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ABSTRACT 24 

The evolutionary dynamics of complex ecological traits – including multistate 25 

representations of diet, habitat, and behavior – remain poorly understood. Reconstructing the 26 

tempo, mode, and historical sequence of transitions involving such traits poses many challenges 27 

for comparative biologists, owing to their multidimensional nature and intraspecific variability. 28 

Continuous-time Markov chains (CTMC) are commonly used to model ecological niche 29 

evolution on phylogenetic trees but are limited by the assumption that taxa are monomorphic and 30 

that states are univariate categorical variables. Thus, a necessary first step when using standard 31 

CTMC models is to categorize species into a pre-determined number of ecological states. This 32 

approach potentially confounds interpretation of state assignments with effects of sampling 33 

variation because it does not directly incorporate empirical observations of resource use into the 34 

statistical inference model. The neglect of sampling variation, along with univariate 35 

representations of true multivariate phenotypes, potentially leads to the distortion and loss of 36 

information, with substantial implications for downstream macroevolutionary analyses. In this 37 

study, we develop a hidden Markov model using a Dirichlet-multinomial framework to model 38 

resource use evolution on phylogenetic trees. Unlike existing CTMC implementations, states are 39 

unobserved probability distributions from which observed data are sampled. Our approach is 40 

expressly designed to model ecological traits that are intra-specifically variable and to account 41 

for uncertainty in state assignments of terminal taxa arising from effects of sampling variation. 42 

The method uses multivariate count data for individual species to simultaneously infer the 43 

number of ecological states, the proportional utilization of different resources by different states, 44 

and the phylogenetic distribution of ecological states among living species and their ancestors. 45 
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The method is general and may be applied to any data expressible as a set of observational 46 

counts from different categories. 47 

 48 

Keywords: Ecological niche evolution; intraspecific variation; hidden Markov model; 49 

macroevolution; comparative methods; Dirichlet-multinomial 50 

 51 

Most species in the natural world make use of multiple, categorically-distinct types of 52 

ecological resources. Many butterfly species use multiple host plants, for example (Ehrlich & 53 

Raven 1964; Robinson 1999). Insectivorous warblers in temperate North America use multiple 54 

distinct microhabitats and foraging behaviors (MacArthur 1958), as do honeyeaters in mesic and 55 

arid Australia (Miller et al. 2017). The evolution of novel patterns of resource use can impact 56 

phenotypic evolution (Martin & Wainwright 2011; Davis et al. 2016), diversification (Mitter et 57 

al. 1988; Givnish et al. 2014), community assembly (Losos et al. 2003; Gillespie 2004), and 58 

ecosystem function (Harmon et al. 2009; Bassar et al. 2010). Consequently, there has been 59 

substantial interest in understanding how ecological traits related to resource use evolve and for 60 

exploring their impacts on other evolutionary and ecological phenomena (Vrba 1987; Futuyma & 61 

Moreno 1988; Forister et al. 2012; Price et al. 2012; Burin et al. 2016). 62 

Making inferences about the evolutionary dynamics of resource use, however, first 63 

requires summarizing the complex patterns of variation observed among taxa into traits that can 64 

be modeled on phylogenetic trees. It is widely recognized that the real-world complexities of 65 

resource use are not adequately described by a set of categorical variables (Hardy & Linder 66 

2005; Hardy 2006). Nonetheless, it is also true that major differences in resource use can 67 

sometimes be summed up in a small set of ecological states, a point made by Mitter et al. (1988) 68 
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in their study of phytophagy and insect diversification. For this reason, continuous-time Markov 69 

chain (CTMC) models, which require classifying species into a set of character states, have 70 

become commonplace in macroevolutionary studies of ecological trait evolution (Kelley & 71 

Farrell 1998; Nosil 2002; Price et al. 2012; Hardy & Otto 2014; Cantalapiedra et al. 2014; Burin 72 

et al. 2016). CTMC models describe a stochastic process for evolutionary transitions among a set 73 

of character states and are used to infer ancestral states and evolutionary rates, and to perform 74 

model-based hypothesis tests (O’Meara 2012). 75 

The utility of continuous-time Markov chains for studying the evolutionary dynamics of 76 

resource use is limited by the modeling assumption that taxa are monomorphic for ecological 77 

states (Hardy & Linder 2005; Hardy 2006). As a practical solution, most empirical studies define 78 

one or more generalized states to accommodate species that use multiple resource types and that 79 

therefore cannot be characterized as specialists for a particular resource (Alencar et al. 2013; 80 

Price et al. 2012; Burin et al. 2016; Gajdzik et al. 2019). Another solution, rather than classifying 81 

each species as a specialist or a generalist, represents each resource category with a binary score 82 

of present or absent (Janz et al. 2001; Colston et al. 2010; Hardy 2017). In this case, the 83 

ecological state of a species is the set resources scored as present. Each of these approaches is 84 

one solution to the modeling challenge posed by intraspecific variation in resource use, but both 85 

solutions neglect variation in the relative importance of different resources for different taxa. 86 

