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Abstract 
A large and rapidly growing number of studies on autism spectrum disorder (ASD) have used 
resting-state fMRI to identify various alterations of functional connectivity (FC), with the hope 
of identifying clinically useful biomarkers or neural mechanisms underlying ASD. However, 
results have been largely inconsistent across studies, and there is therefore a pressing need to 
determine the primary factors influencing this lack of replicability. Here, we used resting-state 
(rs-fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE-I and II) to investigate 
two factors thought to strongly influence replicability: the use of different denoising methods 
(i.e., data preprocessing) and data site (which differ in terms of sample, data acquisition 
parameters, etc.). Using four independently acquired datasets and 31 different denoising 
strategies, we examined the replicability of patterns of both group-averaged functional 
connectomes and group-level differences (i.e., ASD vs. control). Within datasets, both group-
averages and group-comparisons of functional connectomes were highly consistent (r = 0.92 
±0.06 / r = 0.80±0.09) across different pipelines, with the largest differences across pipelines 
reflecting whether global signal regression (GSR) was used. However, across datasets, while 
group-averages were still highly consistent (r = 0.86±0.02), group differences did not replicate, 
regardless of denoising strategy: indeed, consistency of group differences was so low (r = 
0.09±0.05) that differences identified in one dataset had essentially no relationship with those 
in other datasets. Across-site similarity remained low even when considering the data at the 
network (as opposed to edge) level. Because there are a number of additional methodological 
factors that can influence the reliable detection of group differences (e.g., scanner-related 
differences, subject differences, post-processing analysis, effect sizes of ASD alterations, 
amount and quality of data), these results cannot completely rule out the existence of replicable 
resting-state FC differences in ASD. However, they do highlight the importance of examining 
replicability in future studies of ASD, and, more generally, call for extra caution when 
describing and interpreting alterations in functional connectivity across groups of individuals.  
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Introduction 
 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with heterogeneous 
etiology and phenotypic expression. Resting-state functional Magnetic Resonance Imaging (rs-
fMRI) -- in which the temporal coupling of spontaneous activity across the brain, or functional 
connectivity (Biswal et al., 1995; Greicius et al., 2003), is measured -- has been widely used to 
study differences in functional brain organization in ASD, with hopes of revealing underlying 
neural mechanisms or identifying FC-based biomarkers (Abraham et al., 2017; Yahata et al., 
2016). However, findings of FC alterations in ASD have been highly variable across studies 
(Hull et al., 2016). This variability of findings may reflect the variability across numerous 
study-specific factors, including strategies for denoising the data (i.e., preprocessing pipelines) 
and a host of differences across sites. Yet, without replicable findings that generalize beyond a 
single study, the utility of rs-fMRI for identifying mechanisms or serving as biomarkers of 
ASD is uncertain and remains to be demonstrated. 

One potential source of variability across rs-fMRI studies has been the methods used 
for data preprocessing. The blood oxygenation-level dependent (BOLD) signal, while sensitive 
to changes related to brain activity, is also highly vulnerable to head motion and physiological 
noise, which can spuriously influence measures of functional connectivity and ultimately affect 
conclusions from functional connectivity studies (Power et al., 2012; Power et al., 2014; 
Satterthwaite et al., 2012; Van Dijk et al., 2012; Yan et al., 2013a). Ideally, effective data 
preprocessing methods would minimize the influence of such nuisance signals and improve 
reproducibility. Best practices for denoising methods are still evolving and a consensus has yet 
to be reached, in part because our understanding of how such artifacts influence the BOLD 
signal remains incomplete (Birn, 2012; Byrge and Kennedy, 2018b; Power et al., 2017). These 
differences presumably contribute in part to inconsistencies across studies -- different strategies 
have been used both within and across labs, adding additional uncontrolled and unaccounted 
for variation in the research literature. Even when researchers attempt to conduct post hoc 
analyses to try to understand how different preprocessing steps could account for study-level 
differences in ASD, the lack of a ground truth upon which to evaluate measurement accuracy 
limits our ability to interpret such differences (Müller et al., 2011).  

Most common denoising approaches rely on linear regression, whereby various 
estimates of noise are regressed from the BOLD data. The numerous variations of this strategy 
come from different choices of which noise estimates to use as regressors. Those most 
commonly used include measures of head displacement along six translational and rotational 
dimensions, as well as time series from white matter (WM) and cerebrospinal fluid (CSF). An 
especially controversial nuisance regressor is the global fMRI signal; proponents of global 
signal regression (GSR) argue for its efficacy in removing physiological noise (Birn, 2012; 
Byrge and Kennedy, 2018b; Power et al., 2017), while the concerns include removal of real 
neural signals (Scholvinck et al., 2010) and distorting clinical group comparison (Gotts et al., 
2013; Yang et al., 2014). An additional preprocessing step that can be used in parallel is volume 
censoring (or "scrubbing"; (Power et al., 2012), in which specific time points associated with 
excessive amounts of framewise displacement (corresponding to moments of head movement) 
and/or changes in global signal are excluded from analysis. A related choice is called “spike 
regression”, which regresses from the data one or more nuisance regressors labeling time points 
contaminated with excessive motion (Lemieux et al., 2007; Satterthwaite et al., 2013).  

