rate 

and half-saturation constant) increase with temperature5,24. We consider two additional 

scenarios for the influence of temperature on decomposition. In the microbial mortality 

scenario, the microbial death rate also increases with temperature25. This could be due to a 

higher risk of predation or pathogenic infection at higher temperatures, or faster microbial 

senescence due to higher protein turnover25. In the microbial growth efficiency (MGE) 

scenario, MGE (the fraction of carbon allocated to growth that actually contributes to 

microbial biomass, as opposed to being released as CO2 via growth respiration) decreases 

with temperature18,26, which could be due to higher maintenance costs at higher 

temperature27. 
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Evolution of the enzyme allocation fraction trait. At any given temperature, the 

evolutionary model predicts that the adapted value of the enzyme allocation fraction, φ*, 

depends on four parameters (equation (5) in Methods): MGE, mortality, maximum uptake 

rate, and local competitive advantage to exoenzyme producers, or ‘competition 

asymmetry’. Among these parameters, competition asymmetry quantifies the accessibility 

of the exoenzyme ‘public good’ to microbes. It measures the differential availability of 

enzymatically produced dissolved organic carbon (DOC) to different microbial strains. 

Competition asymmetry is shaped by diffusion of  exoenzymes and DOC, and by microbial 

mobility, and is thus likely influenced by soil physical properties, such as texture or 

moisture. For simplicity, we assume that competition asymmetry is independent of 

temperature. 

 

Comparing ECO and ECOEVO responses of soil carbon to warming. In all three 

scenarios of temperature dependence, the pure ecological (not including evolution) 

equilibrium of SOC generally decreases as temperature or exoenzyme allocation fraction 

increases (Fig. 1b, Supplementary Fig. 4, Supplementary Note 5). This 

evolution-independent (ECO) response results in the lost carbon being released to the 

atmosphere as CO2, a positive feedback to warming consistent with previous models.  

With the eco-evolutionary (ECOEVO) version of the model, and focusing on the 

baseline scenario of temperature dependence, we find that evolution causes the adapted 

enzyme allocation fraction, φ* (which is held constant in the pure ECO model runs), to 

always increases with increasing temperature (Fig. 1b, Supplementary Fig. 5a). Combining 

both results, we conclude that the ECOEVO response mediated by microbial evolution 

amplifies the ecology-driven loss of soil carbon due to warming (ECO response) (Fig. 1c).  

The effect of evolution (EVO effect) is strong when the ECOEVO response markedly 

departs from the ECO response. This is predicted in cold ecosystems harboring 

communities of slow-growing microbes, under soil conditions that give only a small 

competitive edge to greater enzyme producers (Fig. 2, Supplementary Fig. 6). Strong EVO 
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effects are robust to the other model parameters – enzyme parameters (efficiency, 

production) and environmental parameters (litter input, leaching) (Supplementary Figs. 6 

and 7, Supplementary Note 4). 

We address the robustness of strong evolutionary effects (Fig. 3a) to different scenarios 

of temperature dependence by focusing on values of nutrient uptake parameters, litter input, 

and competition asymmetry that are conducive to such large EVO effects (for example, 

point B2 in Fig. 2b). In the temperature-dependent mortality scenario, how the direction 

and magnitude of the EVO effect changes from the baseline scenario is entirely determined 

by the sensitivity of microbial mortality to warming. When mortality is moderately 

sensitive to temperature, the ECO and ECOEVO responses become more similar, resulting 

in a smaller EVO effect (Fig. 3a, b). When mortality is strongly sensitive to temperature, 

the ECOEVO response becomes weaker than the ECO response, which implies that 

evolution buffers the loss of soil carbon (negative EVO effect, Fig. 3c). Such EVO effects 

are predicted to be stronger in warmer ecosystems (higher T0, Fig. 3c; see also 

Supplementary Note 7). 

In the temperature-dependent MGE scenario, the direction and magnitude of the 

ECOEVO response to warming vary dramatically with the initial temperature T0 (Fig. 3d). 