Consequently, species classified in single state can nonetheless exhibit substantial differences in 87 

patterns of resource use, creating challenges for interpreting evolutionary transitions among 88 

character states as well as for understanding links between character state evolution and 89 

diversification. 90 
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Another limitation of continuous-time Markov chains for modeling resource use 91 

evolution emerges from the fact that species are classified into ecological states without regard 92 

for the quality and quantity of information available to perform the classification exercise. As an 93 

example, species with few ecological observations might be classified as specialists for a 94 

particular resource, when their apparent specialization is strictly a function of the small number 95 

of ecological observations available for the taxon. More generally, by failing to use a statistical 96 

model for making resource state assignments, we neglect a major source of uncertainty in our 97 

data: the uneven and incomplete knowledge of resource use across different taxa. This 98 

uncertainty, in turn, has substantial implications for how we project patterns of resource use onto 99 

a set of resource states. By failing to account for uneven and finite sample sizes characteristic of 100 

empirical data on resource use we cannot be certain if state assignments reflect true similarities 101 

or differences in resource use or are merely the expected outcome of sampling variation. 102 

Consider the simple four-species example in Figure 1. Panels (i) and (ii) illustrate the true 103 

resource states and their phylogenetic distribution across a set of four species and their ancestors. 104 

Here, an ancestral specialist evolved a generalist diet via a single transition (panel ii), such that 105 

there are two extant species with the ancestral specialist diet (species X and Y) and two with the 106 

derived generalist diet (species P and Q). In panels (iii) and (iv) the relative importance estimates 107 

of three food resource categories in the diets of four species are used to classify each species into 108 

one of two diet states. These relative importance estimates are based on uneven, and in some 109 

cases quite small, sample sizes, consistent with many empirical datasets (Vitt & Vangilder 1983; 110 

Shine 1994; Alencar et al. 2013). In panel (v) we imagine repeating the state assignment process 111 

on independent datasets while holding the samples sizes fixed to those in panel (iii), which 112 

reveals that both the initial state assignments and the number of states from (iv) are highly 113 
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sensitive to real-world levels of sampling variation. This has obvious implications for 114 

downstream macroevolutionary analyses. There is a serious risk of conflating different (similar) 115 

state assignments with different (similar) diets when the differences (similarities) are expected, 116 

even in the absence of true differences (similarities), from sampling variation alone. In the 117 

analyses that underlie Figure 1, we find that more than 70 percent of tip state classifications do 118 

not match the true pattern of resource use. 119 

Is this a problem in practice? This issue is difficult to assess because few studies provide 120 

information about the sample sizes that underlie state assignments. In most cases, ecological 121 

states are simply asserted as known. It is also important to emphasize that the specific problem in 122 

Figure 1 is an outcome of a more general problem: standard CTMC models have a limited ability 123 

to model complex ecological phenotypes because of the assumption that states in the model are 124 

categorical variables. While it is true that CTMC models work with a countable state space, it is 125 

not true that the states of the system must represent categorical variables. In a hidden Markov 126 

model, the observed data are assumed to be the outcome of a CTMC where the states are not 127 

directly observable. Instead, states are probability distributions from which observed data are 128 

sampled. Although hidden state CTMC models already used in macroevolution (Marazzi et al. 129 

2012; Beaulieu et al. 2013; Beaulieu & O’Meara 2016; Caetano et al. 2018) can be interpreted 130 

like this they generally are not because in these cases the observed data are categorical variables 131 

and the hidden states are indistinguishable from the observed categories. Instead, hidden states 132 

are interpreted as unobserved factors that affect rates of change or rates of diversification. 133 

Because of this, the potential flexibility of hidden state models for modeling complex phenotypes 134 

remains poorly explored. 135 
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In this paper we use the formulation of hidden states as probability distributions to 136 

develop a CTMC model for studying the evolutionary dynamics of ecological resource use on 137 

phylogenetic trees. Our approach is explicitly designed to model resource traits that are intra-138 

specifically variable and to account for uncertainty in ecological state assignments of terminal 139 

taxa arising from effects of sampling variation. We assume that each state is an unobserved 140 

(latent) multinomial distribution and that observed data are sampled outcomes from these latent 141 

distributions (see panels (i) through (iii) of Fig. 1). The number of states in the model and the 142 

states themselves are not directly observed and are estimated from the data. Using simulations 143 

and an empirical dataset of snake diets, we show how the method can use observational counts to 144 

simultaneously infer the number of resource states, the proportional utilization of resources by 145 

different states, and the phylogenetic distribution of ecological states among living species and 146 

their ancestors. The method is general and applicable to any data expressible as a set of 147 

observational counts from different resource categories. 148 

 149 

MATERIALS & METHODS 150 

Model description 151 

We assume that the data for each species are represented by a vector of J category counts. 152 

Each category is a resource (e.g. a diet or habitat component), and each count represents the 153 

number of observations of a species utilizing a particular resource. Each node in a phylogeny is 154 

to be placed into one of K distinct resource states. States are unobserved, even at the tips of a 155 

phylogeny: the observed data consist of sampled outcomes from an underlying (latent) 156 

multinomial distribution that represents the state for each species. All count data are drawn 157 

independently from their respective states and counts from each state are also independent of one 158 
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another. We assume that the multinomial parameters for each state are drawn from a common 159 