Several recent studies have evaluated the performance of different denoising strategies. 
Although no relationship between motion and functional connectivity should remain following 
an optimal denoising procedure, these studies found that the strength of residual relationships 
between FC and artifacts varied widely across commonly-used pipelines (Byrge and Kennedy, 
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2018b; Ciric et al., 2017; Parkes et al., 2018). Given that greater in-scanner head movement is 
commonly observed in ASD and other clinical populations, differences in preprocessing 
choices and particularly how those choices deal with artifacts arising from head movement 
could be a potential source of inconsistent results across rs-fMRI studies. For example, Gotts 
and colleagues (2013) compared the effects of pipelines with and without GSR on group 
comparisons of functional connectivity between ASD and controls. They found that group 
differences varied across pipelines and demonstrated that GSR affected group comparison 
results. Jones et al. (2010) also found that the use of GSR influenced findings of group 
differences in connectivity in ASD. Parker and colleagues (2018) systematically evaluated the 
influence of numerous denoising pipelines on group differences in functional connectivity in 
schizophrenia. They found that significant group differences were only found in some pipelines 
(including GSR and aCompCor) and that the overlap between functional connections (i.e., 
edges) identified in different pipelines was generally low. These findings demonstrate clearly 
that the choice of denoising pipeline can affect the results of clinical comparisons, including 
both the presence or absence of group differences and their specific details (e.g., specific edges 
affected). 

Further complicating the picture is that data site effects, or variation across different 
scanning sites, have been reported in several studies of both task-based and resting-state fMRI 
(Brown et al., 2011; Dansereau et al., 2017; Noble et al., 2017; Turner et al., 2013; Yamashita 
et al., 2019; Yan et al., 2013b; Yu et al., 2018). Different data sites present many potential 
sources of variation, including differences in participant (i.e., cohort) characteristics, image 
acquisition parameters, scanners, scan procedures, and more. Such uncontrolled variation 
could undermine the generalizability of results and efforts to uncover underlying mechanisms 
and clinically useful biomarkers. Clinical and etiological heterogeneity within the ASD 
population could also exacerbate these difficulties. Nair et al. (2018) compared a local measure 
of functional connectivity (ReHo, regional homogeneity) between ASD and controls from 
different samples. They found few consistent results across samples, even when using the same 
analysis pipeline and examining only data collected with eyes open. They suggested that extra 
caution should be paid to between-site variability when using multi-site data. However, a recent 
study reported reproducible ASD-associated alterations of functional connectivity across four 
large ASD cohorts (Holiga et al., 2019). These two studies both used data from Autism Brain 
Imaging Data Exchange (ABIDE), a large database aggregating ASD neuroimaging data from 
multiple sites. Many studies have used ABIDE data by combining data sites to achieve a large 
sample size rather than examining replication across sites. Therefore, it is necessary to evaluate 
the replication of results across individual data sites (Brown et al., 2011).  

Here, we examined the effects of different denoising pipelines and data sites on the 
replication of group-level case-control differences in ASD, by using multiple independent 
datasets within ABIDE. We investigated the consistency across pipelines and across data sites 
of average functional connectomes within each group, and differences between ASD and 
control groups, at both region of interest (ROI)-level and large-scale network level. 

 
Methods 
 
Participants 

All data analyzed in this study were selected from ABIDE I and ABIDE II (Di Martino 
et al., 2017; Di Martino et al., 2014). We chose four sites to analyze (NYU, SDSU, UCLA, and 
UM) because of their large sample sizes and overlapping participant ages (Table 1 and Figure 
S1). Within each site, participants were included on the basis of mean framewise displacement 
(FD) no larger than 0.2 mm, manually checked good quality of anatomical images, and age 
ranging from 10 to 20 years old. To equate groups on FD, control participants at each site were 
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selected based on the smallest difference in FD to each ASD participant; no ASD participants 
were excluded in this procedure. Within each site, there were no group differences in age or 
mean FD, though some numerically small differences existed between sites (see Table 1). For 
select additional analyses, we also applied a more liberal motion threshold (mean FD <= 0.3 
mm) to include 28% more participants (see Supplementary Table S1 and Figure S1). 

 
Table 1. Demographic information  

 NYU 
(ASD/Control) 

SDSU 
(ASD/Control) 

UCLA 
(ASD/Control) 

UM 
(ASD/Control) 

NO. 36/36 34/32 26/26 26/26 

Age 
(Mean ± STD) 

13.27 ± 2.61/ 
13.93 ± 2.57  

14.42 ± 2.52/ 
14.31 ± 2.13 

14.05 ± 2.19/ 
13.58 ± 1.49  

14.72 ± 1.77/ 
14.92 ± 2.53  

Mean FD 
(Mean ± STD) 

0.13 ± 0.04/ 
0.13 ± 0.04  

0.11 ± 0.04/ 
0.10 ± 0.04  

0.13 ± 0.04/ 
0.12 ± 0.03 

0.13 ± 0.03/ 
0.13 ± 0.03  

Note: Age of the ASD group in NYU was lower than that in UM, and age of the control group 
in UCLA was lower than that in UM. Mean FD of both the ASD group and the control group 
in SDSU was lower than their respective groups in NYU and UM (ps <= 0.05, uncorrected).  
 