Driven by adaptive evolution, the enzyme allocation fraction increases strongly with 

warming in cold systems, hardly changes in temperate systems, and decreases markedly in 

warm systems (Supplementary Fig. 5d), with parallel effects on the decomposition rate 

(Supplementary Fig. 5h). As a consequence, at low T0, aggravation of soil carbon loss by 

evolution is almost as severe as in the baseline scenario, even though both ECO and 

ECOEVO responses are weaker in this scenario (Fig. 3a, d). At higher values of T0, the 

ECOEVO response becomes weaker than the ECO response or even positive (Fig. 3d), 

resulting in the sequestration rather than loss of soil carbon.  

 

Model predictions using empirical data from five biomes. To illustrate how EVO effects 

may vary in real ecosystems, we used available data22 on the decomposition kinetic 
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parameters in five biomes of increasing latitude and decreasing mean annual temperature 

(Costa Rica, California, West Virginia, Maine, and Alaska, Fig. 4). We evaluated ECO and 

ECOEVO responses for each biome under three levels of competition asymmetry (as 

quantified by the local competitive advantage to producers, c 0) (Fig. 4a-h). Under our 

baseline scenario, EVO effects correlate strongly with mean annual temperature, even more 

so for low competition asymmetry (Fig. 4i). Stronger EVO effects occur in colder biomes, 

as found in the general analysis (Fig. 3a). In contrast, the ECO response does not correlate 

with mean annual temperature (Fig. 4a). As a result, a temperate biome such as Maine 

exhibits a weak ECO response that can be strongly amplified by evolution, whereas the 

warm Costa Rica biome shows a strong ECO response that is little affected by evolution. 

These results are quantitatively attenuated but qualitatively unaffected when microbial 

mortality increases moderately with temperature (Fig. 4b, f, j). With a stronger effect of 

temperature on microbial mortality, all biomes show the evolutionary buffering effect (Fig. 

4k) found in the general analysis (Fig. 3c). The intensity of evolutionary buffering is 

independent of the biomes’ mean annual temperature, whereas it varies significantly with 

competition asymmetry (Fig. 4k). Under the temperature-dependent MGE scenario, ECO 

and ECOEVO responses are reduced in magnitude compared to the baseline scenario (Fig. 

4d, h), particularly in cold biomes. However, in these biomes, EVO effects are enhanced 

dramatically (Fig. 4l). Thus, in a biome as cold as Alaska, a significant ECOEVO loss of 

soil carbon is predicted, whereas the purely ecology-driven loss of soil carbon would be 

negligible (Fig. 4l).  

 

Discussion 

As global warming increases environmental temperatures, our model predicts evolution of 

the enzyme allocation fraction, with potentially large effects on the decomposition process 

and SOC stock. The size of evolutionary (EVO) effects is most sensitive to MGE, 

microbial mortality, activation energy of uptake maximal rate, competition asymmetry, and 

initial temperature (Fig. 2). Evolution often aggravates the ecological loss of soil carbon in 

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 19, 2019. ; https://doi.org/10.1101/641399doi: bioRxiv preprint 

https://doi.org/10.1101/641399


 
 

 

response to warming, especially in cold biomes (Figs. 1, 3). We identified two cases in 

which evolutionary adaptation to warming may buffer or even revert the ecology-driven 

loss of soil carbon: strongly temperature-dependent microbial mortality, or 

temperature-dependent MGE in warm ecosystems (Fig. 3). Overall, we expect evolutionary 

effects to vary greatly among ecosystems that differ in biotic (microbial life history and 

physiology) and abiotic (temperature, soil texture and moisture) characteristics. 

Implications of our findings for large geographic scales, across terrestrial ecosystems, 

are hinted at by specifying the model for the five contrasting biomes for which exoenzyme 

kinetics data are available22. We find evolutionary aggravation of soil carbon loss to be the 

most likely outcome, with a strong latitudinal pattern induced by temperature, from small 

evolutionary effects at low (warm) latitudes to large evolutionary effects at high (cold) 

latitudes. In all cases, competition asymmetry is a strong influence on the eco-evolutionary 

response of microbial decomposition to warming (Fig. 4). Soil texture and moisture, which 

may influence competition asymmetry, vary considerably among locations22. Predicting 

geographic variation in ECOEVO responses and EVO effects across large geographic 

scales thus calls for more empirical data on variation in ecological (competition) traits, 

especially how the competitive advantage to exoenzyme producers varies with soil physical 

properties. 