Dirichlet distribution with parameter 𝛽. This parameterization allows us to analytically 160 

marginalize over the unknown multinomial parameters underlying each state so that the 161 

likelihood of the observed data is the product of K independent Dirichlet-multinomial 162 

distributions (Appendix). The parameter 𝛽 acts as a vector of pseudo-counts. Higher values 163 

require more data for the model to discriminate two samples as having originated from different 164 

states. Letting X denote the resource state assignments for nodes in the phylogeny, the likelihood 165 

of the set of count data 𝐷# generated from state k is, 166 

𝑝(𝐷#|𝑋, 𝛽) =
Γ(𝐽𝛽)

Γ(𝑛# + 𝐽𝛽)
∏ Γ0𝑛#

1 + 𝛽21

Γ(𝛽)3 (1) 167 

 where 𝑛# is the total number of observations generated from state k and 𝑛#
1  is the subset 168 

of those observations that represent utilization of resource category j. The full likelihood for the 169 

count data is just, 170 

𝑝(𝐷|𝑋, 𝛽) =5 𝑝(𝐷#|𝑋, 𝛽)
#

(2) 171 

This model for count data is closely related to topic models of word composition in a 172 

collection of text documents (Blei et al. 2003; Yin and Wang 2014) and to population genetic 173 

models of allele frequency composition in a set of populations (e.g., program STRUCTURE: 174 

Pritchard et al. 2000). The key difference here is that the state assigned to a taxon is the outcome 175 

of evolution and is not independent of the states of other lineages. Conceptually this is similar to 176 

phylogenetic threshold models, where the full likelihood combines a probability model for the 177 

evolution of an unobserved variable and a probability model for sampling the observed data 178 

conditioned on the set of unobserved variables (Felsenstein 2012; Revell 2014). We model 179 

evolution as a Poisson process where the rate of change is the same between all states (i.e. there 180 
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is no evolutionary trend in the model) but varies among lineages. We introduce two mechanisms 181 

for accommodating this rate variation. 182 

The first mechanism takes advantage of the random local clocks model introduced by 183 

Drummond and Suchard (2010). In this framework, there is an overall rate of evolution Λ and an 184 

unknown number of lineages that deviate from this rate by a set of multiplicative constants. 185 

Specifically, the root node is defined to have a relative rate of 1 while the relative rates of all 186 

other nodes are equal to the relative rate of their ancestor multiplied by a branch-specific positive 187 

rate multiplier. Complexity is controlled through the use of a prior that makes it unlikely for 188 

many of these multipliers to differ from unity. Under the fully symmetric Poisson model with 189 

random local clocks the probability of change across an ancestral-descendant branch is, 190 

𝑝0𝑋89𝑋:;(8), Λ, 𝑟82 = (1 − 𝑒?@ABCDC)
1
𝐾 + 𝛿GCGHI(C)𝑒

?@ABCDC (3) 191 

where 𝑋8 is the state of node i, 𝑋:;(8) is the state of i's ancestor, 𝑟8 is the branch-specific 192 

normalized relative rate of evolution, 𝑡8 is the length of the branch in units of time, and 𝛿GCGHI(C) 193 

is the Kronecker delta. For simplicity, we may occasionally notate transition probabilities by 𝑝88 194 

and 𝑝81  to indicate the probability that a descendant’s state is the same as, or different than, the 195 

state of its ancestor. The likelihood of the node states is just, 196 

𝑝(𝑋|Λ, 𝑟) =5 𝑝0𝑋89𝑋:;(8), Λ, 𝑟82
8

(4) 197 

where the product is taken over all nodes and 𝑝0𝑋89𝑋:;(8), Λ, 𝑟82 ≡
N
@

 if node i is the root. 198 

The normalized rates effectively expand and contract the temporal durations of the branches. 199 

They are derived by scaling the relative rates in such a way that the total absolute time in which 200 

evolution has had to occur is held constant even as the effective time is allowed to vary over 201 

phylogeny (that is, ∑ 𝑡88 = ∑ 𝑟8𝑡88 ). 202 
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The second mechanism for accommodating rate heterogeneity is essentially a saturated 203 

version of the random local clocks model where each branch has a unique rate of evolution. 204 

Following Huelsenbeck et al. (2008), this allows us to model branch-specific rates as nuisance 205 

parameters drawn independently from a Gamma distribution with parameter vector (𝛼, 1). This 206 

model induces the same distribution of node states as a model where the number of expected 207 

character state changes along a branch is the same for all branches (Appendix). This has 208 

elsewhere been termed the ultra-common mechanism model (Steel 2011) to mark its contrast 209 

with the no-common mechanism model (Tuffley and Steel 1997) from which it derives. In this 210 

case the probability of change across an ancestral-descendant branch is, 211 

𝑝0𝑋89𝑋:;(8), 𝛼2 = Q1 −
1

(𝐾 (𝐾 − 1)⁄ + 1)ST
1
𝐾 + 𝛿GCGHI(C)

1
(𝐾 (𝐾 − 1)⁄ + 1)S

(5) 212 

Phylogenetic signal is controlled by the parameter 𝛼, which is equal to the expected number of 213 

state changes that occur from ancestor to descendant. As 𝛼 → 0, phylogenetic signal approaches 214 