Image Preprocessing 

The rs-fMRI scanning parameters for each site are shown in Table 2. All the images 
were preprocessed using Matlab (R2018a) code made available from a recent study (Parkes et 
al., 2018) that integrates SPM 12, FSL (FMRIB's Software Library; Smith et al., 2004) and 
Advanced Normalization Tools (ANTs; Avants et al., 2008)). The T1 images were 
preprocessed using the following steps: neck removal; segmentation of white matter (WM), 
cerebral spinal fluid (CSF), and grey matter (GM); five times erosion of WM mask and two 
times erosion of CSF mask; nonlinear registration of T1 images to MNI space, and applying 
the transformation to WM, CSF, and GM masks. 

Preprocessing of functional images included several steps shared across different 
denoising pipelines, including the following: removing the first four volumes; slice-timing 
correction; head motion correction by volume realignment; co-registration to the native 
structural image using rigid-body registration, and then to the MNI template using nonlinear 
transformations derived from T1 registration; removing linear trends; normalization of global 
mean intensity to 1000 units; conducting different denoising strategies (detailed in the next 
section); bandpass filtering (0.008 - 0.08 Hz); and spatial smoothing with a 6 mm full-width at 
half-maximum filter. 

 
Table 2. rs-fMRI scanning parameters 

 NYU SDSU UCLA UM 

Scanner Siemens 3T 
Allegra 

GE 3T MR750 Siemens 3T 
TrioTim 

GE 3T Signa 

TR/TE 2000/15 2000/28 2000/15 2000/30 

FA 90 90 90 90 

Resolution 3×3×4 3.4×3.4×3.4 3×3×4 3.4×3.4×3 
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Volumes 180 180 120 300 

Matrix 64×80×33 64×64×42 64×64×34 64×64×40 
 
Denoising Pipelines 

We analyzed several commonly-used denoising methods (see details in Parkes et al., 
2018), combining different nuisance regression models and volume censoring approaches for 
a total of 31 denoising pipelines examined (Table 3). 

 
Table 3. Compositions of Denoising Pipelines 

Denoising Pipelines Head motion 
parameters 

Tissue-based 
Regressors 

GSR Censoring 

6H 6 
   

12H 12 
   

24H 24 
   

6H+2W 6 mean WM/CSF 
  

12H+2W 12 mean WM/CSF 
  

24H+2W 24 mean WM/CSF 
  

24H+4W 24 4 mean WM/CSF 
  

24H+8W 24 8 mean WM/CSF 
  

6H+aCC 6 aCompCor 
  

12H+aCC 12 aCompCor 
  

24H+aCC 24 aCompCor 
  

6H+2W+Spike 6 mean WM/CSF 
 

Spike 
6H+2W+Scrub 6 mean WM/CSF 

 
Scrub 

12H+2W+Spike 12 mean WM/CSF 
 

Spike 
12H+2W+Scrub 12 mean WM/CSF 

 
Scrub 

24H+2W+Spike 24 mean WM/CSF 
 

Spike 
24H+2W+Scrub 24 mean WM/CSF 

 
Scrub 

6H+2W+GSR 6 mean WM/CSF 1 
 

12H+2W+GSR 12 mean WM/CSF 1 
 

24H+2W+GSR 24 mean WM/CSF 1 
 

24H+4W+GSR 24 4 mean WM/CSF 1 
 

24H+8W+4GSR 24 8 mean WM/CSF 4 
 

6H+aCC+GSR 6 aCompCor 1 
 

12H+aCC+GSR 12 aCompCor 1 
 

24H+aCC+GSR 24 aCompCor 1 
 

6H+2W+GSR+Spike 6 mean WM/CSF 1 Spike 
6H+2W+GSR+Scrub 6 mean WM/CSF 1 Scrub 
12H+2W+GSR+Spike 12 mean WM/CSF 1 Spike 
12H+2W+GSR+Scrub 12 mean WM/CSF 1 Scrub 
24H+2W+GSR+Spike 24 mean WM/CSF 1 Spike 
24H+2W+GSR+Scrub 24 mean WM/CSF 1 Scrub 
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Regression of head motion parameters 
Head motion parameters are based on six time series reflecting in-scanner head 

movements along three translational axes and three rotational axes. We examined three variants: 
6H (just these original 6 motion parameters), 12H (including the original 6H, plus the first 
derivative of each as computed by backward differences), and 24H (including 12H, plus the 
squares of each of the 12 parameters) (Satterthwaite et al., 2013). 
 
Regression of signals from white matter and cerebrospinal fluid 

We used two methods to estimate WM and CSF signals: (a) mean WM/CSF, the 
average time series across voxels within WM and CSF masks, with three variants: mean WM 
and CSF alone (2W), or adding their temporal derivatives (4W), or adding squares of 4W (8W), 
and (b) aCompCor, which applies principal component analysis to the time series from WM 
and CSF voxels separately, and uses the top five principal components for each tissue 
compartment (Muschelli et al., 2014).  
 