Large-scale projections of soil C cycle changes on timescales that are long relative to 

the characteristic times of the processes described by our model also raise the issue of 

distinguishing between readily available SOM versus physio-chemically protected SOM, 

which decomposes more slowly5,28. Reinterpreting the soil carbon stock compartment of our 

model as readily available SOM removes the constraint of having the stock of microbial 

biomass, M , much smaller than SOC (C  in our model)29,30. The relevant measure of soil 

carbon then becomes the sum of all compartments, Ctot = C  + M  + Z  + D , called ‘total soil 

active carbon’, where Z is the exoenzyme concentration and D  the biomass of dissolved 

organic carbon (equations (1a-d) in online Methods). We investigated how our results are 

changed when ECO and ECOEVO responses are defined with respect to Ctot, rather than C, 
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focusing on the baseline scenario (constant MGE and constant microbial turnover). 

Supplementary Figure 9 exemplifies the case where microbial biomass is the main 

component of C tot and total soil active carbon is higher in the presence of microbes than in 

their absence. This occurs because here a higher SOC leaching rate, eC, is more than 

compensated by the microbial higher productivity (high MGE, γM, and low death rate, dM), 

so that carbon is retained in the soil longer in the presence of microbes than without. In this 

type of high-leaching soils, the direction of the ECO response shifts from negative (carbon 

loss) to positive (carbon gain). Microbial adaptive evolution can amplify, buffer or reverse 

this ecological response depending on the local competitive superiority of enzyme 

producers, c 0 (Supplementary Fig. 10). This is because microbial biomass, M, is the main 

carbon stock in these systems and purely ecological processes drive an approximately linear 

increase in M with temperature whereas M  responds non-linearly to the increase in enzyme 

allocation fraction (Supplementary Fig. 9b). 

Our study demonstrates how a trait-based approach can be used to integrate microbial 

evolutionary adaptation into carbon cycle models31. Our focal trait, the enzyme allocation 

fraction, φ , is pivotal in the decomposition process. Other microbial traits that appear in our 

model may also respond to selection imposed by warming, such as MGE (γ M) and the 

exoenzyme production efficiency (γZ). The γ M trait may evolve in response to variation in 

environmental quality (e.g. predation or infection risk), possibly trading-off with the 

maximum rate of uptake or correlating with the death rate; γ Z may evolve in response to 

substrate variation20, possibly correlating with the enzyme decay rate. Given specific 

assumptions about factors of and constraints on the evolution of these traits, our sensitivity 

analyses can be used to make qualitative predictions on how the ECOEVO response and 

EVO effect might be altered (Fig. 2, Supplementary Fig. 6). For example, strong EVO 

effects may not be affected if evolving γM correlates positively with dM, whereas weak 

effects may become strong if γM trades-off with d M. In contrast, the low sensitivity of EVO 

effects to γZ suggests that the evolution of this trait may have little impact on the response 

of soil C to warming. 
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The adaptive trait-based approach we use circumvents the difficulty of prescribing 

critical parameters (such as the enzyme allocation fraction) and their response to 

environmental change by allowing these parameters to naturally emerge from biologically 

grounded evolutionary dynamics of the system under study. This approach can easily be 

extended to predict (rather than assume or prescribe) the adaptive dynamics of multiple 

microbial traits, such as growth-related traits and substrate-specific enzyme production 

traits, and their diversification into coexisting functional types. A similar approach has been 

used to construct a physiology-based model of feedbacks between global ocean ecosystem 

function and phytoplankton diversity32. Rather than assuming values for the multiple 

physiological traits characterizing each plankton species, that model allowed interactions 

among randomly parametrized species drive species sorting and emergence of the 

corresponding trait values. This trait-based approach for microbial communities also 

facilitates genomic and metagenomic data, mapped to soil microbial function, to be used in 

model validation 33. 

Future extensions of our eco-evolutionary model will enable the mechanistic 

representation of below-aboveground feedbacks between soil microorganisms and 

vegetation, by coupling the carbon cycle with other major biogeochemical cycles, such as 

nitrogen and phosphorus1. Existing mathematical19,34,35 and computational models20,36,37 pave 

the way for such extensions. Global projections of the effect of soil microbial evolution on 

future climate change will become possible (e.g. Wieder et al. 2013) by coupling our 

eco-evolutionary model of biological decomposition with soil models that account for the 

chemical and physical transformations of soil carbon occurring on year-to-century 

timescales5,38–40. 