1 because descendants almost surely resemble their ancestors. As 𝛼 → ∞, phylogenetic signal 215 

approaches 0 because a descendant’s state becomes independent of its ancestor’s state and 216 

resembles a random draw from a discrete uniform distribution. The likelihood of the node states 217 

is just, 218 

𝑝(𝑋|𝛼) =
1
𝐾 𝑝88

Y𝑝81Z (6) 219 

 where n is the number of nodes with the same state as their ancestor, m is the number of 220 

nodes with a different state than their ancestor, and the factor N
@

 accounts for the root state 221 

probability. 222 

 223 

Bayesian inference 224 
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We simulated the posterior distribution of node states and model parameters using the 225 

Metropolis-Hastings algorithm (Hastings 1970). The different proposal mechanisms are 226 

described below. 227 

Updating node states.— A Gibbs update mechanism is used for proposing changes to 228 

node states. The full conditional distribution for the state of a node can be written as, 229 

𝑝(𝑋8|𝑋¬8, 𝐷, 𝛽, 𝜃) =
𝑝(𝐷, 𝑋|𝛽, 𝜃)
𝑝(𝐷,𝑋¬8|𝛽, 𝜃)

	230 

∝
𝑝(𝐷,𝑋|𝛽, 𝜃)

𝑝(𝐷¬8, 𝑋¬8|𝛽, 𝜃)
	231 

=
𝑝(𝐷|𝑋, 𝛽)

𝑝(𝐷¬8|𝑋¬8, 𝛽)
𝑝(𝑋|𝜃)
𝑝(𝑋¬8|𝜃)

(7) 232 

where the symbol ¬𝑖 denotes the exclusion of node i. Here, depending on whether (4) or 233 

(6) is used as the likelihood model for node states, 𝜃 is equal to (Λ, 𝑟) or 𝛼, respectively. Because 234 

changing a node state only affects the branches incident to the affected node, all terms in the 235 

ratio :0𝑋9𝜃2
:0𝑋¬89𝜃2

 not involving those branches cancel and it simplifies to, 236 

𝑝(𝑋|𝜃)
𝑝(𝑋¬8|𝜃)

= 	𝑝0𝑋8|𝑋:;(8), 𝜃25 𝑝0𝑋bc(8,#)|𝑋8, 𝜃2
#

 237 

where 𝑋bc(8,#) is the state of the k-th immediate descendant of node i. Similarly, altering 238 

the state of a node only affects the likelihood of count data associated with a single state so that 239 

factors in the ratio :(d|e)
:(d¬C|e)

 not involving, say, state k cancel, and it simplifies to,  240 

𝑝(𝐷|𝑋, 𝛽)
𝑝(𝐷¬8|𝑋¬8, 𝛽)

=
𝑝(𝐷#|𝑋, 𝛽)

𝑝(𝐷#¬8|𝑋¬8, 𝛽)
	241 

=
∏ Γ0𝑛#¬8

1 + 𝑁8
1 + 𝛽21

∏ Γ0𝑛#¬8
1 + 𝛽21

Γ(𝑛#¬8 + 𝐽𝛽)
Γ(𝑛#¬8 + 𝑁8 + 𝐽𝛽)

 242 
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where 𝑁8 is the total number of observations for node i and 𝑁8
1 is the subset of those 243 

observations that represent utilization of resource category j. Note that for nodes with no 244 

associated count data (which includes all internal nodes), this factor is equal to 1. To perform the 245 

Gibbs update in practice, we calculate the conditional likelihood for each diet state according to 246 

equation (7) and choose a state with probability proportional to its conditional likelihood, using 247 

the sum of all conditional likelihoods as a normalizing constant. The marginal posterior 248 

probability that a node is in a given diet state is simply the fraction of posterior samples where it 249 

appears in that state. 250 

Once a state is sampled for a node any count data associated with that node are added to 251 

the set of count data generated from the sampled state. Because the Dirichlet distribution is 252 

conjugate to the multinomial distribution, the posterior distribution of the multinomial 253 

distribution underlying each state is also Dirichlet distributed with parameter 0𝑛#N + 𝛽,… , 𝑛#
3 +254 

𝛽2. During the course of updating node states we keep track of the average expected proportional 255 

utilization of each resource by each state. The expected proportional utilization of resources is 256 

simply the mean of the posterior distribution which is Q Yh
ije

∑ Yh
k

k j3e
, … , Yh

lje

∑ Yh
k

k j3e
T. 257 

Updating 𝛽.—The symmetric hyperparameter 𝛽 controls the shape of the Dirichlet prior 258 

distribution on the latent multinomial distributions underlying each resource state. When 𝛽 = 1 259 

the distribution is uniform over the J-dimensional simplex of resources. When 𝛽 < 1 the 260 

distribution concentrates toward the corners of the simplex, and when 𝛽 > 1 the distribution 261 

concentrates toward the center. Because empirical datasets are typically sparse with many zeros, 262 

we assume that 𝛽 is uniformly distributed on the interval (0, 1) and update its value using a 263 

sliding window proposal mechanism. The prior and proposal ratios are 1. 264 
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Updating 𝛼.—When equation (6) is used to compute the likelihood the hyperparameter 𝛼 265 

controls phylogenetic signal. Although it can take on any positive value the likelihood surface 266 

plateaus relatively quickly as its magnitude increases and phylogenetic signal decays. By solving 267 

the logarithm of (6) for the maximum likelihood estimate of 𝛼 we find that  268 

𝛼o = −
logQ𝑓𝐾 − 1𝐾 − 1 T

log(𝐾 (𝐾 − 1)⁄ + 1) 269 

 where f is the fraction of nodes that have the same state as their ancestor. Values of 𝑓 ≤ N
@