Regression of global mean signal 

Global mean signal was calculated by averaging voxel-wise time series across the 
whole brain (GSR) or extended with squares of it and their temporal derivatives (4GSR). 
 
Volume Censoring 

Volume censoring involves censoring specific time points in BOLD data that have 
excessive head motion, which was evaluated using framewise displacement (FD). We adopted 
two different censoring strategies: spike regression and scrubbing. To keep consistent with 
previous work, we calculated FD differently for spike regression and scrubbing and used 
different thresholds. For spike regression, FD was calculated as the root mean square of 
framewise changes of six head motion parameters (Jenkinson et al., 2002; Satterthwaite et al., 
2013). This FD trace was then used as an additional nuisance regressor in which volumes with 
FD above 0.25 mm were marked as 1 and otherwise as 0, which was then regressed (together 
with other regressors) from the BOLD time series. For scrubbing, FD was calculated as the 
sum of absolute framewise changes of six head motion parameters (Power et al., 2012). 
Volumes with FD above 0.2mm were excluded from analysis at the end of preprocessing. We 
excluded subjects with less than 4 minutes of valid BOLD data following spike regression or 
scrubbing.      
 
Functional Connectome Construction 

We used a parcellation template containing 200 cortical ROIs to construct the 
functional connectome for each subject (Schaefer et al., 2018). Specifically, after preprocessing 
we weight-averaged the time series of all voxels within each ROI based on their grey matter 
probability. Then we computed the Pearson's correlation between time series of each pair of 
200 ROIs to construct a functional connectivity matrix of each pipeline for each subject, and 
Fisher-z transformed correlation coefficients for the purpose of normalization. 
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Figure 1. Schematic plot for post-processing analysis within each dataset. We used a total of 
31 denoising pipelines, with different combinations of regression of head motion parameters 
(6H/12H/24H), signals of white matter/cerebral spinal fluid (WM/CSF), global mean signal 
(GSR), and volume censoring. After preprocessing, functional connectomes were separately 
constructed with 31 pipelines for each subject. We averaged functional connectomes across 
each group as well as compared each cell in the connectome between two groups for each 
pipeline in each dataset. Then we calculated the similarity between group-average functional 
connectomes, as well as between group-comparison z-maps across pipelines and across 
datasets. 
 
Assessing Replicability of Whole Functional Connectomes 

A schematic is shown in Figure 1 to illustrate our approach. Spearman’s correlations were 
used as the primary similarity metric for assessing replicability. We first averaged functional 
connectomes across subjects with ASD and across typical controls, separately for each pipeline 
and for each site. Next, we calculated the Spearman’s correlation between group-average 
functional connectomes for each pair of pipelines to derive a similarity matrix, separately 
within each data site. To better visualize the distance between pipelines, we used multi-
dimensional scaling (MDS) to transform each pipeline-similarity matrix into a representation 
in two-dimensional space, with each point corresponding to each pipeline and the distance 
between points corresponding to their degree of dissimilarity. We used Procrustes analysis 
(without scaling) to best align the plots across sites, using NYU as the reference plot.   

We then compared across-site replication within each pipeline, by calculating the 
Spearman’s correlation between each pair of four datasets under each pipeline. We also 
analyzed root mean squared error (RMSE) as a distance metric (results in Supplementary 
Material).  
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Assessing Replicability of Group Differences between ASD and Controls  

To evaluate the similarity of group differences across denoising methods and sites, we 
first compared functional connectivity between each pair of ROIs between the ASD and control 
groups, using the non-parametric Wilcoxon rank sum tests to reduce the influence of extreme 
data, after first regressing out age as a covariate. A 200 × 200 z-value matrix was obtained for 
each pipeline in each dataset. We then analyzed the overall similarity of these z-value maps (z-
maps) across pipelines within each dataset, and within each pipeline across datasets, using 
Spearman correlation and RMSE as described previously. The results described subsequently 
were similar when using parametric t-tests.  

In addition to comparing these z-maps, we also examined only those functional 
connections (edges) with significant differences between the ASD and control groups. To do 
this, we used Dice Index (Dice, 1945) to assess the ratio of overlapping edges with significant 
group differences across those two pipelines or sites, after first binarizing each z-map (i.e. 
setting to 0 all edges except those with corresponding p-values <= 0.005). Permutation tests 
were used to examine whether these overlapping ratios were above chance. Specifically, to 
generate a null distribution while limiting computational demands, we chose only pipelines 
with 24H to compare. First, we shuffled the diagnostic labels of all the subjects to either ASD 
or controls for each site, keeping original sample sizes for each group. Then we compared these 
two new groups to derive a null z-map for each 24H-based pipeline within each site. This 
procedure was repeated 100 times for each pipeline. Next, we randomly chose one out of the 
100 null z-maps from each site and calculated the Dice index between each pair of sites. This 
procedure was repeated 1,000 times to generate a null distribution of Dice indices for each 
pipeline. The p-value was decided by the location of the actual Dice index in the null 
distribution and corrected by the false discovery rate (FDR; Benjamini and Hochberg, 1995).   