Given the large population size and short generation time of many microorganisms, 

biological principles suggest that microbial evolution should be an essential component of 

ecosystem response to warming. We have shown here that microbial evolutionary 

adaptation to warming, and its impact on the decomposition of soil organic matter, can 

radically change soil carbon dynamics. Empirical data suggest that natural values of 
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enzyme allocation fraction are low23,34 and fall in the range for which our model predicts 

large eco-evolutionary responses of decomposition to warming. In spite of an increasing 

effort to document and understand the ecosystem impact of microbial physiological and 

ecological responses to climate warming18,26,41, no Earth system model that seeks to 

represent the role of living organisms in climate feedbacks has yet included evolutionary 

mechanisms of adaptation. Our model is a critical first step. We expect projections of future 

climate and carbon cycle feedbacks, and their uncertainty, to be significantly impacted, 

from local to global scales. 
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Methods 

We use the microbe-enzyme model of litter decomposition first introduced in ref. 1818 and 

extend it to describe the ecological dynamics of soil organic carbon (SOC), dissolved 

organic carbon (DOC), microbial biomass, and extracellular enzyme abundance, given litter 

input, leaching rates, and soil temperature (Fig. 1a and Supplementary Fig. 1). The effect of 

temperature is mediated by enzymes kinetics, with exoenzymes driving the decomposition 

rate, and intra-cellular enzymes involved in resource uptake and microbial biomass 

synthesis. As temperature changes, the model predicts how the ecological equilibrium 

changes. The change in equilibrium SOC is what we call the ecological (ECO) response of 

the ecosystem. 

To investigate the effect of evolutionary adaptation on decomposition, we include 

microbial evolution in the ecological model. Our focus is on soil bacteria (as opposed to 

fungi), which typically have large population size and short generation time. We assume 

that microbes may vary individually in their investment in exoenzymes, measured by the 

fraction (denoted by φ  throughout the paper) of resources allocated to enzyme production. 

Assuming that some of this variation has a genetic basis, we derive the selection gradient 

and compute the evolutionarily stable value of the enzyme allocation fraction, φ*, at any 

given temperature. We can then evaluate how φ* changes as temperature increases, and 

how the ecosystem equilibrium changes from both the direct effect of temperature rise on 

enzyme kinetics, and the indirect effect mediated by microbial evolutionary adaptation to 

warming (Fig. 1b, c).  

 

Ecological model. Based on ref. 1818 (Fig. 1a, Supplementary Fig. 1), the ecological model 

has four state variables measured in unit mass of carbon: soil (non decomposed) organic 

carbon (SOC), C; soil decomposed soluble organic carbon (DOC), D; microbial biomass, 

M ; and exoenzyme concentration, Z. Exoenzyme production drives the decomposition 

process of SOC  into DOC, which is the only source of carbon for microbes. The model 
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accounts for microbial production and death, exoenzyme decay, recycling of dead microbes 

and degraded exoenzymes, SOC input from plant litter, and leaching of SOC and DOC.  

 

Model equations.  State variables C, D, M , Z obey equations (1a-d):  

 

(1a) Z Cdt
dC = I −

K +Cm
D

v  CD
max − eC  

(1b) Z M Z M Ddt
dD =

K +Cm
D

v  CD
max + dM + dZ −

K +Dm
U

v  DU
max − eD  

(1c) M Mdt
dM = (1 )− φ γM K +Dm

U
v  DU

max − dM  

(1d)  γ M Zdt
dZ = φ Z K +Dm

U
v  DU

max − dZ  

 

In equation (1a), decomposition follows from Michaelis-Menten kinetics of Z binding 

substrate C ; there is a constant input, I, of soil organic (non decomposed) carbon from 

aboveground litter, and a loss due to leaching at constant rate eC. In equation (1b), D is 

produced by decomposition and the recycling of dead microbial biomass and inactive 

enzymes; D  is consumed by microbial uptake, and lost by leaching at constant rate e D. In 

equation (1c), growth of microbial biomass M  is driven by the rate of DOC uptake (a 

Monod function of D ) times the fraction of uptaken DOC turned into biomass, (1 – φ) γM, 

minus microbial mortality at constant rate dM. In equation (1d), enzyme variation is driven 

by the rate of DOC uptake times the fraction allocated to enzyme production, φ, and 

production efficiency, γ Z, minus enzyme deactivation at constant rate, d Z.  