 270 

are consistent with infinite values of 𝛼. We therefore bound 𝛼 above by the value 271 

− logu
⌊w/y⌋{i

w @?N

@?N
| log(𝐾 (𝐾 − 1)⁄ + 1)} , where N is the number of nodes (not including the 272 

root) in the phylogeny. We assume that 𝛼 is uniformly distributed between zero and this upper 273 

value and update its value using a sliding window proposal mechanism. The prior and proposal 274 

ratios are 1. 275 

Updating Λ.—When equation (4) is used to compute the likelihood the parameter Λ 276 

controls phylogenetic signal. As for 𝛼, we want a reasonable upper bound for Λ because the 277 

likelihood plateaus relatively quickly as the rate increases. By replacing branch lengths in 278 

equation (4) with the average branch length and solving for the maximum likelihood estimate of 279 

Λ under the assumption of no rate variation we find that  280 

Λ~ = −
logQ𝑓𝐾 − 1𝐾 − 1 T

𝐾𝑡̅  281 

 where 𝑡̅ is the average branch length. As before, values of 𝑓 ≤ N
@

 are consistent with 282 

infinite values of Λ. We therefore bound Λ above by the value − logu
⌊w/y⌋{i

w @?N

@?N
| 𝐾𝑡̅} . We 283 
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assume that Λ is uniformly distributed between zero and this upper value and update its value 284 

using a sliding window proposal mechanism. The prior and proposal ratios are 1. We use the 285 

same prior distributions and proposal mechanisms detailed by Drummond and Suchard (2010) 286 

for updating the number of local random clocks and the rate multipliers associated with local 287 

clocks. 288 

 289 

Implementation 290 

Functions for fitting the model to data are provided as an R package available from 291 

github.com/blueraleigh/phyr. The package includes two R functions that call compiled C 292 

programs implementing the random local clocks and ultra-common mechanism models. 293 

 294 

Simulation study 295 

To illustrate application of the method we designed a simulation study using an empirical 296 

dataset on pseudoboine snake diets (Alencar et al. 2013). Our rationale for basing simulations on 297 

an empirical dataset is to ensure that properties of the data used to evaluate performance of the 298 

method are consistent with real studies, especially the distribution of observations per taxon and 299 

the distribution of resource specialization. Pseudoboine snakes are common members of the 300 

squamate communities found in lowland rainforests of South America. Predominantly terrestrial 301 

or semi-arboreal, these snakes mainly eat small mammals, lizards, and other snakes. The dataset 302 

includes 606 observations of prey items from 8 prey categories for 32 species of pseudoboine 303 

snakes. Per species sample sizes range from 1 to 56 observations (or 0.125-fold to seven-fold 304 

coverage, where coverage is the number of observations divided by the number of resource 305 

categories). We reanalyzed these data using a 33-species pseudoboine phylogeny extracted from 306 
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the posterior distribution of trees in Tonini et al. (2016). The dataset is illustrated in Figure 2. 307 

The original publication coded each species with at least 8 diet observations into a set of 5 308 

specialist diet states and 1 generalist diet state. Species were considered specialists if the 309 

resource represented at least 70 percent of recorded prey items (as in our Figure 1). When we 310 

applied the resampling procedure illustrated in Figure 1 to this empirical dataset under the 311 

assumption that the original state assignments represented the “truth”, we found that in 312 

approximately 20 percent of resampled datasets at least one original state (not always the same 313 

state) was not present and that in about 84 percent of cases at least one species was coded 314 

incorrectly (although overall coding accuracy was high, ranging from 0.77 to 1). Thus, this 315 

dataset illustrates some of the concerns raised in our introduction but is also well-sampled 316 

enough and shows enough variation to facilitate the estimation of separate multinomial 317 

distributions. 318 

Simulated datasets were generated from K = 2, 3, 4, and 5 diet states using the empirical 319 

sample size distribution with the original 8 food resource categories. For each K we first 320 

performed Bayesian inference under the ultra-common mechanism model to estimate the 321 

unobserved multinomial distributions. The estimated multinomial distributions were 322 

subsequently used to simulate diet observations. For each K we simulated 20 datasets at each of 323 

7 different levels of phylogenetic signal (0.1, 0.3, 0.5, 0.6, 0.7, 0.8, and 0.9) using the transition 324 

probabilities in both equations (3) and (5), resulting in 560 datasets for each model and 1,120 325 

datasets altogether. We defined phylogenetic signal as 𝑝88 − 𝑝18, which ranges from 0 to 1 and 326 

quantifies how much information a descendant’s state provides about the state of its ancestor 327 