We also examined the similarity of group differences between data sites at a large-scale 
network level. We mapped the whole functional connectome to a 7 functional networks 
template and obtained a 7 × 7 connectivity matrix by averaging connectivity of edges in each 
cell (Yeo et al., 2011). Using the same statistical method to compare each cell between the 
ASD and control groups, we obtained a z-map for each pipeline in each site and evaluated 
similarity across pipelines and sites as described above.  

 
Data and code availability 

All data is available from the ABIDE repository, preprocessing code was available from 
Parkes et al. (2018), and our code is available upon request. This complies with our funding 
agency requirements.  

 
 
Results 
 
Group averages and group differences replicate across pipelines within each site  

We first compared the similarity of group-average functional connectomes of typical 
controls across different denoising pipelines separately within each data site. Generally, 
functional connectomes were highly similar across pipelines within each dataset (Figure 2, top; 
NYU, r = 0.92±0.07; SDSU, r = 0.93±0.06; UCLA, r = 0.93±0.05; UM, r = 0.91±0.07). Results 
were similar for group-average functional connectomes in ASD (NYU, r = 0.93±0.06; SDSU, 
r = 0.93±0.06; UCLA, r = 0.92±0.06; UM, r = 0.91±0.07; Supplementary Figure S1). As is 
apparent from the quadrant structure of Figure 2, GSR was a major influence on similarity of 
average functional connectomes across pipelines, such that similarity was extremely high with 
the same GSR status but reduced when pipelines differed in their use of GSR. We used multi-
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dimensional scaling to represent this graphically (Figure 2, bottom), which demonstrates that 
the use of GSR is a primary dimension upon which results are either similar or different from 
one another. RMSE results were consistent with the correlation results (Supplementary Figure 
S2). 

 
 
Figure 2. Consistency of group-average functional connectome across pipelines. The upper 
panel shows Spearman’s correlation coefficient of average functional connectomes across 
pipelines. It indicates high similarity across pipelines, though pipelines with different GSR 
status were less similar, as is seen in quadrant structure. The bottom plots provide a different 
visualization of relative similarity among different pipelines based on multi-dimensional 
scaling. Each data point represents a pipeline (note that not all points are visible because there 
is a high degree of overlap between some of them). It directly shows the major factor 
differentiating pipelines is based on the usage of GSR. The triangle shape corresponds to the 
basic pipelines (which only regress out 6H/12H/24H), the square shape corresponds to the 
pipelines adding WM/CSF regression, and the circle shape corresponds to pipelines using 
aCompCor.   

 
Then, we analyzed similarity between pipelines of ASD-Control comparisons of 

functional connectomes, within each site. The results were also consistent across pipelines 
within each dataset (NYU, r = 0.81±0.09; SDSU, r = 0.81±0.09; UCLA, r = 0.80±0.09; UM, r 
= 0.79±0.11). As in Figure 2, Figure 3 shows that GSR was also a dominant factor in similarity 
of group differences across pipelines – highly similar results with concordant use or non-use 
of GSR (i.e., either both present or absent), but reduced similarity when pipelines were 
discordant in their use of GSR (concordant: r = 0.87±0.06; discordant: r = 0.72±0.04, averaged 
across four sites). The Dice index, measuring the ratio of overlapping significant edges (p <= 
0.005, uncorrected) between pipelines, also supported the correlation results, with high values 
between pipelines with the same GSR status, and low values between pipelines with different 
GSR status (see Figure 3, bottom row).   
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Figure 3. Consistency of group differences in functional connectivity across pipelines, within 
each data site. The top row shows correlations between group-comparison z-maps for each pair 
of pipelines. The bottom row shows the Dice index measuring the overlapping across pipelines 
of edges with significant differences (p <= 0.005) between the ASD and control groups. These 
figures indicate the group-difference patterns were consistent across pipelines, especially 
within pipelines with GSR or without GSR. 
 
Group averages, but not group differences, replicate across sites  

Next, we examined the effect of data site on replicability. We first analyzed the 
similarity of group-average connectomes of typical controls across data sites, within each 
pipeline. Figure 4 shows that group-average connectomes are similar across data sites within 
each pipeline, for all pipelines (r = 0.86±0.02), though data sites were slightly more similar to 
each other for pipelines with GSR (r = 0.87±0.02) than those without GSR (r = 0.85±0.02; 
rank-sum test, all ps < 0.05, except NYU-UM, corrected). Similar results were obtained with 
group-average connectomes for the ASD group and using RMSE (Supplementary Figure S3).  
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Figure 4. Consistency of group-averages and inconsistency of group-comparisons of functional 
connectomes across data sites. Between each pair of data sites and for each pipeline, there were 
high correlations of group-average functional connectomes (top) but low correlations of group-
comparison z maps (middle). The low Dice indices in the bottom plot indicate that significantly 
different edges rarely overlap across data sites. 
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However, the pattern of group differences in functional connectomes between the ASD 
and control groups was poorly replicated across data sites (Figure 4 and Figure 5; r = 
0.09±0.05), in contrast to the relatively high similarity of group differences across pipelines 
within the same data sites (cf. Figure 3). Although this low similarity between z-maps for 
different data sites was observed regardless of pipeline, the effects of GSR on this similarity 
were mixed depending on specific pairwise site comparisons – correlations were significantly 
higher for pipelines with GSR compared to without GSR in NYU-UCLA (z = 2.64, p = 0.05) 
and SDSU-UM (z = 4.07, p <= 0.001), and lower in NYU-SDSU (z = -3.06, p = 0.01), NYU-
UM (z = -3.38, p = 0.004), SDSU-UCLA (z = -2.78, p = 0.03), and UCLA-UM (z = -2.55, p = 
0.06) (each was corrected for multiple comparisons). In other words, the effect of GSR was not 
consistent in either increasing or decreasing across-site similarity of group differences. We 
further focused only on the specific edges showing significant group differences. This analysis, 
however, revealed the same pattern of results: Dice indices were still very low across data sites 
for all pipelines (Figure 4; Dice = 0.01±0.01; range = 0.00 - 0.07). Permutation tests indicated 
that the Dice indices were not significantly higher than chance when correcting for multiple 
comparisons. Figure 5 shows the overlap of significant edges across the four sites from several 
representative pipelines. No edges ever significantly differed in more than two out of the four 
sites, in any pipeline.  