 

Ecosystem equilibria.  The ecological model possesses either one globally stable 

equilibrium, or three equilibria (one of which is always unstable) (Supplementary Fig. 2). 

There are thresholds φ min and φ max such that the globally stable equilibrium exists for φ < 

φ min or φ > φ max and is given by C  = I /e C, D  = 0, M  = 0, Z  = 0. Thus, at this equilibrium, the 

microbial population is extinct and no decomposition occurs. For φmin < φ  < φ max, the 

microbial population can either go extinct (then the system stabilizes at the same 
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equilibrium as before) or persists at or around a non-trivial equilibrium, which can be 

solved for analytically. Note that φmin and φ max depend on all microbial and model 

parameters (Supplementary Fig. 3, Supplementary Note 1).  

 

Effect of temperature on model parameters. Decomposition is predicted to respond to 

warming5 due to the temperature sensitivity of enzymatic activity21,22,42. Microbial 

assimilation may also vary with temperature if the microbial membrane proteins involved 

in nutrient uptake are sensitive to warming. Following ref. 1818, we assume that exoenzyme 

kinetics parameters (maximum decomposition rate  and half-saturation constant )vD
max KD

m  

and microbial uptake parameters (maximum uptake rate vU
max and half-saturation constant 

) follow Arrhenius relations with temperature. This defines our baseline ‘kinetics-only’Km
U  

scenario of temperature-dependent decomposition:  

 

(2a)  evD
max = v0

D −  Ev
D

R(T +273)  

(2b)  eKD
m = K0

D −  
ED

K
R(T +273)   

(2c)  evU
max = v0

U −  Ev
U

R(T +273)  

(2d)  eKm
U = K0

U −  
EK

U

R(T +273)  

 

where T  is temperature in Celsius, R  is the ideal gas constant, and the E  parameters denote 

the corresponding activation energies.  

We consider two additional scenarios for the influence of temperature on 

decomposition. In the temperature-dependent microbial mortality scenario25, the microbial 

death rate increases with temperature. This could be due to a higher risk of predation or 

pathogenic infection at higher temperatures, or faster microbial senescence due to higher 

protein turnover25. In this scenario, the microbial death rate dM depends on temperature 

according to  
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(3) edM (T ) = dM0
− EdM

R(T +273)  

 

as in ref. 2525. 

In the temperature-dependent microbial growth efficiency (MGE) scenario, the MGE 

decreases with temperature18,25,26, possibly due to higher maintenance costs at higher 

temperature27. This is modeled by making the microbial growth efficiency γ M vary linearly 

with temperature18,22,43,44: 

 

(4)  (T )γM (T ) = γM ,ref − m − T ref  

 

with T ref = 20 °C. 

How scenarios of temperature-dependence and parameter values influence the response 

of equilibrium C  to temperature is shown in Supplementary Fig. 4 and commented on in the 

Supplementary Note 4. 

 

 The enzyme allocation fraction φ is a ‘public good’ trait: as an individual microbe 

produces exoenzymes, it experiences an energetic cost and obtains a benefit – access to 

decomposed organic carbon – that depends on its own and other microbes’s production in 

the spatial neighborhood45,46. As a public good trait, φ  is under strong direct negative 

selection: ‘cheaters’ that produce less or no exoenzymes, and thus avoid the cost while 

reaping the benefit of enzyme production by cooperative neighbors, should be at a selective 

advantage. In a highly diffusive environment in which exoenzymes are well mixed, φ 

would evolve to zero, leading to evolutionary suicide47. However, in a more realistic 

spatially distributed environment with limited exoenzyme diffusion, microbes with a given 

trait are more likely to interact with phenotypically similar microbes, which puts more 

cooperative microbes at a competitive advantage over less cooperative strains45,48,49. This 

generates indirect positive selection on trait φ. 
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The trait value φ * at which negative and positive selections balance is the 

evolutionarily stable microbial strategy, given by 

 

(5) φ* (T ) = 1 − dM
γ  vM

U
max

− 1
c0  

 

where c 0 measures the competitive advantage, due to spatially local interactions, of any 

given strain over a slightly less cooperative strain, or ‘competition asymmetry’ 

(Supplementary Note 3). The parameter c0 is likely to depend on the diffusivity of DOC, 

which may itself vary with soil properties such as texture or water content. 