(Royer-Carenzi et al. 2013). Using equation (5) for transition probabilities results in phylogenetic 328 

signal equal to � N
@ (@?N)⁄ jN

�
S
. We used this result to calculate the value of 𝛼 for each simulation. 329 
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When equation (3) is used for transition probabilities each branch has a unique phylogenetic 330 

signal. Because phylogenetic signal is a convex function of branch length, the average 331 

phylogenetic signal of all branches is greater than or equal to the phylogenetic signal of the 332 

average branch, which is 𝑒?@AD̅. We used the phylogenetic signal of the average branch to 333 

calculate the value of Λ for each simulation, which we applied to all branches (i.e., datasets did 334 

not include random local clock variation). Interestingly, for a given branch length (measured as 335 

expected number of state changes) phylogenetic signal with equation (5) is always greater than 336 

phylogenetic signal with equation (3), suggesting that estimating the rate of evolution trades off 337 

with estimating ancestral node states (Gascuel and Steel 2018). For each simulated dataset we 338 

ran a set of Markov chains with 1, 2, …, up to K+3 diet states. Each chain was run for 160,000 339 

iterations after a burnin of 30,000 iterations, sampling every 128 iterations to yield 1,250 340 

posterior samples. 341 

 342 

Determining the number of resource states 343 

 Because the model does not include a process for generating the number of states, we 344 

must perform analyses across multiple values of K and apply an a posteriori inference procedure 345 

to choose between them. A similar problem is encountered when trying to infer the number of 346 

demes from multi-locus genotype data with the program STRUCTURE (Pritchard et al. 2000). 347 

Our approach is to choose the largest value of K for which all states are unambiguously assigned 348 

to at least one terminal taxon. Specifically, by examining the terminal nodes of the phylogeny we 349 

can determine the maximum marginal posterior probability assigned to each state across all 350 

terminal nodes. Call the smallest of these 𝑞@ . A low value of 𝑞@  implies that at least one state is 351 

not assigned to any individuals (terminal taxa) with high probability. As K varies from low to 352 
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high there will come a point when additional states become redundant to previous states. When 353 

that occurs, 𝑞@  will drop well below 1. In other words, a point will be reached when at least one 354 

state is never unambiguously assigned to at least one terminal node. To choose the best value for 355 

K we first identify the K with the steepest drop in 𝑞@  with respect to 𝑞@?N. 𝐾∗ = 𝐾 − 1 then 356 

becomes a candidate best choice. If 𝑞@∗ = 1 (or nearly so) we treat 𝐾∗ as the best choice. 357 

Otherwise, we keep setting 𝐾∗ = 𝐾∗ − 1 until 𝑞@∗ = 1. This procedure, which we call the 𝑞@  358 

rule, is illustrated in Figure 3 on the empirical dataset. 359 

 360 

Assessing model adequacy 361 

In practice, the number of states identified by the 𝑞@  rule will depend on the underlying 362 

data and may change as data are updated. This is because the model may be unable to distinguish 363 

truly different samples as having arisen from separate distributions if sample sizes are small. 364 

Therefore, empirical applications of the method require a way of assessing how well the inferred 365 

multinomial distributions explain the empirical resource observations. Our approach is to 366 

compute a per-species adequacy score that measures the similarity of each taxon, with respect to 367 

sampled observations, to other taxa assigned to the same state. The procedure we describe 368 

effectively measures the compositional heterogeneity of the model-inferred states with respect to 369 

sampled diet observations. If the model is fully adequate and accurately describes patterns of 370 

resource use, then all species assigned to a given state will have similar sampled diets (e.g., the 371 

observed data). However, some species may be assigned to states even where they have 372 

dissimilar sampled observations from other species in the same state, reflecting overdispersed 373 

diet distributions for the state. Such overdispersion might arise if species are assigned to the 374 

“wrong” state. These incorrect state assignments might be preferred under the model if a species 375 
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does not have enough observations to provide information about the existence of a distinct state, 376 

and so the species is conservatively assigned to the immediately ancestral diet state. To compute 377 

the adequacy score, we first draw a state for each terminal node from its array of marginal 378 

posterior probabilities computed using equation (7) (which utilizes count data and evolutionary 379 

history). Then we visit each terminal node in turn and perform the following exercise. Given the 380 

configuration of states for all terminal nodes, we identify the set of count data generated by the 381 

state of the current node and compute the likelihood of these data using equation (1) (which only 382 

utilizes count data). Next, we compute the likelihood of these same data, using equation (1) 383 

together with equation (2), but assuming that they were generated from two states by placing the 384 

current node in its own unique state. Finally, we take the negative log likelihood ratio of these 385 

two values. We repeat this procedure for a thousand independent configurations and record the 386 

average negative log likelihood ratio (adequacy score) for each terminal node. Large negative 387 

adequacy scores highlight terminal nodes that were assigned to a state whose other members 388 

have a strongly dissimilar pattern of resource utilization. This procedure is illustrated in Figure 4 389 

on the empirical dataset (see also Figure S4). 390 

 391 

RESULTS 392 

 Overall, the 𝑞@  rule correctly identified the number of resource states in 492 of 560 393 

simulations from the ultra-common mechanism model (Fig. 5). In the 68 cases where the method 394 

incorrectly identified the number of states, it underestimated the number of states by one (61 395 

instances), two (4 instances), and three states (2 instance) and overestimated the number of states 396 

by one state in one instance. When the 𝑞@  rule was used with the random local clocks model it 397 

correctly identified the number of states in 475 of 560 simulations (Fig. S1). In the 85 cases 398 
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where the method incorrectly identified the number of states, it underestimated the number of 399 

states by one (77 instances) and two states (8 instances). Failure to correctly identify the number 400 

of states commonly occurs when the number of observations generated by a state is small 401 

relative to the number of observations from other states. This happens when the terminal nodes 402 

representing a state have poorly sampled diets causing the state to be subsumed into the state of 403 

near relatives. 404 

 Estimation of latent multinomial probabilities underlying resource states was highly 405 

accurate (Figs. 5, S1, S5). In simulations from both the ultra-common mechanism model and the 406 

random local clocks model, the correlation between true and estimated probabilities ranged from 407 