 

 
 
Figure 5. Edges showing significant differences were replicated in at most two of four sites. 
The circular plots show how many times the edges had significant differences across four sites 
separately in representative pipelines (24H+2W, 24H+ACC, 24H+2W+Spike, 
24H+2W+Scrub, 24H+2W+GSR, 24H+ACC+GSR, 24H+2W+GSR+Spike, and 
24P+2P+GSR+Scrub). The grey line indicates that connectivity between two regions was 
significantly different in one site, while the yellow line indicates the connectivity was 
significantly different in two sites. No edge appeared more than two times (i.e. more than 50% 
of sites). VIS: visual network; SOM: somatomotor network; DAN: dorsal attention network; 
VAN: ventral attention network; LIM: limbic network; CON: control network; DMN: default 
mode network.  

 
In addition to examining consistency of group differences across data sites at the fine 

ROI edge-level resolution, we also examined the data at a larger-scale network level. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/640797doi: bioRxiv preprint 

https://doi.org/10.1101/640797
http://creativecommons.org/licenses/by-nc-nd/4.0/


Correlations between z-maps reflecting ASD-control differences varied across data sites. 
Figure 6 shows that z-map correlations at the network level (r = 0.14±0.24), with none being 
significant after multiple comparison correction. The effects of GSR on between-site similarity 
were still mixed depending on the specific pairwise site comparisons -- correlations were 
higher for pipelines with GSR for  NYU-UCLA (z = 3.88, p <= 0.001), and lower for NYU-
UM (z = -4.88, p <= 0.001) (see Figure 6). 

 

 
Figure 6. Inconsistency of group differences at the network level across data sites. Note that 
here, compared to Figure 4 (middle row), the results are more variable. 
 
Discussion 
 

Our findings demonstrate a remarkable lack of replication of group-level differences in 
resting-state functional connectivity in ASD. This result is largely consistent with the varied 
and often conflicting published literature in ASD when taken as a whole – for example, even 
the basic directionality of effects is still debated (i.e., systematic overconnectivity, 
underconnectivity, both, or neither). However, the source of this inconsistency has remained 
unknown, because too many factors differ across studies and methodology is free to vary 
widely with no consensus on best practices. Here, we show that lack of replication cannot be 
attributed to differences in preprocessing procedures – when we use the same denoising 
strategy across the four different datasets, we still observed a total lack of replication. 
Furthermore, this was true regardless of which of the 31 different denoising methods we used 
– i.e., the degree of replication did not improve in any meaningful way with any particular 
approach (e.g., GSR vs. not). Importantly, this lack of replication was specific to group-level 
differences and did not extend to basic connectome architecture – when comparing average 
connectomes across sites, we found a high degree of similarity, regardless of denoising 
procedure. Based on these results, we conclude that while preprocessing may still contribute 
in part to the lack of replication seen across studies (as it certainly adds variability), these 
differences are likely not the major factor accounting for such inconsistencies and suggest that 
other factors play a more significant role.  

If differences in denoising strategies cannot adequately explain the lack of across-site 
replication, an important question is what other factors may account for it. There are at least 
four possibilities: 1) specific scanner/acquisition/procedural differences; 2) subject-level 
(cohort) differences; 3) differences in post-processing analysis – e.g., the scale or level (region-
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of-interest, whole connectome, or network levels); 4) small, hard to detect, or even absent 
differences in functional connectivity in ASD. We unpack these possibilities in the following 
paragraphs, with each having specific implications for design and analysis of future studies. 