As temperature rises from T0 to T , the direction and magnitude of the microbial 

adaptive response is measured by , which depends on the scenarioφ∆ * = φ* (T ) − φ* (T )0  

of temperature dependence. The eco-evolutionary (ECOEVO) response of SOC is given by 

 

(6) ECOEVO = Δ CECOEVO ( T0, T) = C ( T, φ*( T)) – C( T0, φ*( T0)) 

 

where C ( T, φ ) denotes ecological equilibrium C at temperature T , given enzyme allocation 

fraction φ . The ECOEVO response is to be compared with the purely ecological (ECO) 

response: 

 

(7) ECO = Δ CECO ( T0, T ) = C ( T, φ*( T0)) – C( T0, φ*( T0)) 

 

in which the enzyme allocation fraction is fixed at its T0 -adapted value, φ*( T0) (Fig. 1c). 

We measure the magnitude of the evolutionary (EVO) effect as the difference between 

the ECOEVO response averaged over the temperature range (T0, T) and the ECO response 

averaged over the same temperature range, normalized by the ECO response: 
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(8) V O ef fectE =
C (T , T )

|
|
|
∫
T

T 0

∆ ECO 0
|
|
|

C (T , T )− C (T , T )
|
|
|
∫
T

T 0

∆ ECOEV O 0 ∫
T

T 0

∆ ECO 0
|
|
|  

 

This evaluation allows us to compare EVO effects across systems that differ in the 

magnitude of their ECO response. In all simulations we use  where ΔT  = 5TT = T 0 + Δ  

°C. In general, the ECO and ECOEVO responses are monotonic, close-to-linear functions 

of T over the considered temperature ranges , which makes all ourT , T T )( 0  0 + Δ  

comparative analyses almost insensitive to our choice of ΔT. 

 

Parameters default values and variation range. Under the temperature-dependent 

kinetics-only scenario, the ecological model (equations (1) and (2)) includes seven 

microbial parameters (φ, γ M, dM, , , , ), six enzyme parameters ( γZ, dZ, ,v0
U Ev

U K0
U EK

U v0
D  

, , ) and four environmental parameters (I , e C, eD, T). Our set of defaultEv
D K0

D ED
K  

parameter values is derived from Allison et al. (2010) (Supplementary Table 1). The 

enzyme allocation fraction default value is 10% at 20 °C34. For the dependence of enzyme 

kinetics parameters on temperature,  and , we selected the Arrhenius(T )vD
max (T )KD

m  

equations that best fit data from California22 (mean annual T = 17 °C) and match values at 

20 °C (0.42 and 600, respectively) 18. For the uptake kinetic parameters, we obtained 

 by selecting  that best fits the Arrhenius equation in ref. 18 18 with  = 35vU
max (T ) v0

U Ev
U  

and we obtained  by selecting and  that best fit the linear relation used inKm
U (T ) K0

U EK
U  

ref. 1818. To parametrize the temperature-dependent mortality (dM,ref, T ref) and MGE ( γM,ref, 

m, T ref) models, we used values from ref. 25 25 and tested two values of E dM ( EdM = 0 is the 

enzyme only temperature-dependent model). For greater realism, we used a higher value of 

the exoenzyme deactivation rate (twice the value used in ref. 1818) and constrained the 

range of all parameters in order to enhance stability and produce relative stock sizes that are 

consistent with empirical data, so that at equilibrium M is about 1% of C , Z is about 1% of 

M  and D  is limiting (hence close to 0 at equilibrium29,30),  
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We analysed the model sensitivity by varying parameters over two orders of magnitude 

(as in ref. 1818) – except γ M and γ Z for which we used the whole range over which the 

non-trivial ecosystem equilibrium is stable (Supplementary Table 2). To assess the 

significance of our findings for real ecosystems, we focused on five biomes for which 

empirical data22 could be used to constrain the model. The five biomes contrast strongly in 

their initial temperature, T0, and decomposition kinetics,  and  for which wevD
max (T ) (T )KD

m  

selected the Arrhenius equations (2) that best fit the relations used in ref. 2222 

(Supplementary Table 3). 
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Figure Captions 

 

Figure 1. Effect of temperature and enzyme allocation fraction on SOC ecological  

equilibrium.  a, Structure of the microbial-enzyme ecological model (see Methods for 

details): SOC stock is the balance of plant input, I, loss from leaching, lc, and loss by 

exoenzyme-mediated degradation to DOC (D ), which in turn is allocated between (fraction 