0.92 to 0.999 with a mean of 0.99. Such high values occur because even when the number of 408 

states is underestimated, the number of sampled observations from the missing states are few 409 

enough in number that they do not appreciably alter the estimated proportions of the other states 410 

(Fig S6). 411 

 Across all levels of phylogenetic signal, and with simulations from both the ultra-412 

common mechanism model and the random local clocks model, the method consistently 413 

classified greater than ninety-percent of terminal nodes in the correct state. For internal nodes, 414 

reconstruction accuracy was comparable to reconstruction accuracy for terminal nodes at the 415 

highest level of phylogenetic signal but, in accordance with expectation, decayed toward the 416 

expected accuracy of a random guess as phylogenetic signal declined toward zero (Figs. 6, S2). 417 

This behavior was mirrored in the posterior distributions of 𝛼 and Λ (Figs. 7, S3). When 418 

phylogenetic signal was low, posterior distributions of rate estimates were diffuse and resembled 419 

their uniform prior distributions except that they were shifted away from the lower bound. As 420 
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phylogenetic signal increased, posterior distributions of rate estimates concentrated around the 421 

true values used to generate simulated datasets. 422 

 423 

DISCUSSION 424 

 We developed a comparative method for macroevolutionary analysis of multivariate 425 

count data. The method is general and may be applied to any data expressible as a set of 426 

observational counts from different categories. Such datatypes arise frequently in community 427 

ecology and behavior. Potential applications include the comparative analysis of diet, foraging 428 

behavior, activity patterns, and habitat preferences. The method is similar to standard 429 

continuous-time Markov chain models of phenotypic evolution but differs in several important 430 

respects. First, the number of states in the model and the states themselves are unobserved and 431 

must be estimated from empirical data on resource use. Second, each state is an unobserved 432 

multinomial distribution rather than a categorical variable. This latter property enables 433 

researchers to model ecological traits that show intraspecific variation and to account for 434 

uncertainty in the state assignments of terminal taxa that arises from the effects of sampling 435 

variation. 436 

 Simulations revealed that the new method is generally able to determine the correct 437 

number of states and that it provides accurate estimates of the underlying (unobserved) 438 

multinomial distributions, both for terminal taxa as well as internal nodes. We designed 439 

simulations around empirical patterns of resource use in a dataset on snake diets (Alencar et al. 440 

2013). Therefore, caution is warranted in generalizing the good performance observed in the 441 

current study to other datasets. In particular, performance of the model will depend on the 442 

idiosyncrasies of individual datasets, including the distribution of sample sizes and the 443 
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distribution of overlaps in resource use among species. We expect that states represented by few 444 

observations will be difficult to infer, especially if those states show appreciable overlap with 445 

other states. 446 

 Our empirical analysis identified at least two feeding modalities among the set of species 447 

Alencar et al. (2013) recognize as “generalists”: species that feed predominantly on snakes but 448 

that regularly eat lizards and mammals, and species that feed predominantly on mammals and 449 

lizards. Ancestral state estimates strongly suggest that each of these feeding modalities arose 450 

from a more specialized diet comprised almost entirely of lizards. This is in contrast to the 451 

results of Alencar et al. (2013), which imply that nearly all origins of specialized feeding 452 

modalities occurred from a generalist ancestor, although direct comparison of results is made 453 

difficult by the use of different phylogenies in the two studies. 454 

 As currently implemented, the approach described here does not directly model gains and 455 

losses or substitutions of different resources. Indeed, no resource is ever truly absent from the 456 

reconstructed states (although its proportional representation may approach zero as 𝛽 becomes 457 

small). This contrasts with biogeographic-type models that explicitly model resource use 458 

expansions, contractions, and substitutions (e.g. see Hardy (2017) for application of Ree and 459 

Smith’s (2008) dispersal-extinction-cladogenesis model to binary encoded diet data). Although 460 

these types of changes are implicit in the sequence of reconstructed states derived from the 461 

model, future studies might want to explore how to combine more complex evolutionary models 462 

with the current model for count data. Nonetheless, the advantage of a simple evolutionary 463 

model is that it has broad scope. It would be possible, for example, to apply our method to 464 

continuous characters by keeping the same evolutionary model but changing the model for 465 

observations from a Dirichlet-multinomial to a multivariate-normal distribution, which could 466 
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then be applied to other data types used for quantifying resource use such as stable isotope ratios 467 

of carbon and nitrogen. 468 

 One challenge for comparative methods is their limited ability to model ecological 469 

phenotypes that cannot be neatly summarized by a single value (Hardy & Linder 2005; Hardy 470 

2006). Recent years have seen progress in this direction for continuous traits, including models 471 

that accommodate intraspecific variation, function-valued traits, and other non-gaussian data 472 

(Ives et al. 2007; Felsenstein 2008; Evans et al. 2009; Jones & Moriarty 2013; Goolsby 2015; 473 