On the data collection side, it is possible that factors (including some that remain 
uncontrolled in the present study) contribute to this lack of replication. These factors include 
things like scanner and acquisition parameter differences (e.g., pulse sequence, voxel size, 
phase encoding directions, scanner manufacturer, etc.; Yamashita et al., 2019) as well as 
experimental procedural differences (e.g., eyes open or closed, immediately experiences 
preceding the functional scan; Nair et al., 2018). Importantly, if such scanner, acquisition, and 
procedural factors so strongly influence the ability to detect reliable differences in ASD, then 
uncoordinated efforts to uncover functional connectivity differences are largely futile. In other 
words, if results from one site with their particular procedures and parameters are unrelated to 
the results from another site using their own procedures and parameters, then combining 
datasets like the efforts undertaken in ABIDE (Di Martino et al., 2017; Di Martino et al., 2014) 
have limited utility. Indeed, the ability to easily share data across sites was one of the factors 
underlying initial excitement about resting-state MRI approaches – the “task” was instantly 
standardized. Fortunately, these factors, while they do contribute to across-site variance, tend 
to be small in terms of effect size (Brown et al., 2011; Dansereau et al., 2017; Noble et al., 
2017) or result in localized differences (Nair et al., 2018), consistent with our finding that 
group-average connectomes were highly reliable across sites. However, to further increase 
chances of replication, either a priori coordination and standardization of procedures (Glover 
et al., 2012) or the implementation of post-processing methods designed to increase multisite 
data harmonization would both be possibilities (Yamashita et al., 2019; Yu et al., 2018). 

Another factor related to data collection that potentially underlies our inability to 
replicate across sites could be subject-level (i.e., cohort) differences or biases (Yamashita et 
al., 2019). A non-exhaustive list of these factors includes ASD severity, cognitive level, co-
morbidities, treatment history and current treatment status (e.g., medication), basic 
demographic factors including age, sex, race, ethnicity, education, socioeconomic status, and 
so on. These cohort differences emerge both from practical constraints (e.g., regional biases in 
terms of participant demographics in different locations) and from the various choices made 
regarding the recruitment process (e.g., the types of recruitment channels such as clinics vs. 
communities, and any specific inclusionary and exclusionary criteria). There are several 
options to remedy these issues. Of course, one could apply tightly specified and standardized 
criteria to match participants across a host of these factors, but in doing so the generalizability 
of the findings to the broader ASD condition is reduced. A more practical consideration is that 
attempting to better match sites on some of these factors can result in smaller sample sizes -- 
for example, in our study, we excluded 184 participants (nearly 31%) in order to better closely 
match sites on just one of these factors (age). However, it is not necessarily the case that 
applying more restrictive criteria is always better than including more participants (Abraham 
et al., 2017). Another way to proceed is to identify the critical factors or grouping of factors 
that explain significant variance in the data (Smith et al., 2015), and statistically control for 
those. Other proposals have suggested increasing sampling diversity by collecting relatively 
smaller numbers of participants at many different sites, rather than many participants at one 
site (Dansereau et al., 2017; Yamashita et al., 2019) – indeed, one recent study (Holiga et al., 
2019) that reported replicable findings using the ABIDE dataset combined data across multiple 
sites as opposed to treating each ABIDE site separately as in the present work. Regardless of 
the approach one uses, accounting for these subject-level differences is likely an important 
consideration, as recent work has highlighted that subject-level factors explain more variance 
than site-level factors (Brown et al., 2011; Dansereau et al., 2017; Gountouna et al., 2010; 
Noble et al., 2017).  
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On the analysis side, it is important to note that our findings of a lack of replication are 
specific to our particular analyses using both whole connectome ROI-level and a large-scale 
network level organization, and do not rule out the possible existence of any other replicable 
group-level effects in ASD. It is very possible that replicable results could be found when 
considering the very same data at a different scale or resolution, or with that data analyzed in 
a different way. For example, King and colleagues (King et al., 2018) found replicable atypical 
temporal dynamics in rs-fMRI timecourses. Holiga et al. (2019) recently found replicable 
results regarding functional connectivity in ASD across four very large datasets that also 
included ABIDE data. Other studies have used machine learning approaches to generalize to 
independently acquired datasets (e.g., Abraham et al., 2017; Yahata et al., 2016). In one of 
these (Abraham et al., 2017), prediction accuracy was affected by parcellation method, 
suggesting that replicability may be sensitive to these sorts of analysis choices (e.g., spatial 
normalization, parcellation). Additionally, different scales of connectivity analysis exhibit 
different sensitivities and vulnerabilities to site effects (Noble et al., 2017), demonstrating a 
complex and intertwined relationship between many of the factors discussed above. We should 
mention, however, that although there are different ways of dividing and grouping the data, 
these approaches mostly still fundamentally rest on the ability to accurately and reliably 
measure edge-level differences in ASD (e.g., Yahata et al., 2016). For example, more complex 
statistical constructs that can be used to compare brain organization between groups (e.g., graph 
theoretic network measures; He et al., 2018; Rubinov and Sporns, 2010) fundamentally must 
build upon reliable and replicable measurement of connectomes. Thus, lack of replication as 
described in the present work should be of concern to researchers.  

The final possibility that ought to be considered is that functional connectivity 
differences in ASD are very small, hard or impossible to detect with current technology, or 
even non-existent. While hundreds of published studies to date have reported on functional 
connectivity differences in ASD, the overall lack of consensus is concerning. Surely there are 
neural differences in brain organization and functioning in ASD, given that it is a 
neurodevelopmental disorder, but whether or not these differences can be reliably detected 
using current neuroimaging methodologies remains an open question, especially given the 
present results. The growing number of studies that now examine and in some cases 
demonstrate out-of-sample replication provide hope that such signals do in fact exist (Holiga 
et al., 2019; Yahata et al., 2016). But, because of the above factors and in addition to a host of 
others (e.g., motion), small differences may be easily obscured (Tyszka et al., 2014). 