φ ) production of enzymes (Z ) and (fraction 1−φ ) growth of microbial biomass (M). b, 

Effect of temperature, T , and enzyme allocation fraction, φ, on SOC equilibrium, C, in the 

baseline scenario of temperature dependence. c, Response of SOC ecological equilibrium, 

C , to a 5°C increase in temperature (from 20 °C to 25 °C) as a function of enzyme 

allocation fraction, φ. Parameters are set to their default values (Supplementary Table 1), 

except I  = 5 10-3,  = 105,  = 38 and c 0 = 1.17.v0
U Ev

U  

 

 

gFigure 2. Effect of microbial evolutionary adaptation on the SOC equilibrium 

response to + 5 °C warming (EVO effect). Temperature influences enzyme kinetics only 

(baseline scenario of temperature dependence). a, Influence of microbial biomass 

production efficiency, γ M, and microbial mortality rate, dM. b, Influence of microbial 

resource acquisition traits  and . c-d , Influence of competition asymmetry, c 0, andv0
U Ev

U  

initial temperature, T0. In all figures, constant parameters are set to their default values 

(Supplementary Table 1) and I is set to 5 10-3. Points A1 and B1 indicate the default 

parameter values. Point A2 (respectively B2) exemplifies values of γM and d M (resp. v0
U  

and ) for which the EVO effect is strong. Panel c (resp. d) shows the influence of c0 andEv
U  

T 0 on the EVO effect at A2 (resp. B2). 
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Figure 3. Ecological and eco-evolutionary responses of SOC equilibrium to warming 

(up to + 5 °C) for three scenarios of temperature dependence. Ecological and 

eco-evolutionary changes in SOC equilibrium C given by Eq. (3a) (without evolution, 

dashed curves) and Eq. (3b) (with evolution, plain curves) are plotted as a function of the 

increase in temperature. Blue curves , initial temperature T 0 = 5°C. Black curves , T0 = T ref = 

20°C. Red curves , T 0 = 30°C. Insets , Direction and magnitude of EVO effect (%), from - 

150 % to + 150 %, color code indicates T 0 as before. a , Baseline scenario of temperature 

dependence (enzyme kinetics only). b, Temperature-dependent microbial turnover, with 

E dM = 25 < . c , Temperature- dependent microbial turnover, with EdM = 55 > . d ,Ev
U Ev

U  

Temperature-dependent MGE, with m = - 0.014. Parameters values correspond to point B2 

in Fig. 2 (I  = 5 10-3,  = 105,  = 38, c 0 = 1.17); other parameters are set to their defaultv0
U Ev

U  

values (Table S1). 

 

 

Figure 4. Ecological and eco-evolutionary responses of SOC equilibrium to + 5 °C 

warming predicted for five biomes. a-d, ECO response.  e-h, ECOEVO response. i-l, 

EVO effect. AK: Alaska, boreal forest, T 0 = 0.1°C. ME: Maine, temperate forest, T0  = 5°C. 

WV: West Virginia, temperate forest, T0 = 9°C. CA: California, temperate grassland, T 0 = 

17°C. CR: Costa Rica, tropical rain forest, T0 = 26°C. First column (a, e, i): baseline 

scenario of temperature dependence. Second column (b, f, j): temperature-dependent 

microbial turnover scenario with EdM = 25 < . Third column ( c, g, k): temperature-Ev
U  

dependent microbial turnover scenario with EdM = 55 > . Fourth column (d, h, l ):Ev
U  

temperature-dependent MGE scenario (m = - 0.014). The influence of competition 

asymmetry, c0, is shown. For clarity, vertical axis for ECO and ECOEVO responses are 

truncated at - 65 mg C cm-3. Actual values for AK with c 0 = 1.17 are ECO = - 170 mg C 

cm-3 and ECOEVO = - 556 mg C cm -3 ; actual value for WV with c0 = 1.17 is ECOEVO = - 

92.8 mg C cm-3. Parameters values correspond to point B2 in Fig. 2 (I  = 5 10-3,  = 105,v0
U  
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 = 38, c 0 = 1.17); other parameters are set to their default values (Supplementary TableEv
U  

1). 
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