What does this all mean? The pessimistic view would be that researchers should give 
up on searching for common group-level effects in ASD. However, we believe that this 
conclusion would be very premature for a number of reasons. (1) It is possible that effects are 
heterogeneous across participants, so group-level analysis starting with the assumption of 
homogeneous groups may be both largely underpowered and not able to fully account for the 
group level variance. (2) It is possible that improvements in detecting signal in the face of the 
large amounts of measurement noise that plague resting-state analyses will eventually unmask 
important group-level differences. In this case, if it is a detection problem, continued advances 
in acquisition and analysis methodology may get us closer to detecting reliable differences in 
ASD. (3) Additional experimental procedures can be employed to ensure more reliable 
estimates of an individual’s connectome. For example, collecting more data from each 
individual participant can reduce measurement noise and ensure greater confidence in the 
results via within-sample replication (Anderson et al., 2019; Byrge and Kennedy, 2018a; Finn 
et al., 2015; Nee, 2019), prior to attempting across-site replication. 

While our results suggest that lack of replication cannot be solely attributed to 
differences in denoising procedures (since using the same preprocessing procedures did not 
increase across-site replication), this does not mean that they are entirely inconsequential. Here, 
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we show that, while there are essentially an unconstrained number of choices for preprocessing, 
some of these choices have a more significant impact on the results than others (though not 
necessarily in a consistent way). Figure 2 demonstrates that one of the most significant factors 
is whether or not GSR is included as a preprocessing step. Its inclusion resulted in slightly 
more similar group-averaged connectomes across sites -- however, whether more similar 
group-averaged connectomes is a good thing or not remains unclear. The positive interpretation 
of this finding is that GSR helps to eliminate measurement noise (Byrge and Kennedy, 2018b; 
Ciric et al., 2017; Parkes et al., 2018; Power et al., 2014; Power et al., 2017), resulting in more 
similar connectomes, whereas the less positive interpretation is that GSR eliminates individual 
variation that might be of interest or distorts group-level differences (Gotts et al., 2013; 
Scholvinck et al., 2010; Uddin, 2017; Yang et al., 2014). Our results cannot disambiguate these 
possibilities from one another. Furthermore, in terms of group differences, we found that the 
effects of GSR on across-site replicability were not consistent, and instead depended on which 
specific sites were compared to one another (see Figure 4, middle panel, and Figure 6). For 
some site comparisons, use of GSR significantly increased similarity between them, whereas 
for others it decreased it, and yet others where it was unchanged, suggesting a complex 
interaction between the use of GSR and site-level factors.  

In addition to the possible factors already discussed above that may limit the detection 
of reliable group effects, some additional limitations of this study are worth mentioning. One 
criticism is that correlations between whole connectome z-maps comparing groups is perhaps 
a relatively insensitive way to examine this data. For instance, a localized difference in a small 
number of edges or nodes would easily be obscured in the present whole-brain analyses. 
However, we did also examine only the most significant edges that differed between groups, 
and also examined data aggregated at the network level – both yielded equally disappointing 
results. Another limitation is that although we examined 31 different denoising pipelines, these 
did not include ICA-based methods (e.g., ICA-AROMA, Pruim et al., 2015; FIX, Salimi-
Khorshidi et al., 2014); whether these perform any better in terms of across-site replication 
should be examined in the future. Regardless, while these results do not speak to all possible 
denoising strategies, they do cover a large swath of variations in methodologies found in the 
functional connectivity literature (Varikuti et al., 2017). Another limitation of the present study 
is the relatively small sample sizes. This was a consequence of both matching groups by age 
and also applying strict quality control (i.e., movement thresholds, anatomical image quality 
requirements). However, we note that our sample size was sufficiently powered to detect 
medium-large to large effects within each dataset, suggesting that any differences are likely 
smaller than this. We also included more subjects (Table S1) by lowering the threshold on head 
motion (mean FD <= 0.3 mm) to repeat the analysis, and obtained similar results (see 
Supplementary Figure S4). Finally, the present study included a relatively large age range from 
10-20 years, corresponding to a broad neurodevelopmental period spanning childhood through 
adolescence and into young adulthood. It is possible that more consistent effects would be 
identified if the age was constrained even further – however, further restricting the range would 
have reduced the number of sites and subjects that we could have included. 

In sum, the present study demonstrated that one’s choice of denoising pipeline is not 
the main factor underlying the lack of replication of differences in ASD. Instead, the most 
parsimonious explanation for the lack of replication is that group-level differences are either 
small or non-existent, and/or swamped by site and sample effects. However, we remain 
optimistic that continued developments toward improving methodology and approaches will 
help to eventually reveal reliable patterns of functional connectivity alterations in ASD. These 
results highlight the need to continue examining reliability of findings going forward, and 
demonstrate that approaches that improve sensitivity to detect disorder-related alterations are 
still needed. 
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