Quintero et al. 2015). The general approach developed here, where each state is a multinomial 474 

distribution rather than a categorical variable, extends this progress to traits like diet and habitat 475 

that are typically treated as categorical variables. By placing an emphasis on individual natural 476 

history observations, the method draws attention to the central role such observations play in 477 

evolutionary biology (Greene 1986) and to the many remaining opportunities for developing 478 

comprehensive ecological databases that advance our understanding of biodiversity (Hortal et al. 479 

2015). 480 

 481 

SUMMARY 482 

We described a novel methodological framework for studying the evolutionary dynamics 483 

of complex ecological traits on phylogenetic trees. Previous approaches to this problem have 484 

assumed that ecological states are categorical variables and that species are monomorphic for 485 

particular states. We relaxed this assumption through the use of a hidden Markov model that 486 

treats ecological states as unobserved probability distributions from which observed data are 487 

sampled. Although our method is designed for the analysis of multivariate count data, we suggest 488 
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that the approach of treating states as hidden probability distributions has wide applicability and 489 

will greatly facilitate the comparative analysis of novel sources of ecological data. 490 
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 646 

Figure 1. Distribution and representation of multivariate ecological phenotypes (i, ii, iii), data as 647 

sampled by researchers (iii), and sampled states as typically represented by univariate categorical 648 

traits (iv, v). Loss and distortion of information associated with complex phenotypes motivates 649 

the development of the Dirichlet-multinomial model described in this article. (i) True resource 650 

states are unobserved multinomial distributions that determine the proportional utilization of 651 

three dietary resource categories by four species. (ii) The resource state of a species is the 652 

outcome of evolution via a hidden Markov process where the hidden states are the unobserved 653 

multinomial distributions. Here, the multinomial distributions from (i) are represented as rose 654 

plots: the direction of a spoke identifies the resource category and the length of a spoke is equal 655 

to the proportional utilization of that category. The phylogeny depicts the true evolutionary 656 

history of change. (iii) Observed data are sampled outcomes from these latent multinomial 657 

distributions. (iv) Sampled outcomes are projected onto a set of resource states. Here, a species is 658 

considered a “specialist” on a particular category if the sampled proportion of the category 659 
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exceeds 0.7. Otherwise, it is considered a “generalist”. In this case, the dataset and cutoff value 660 

align to match each species with its correct modal resource category. (v) The same state 661 

assignment process is repeated with different datasets while keeping the sample sizes for each 662 

species identical to (iii). State assignments are sorted along the x-axis according to their 663 

frequency of occurrence in 1,000 independent datasets. Datasets were generated by sampling 664 

from the two multinomial distributions in (i). Note that the procedure correctly matches all 665 

species with their modal food resource in a minority of cases and results in a variable number of 666 

states across datasets. The implication for macroevolutionary studies using this state assignment 667 

procedure is that we cannot be certain whether state assignments are reflective of true patterns of 668 

resource use or are merely the expected outcome of sampling variation. 669 
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 683 

Figure 2. Summary attributes of the snake dietary dataset used to parameterize the simulation 684 

study, including phylogeny of pseudoboine snakes (left), relative prey frequencies (middle), and 685 

total numbers of food observations per snake species (right). Dark colors in the prey frequency 686 

matrix indicate higher sampled proportions of a particular prey item in a given diet. The 687 

phylogeny and sampled diet observations were used to infer the “true” (unobserved) diet states 688 

and their evolutionary history on the phylogeny (colored circles). Each color in a pie chart is a 689 

specific model-inferred state and the size of a slice represents the marginal posterior probability 690 
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that a node belongs to that state. Note that the terminal node marked with an asterisk is missing 691 

data. It is treated like an internal node and information about its probable diet state is drawn only 692 

from what the model has learned about the states of its neighbors and the likelihood of 693 

evolutionary change. Here, the Dirichlet-multinomial model inferred 5 states, corresponding to 3 694 

specialist (> 70% specificity for a single prey group) and 2 generalist diets. Note that the diet 695 

states are not observed directly, even at the tips of the tree; rather, all observed data are assumed 696 

to be sampled from a set of unknown multinomial distributions. 697 
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 716 

Figure 3. Illustration of the a posteriori criterion for determining the number of states in the 717 

model. Panel (a) shows the average log likelihood of the empirical data as a function of the 718 

number of diet states. Panel (b) depicts how 𝑞@ , the smallest maximum marginal posterior 719 

probability with which a state is assigned to terminal taxa, changes as a function of the number 720 

of states. Inspection of the marginal posterior probabilities reveals that the sixth state is never 721 

unambiguously assigned to a terminal node (panels b and c). For this reason, a model with five 722 

resource states is considered optimal. The proportional utilization of different food resources by 723 

those five states is illustrated by the rose plot in panel (d). 724 
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 732 

Figure 4. Goodness of fit of inferred multinomial distributions to sampled observations in the 733 

empirical snake diet dataset when the inference model assumes K = 2, 3, 4, and 5 states. 734 

Adequacy scores are computed on a per-species basis; negative scores imply that sampled 735 

observations for a species are different from other taxa assigned to the same state. Such negative 736 

scores might arise when a species has sampled diet that is distinct from that of close relatives but 737 

where insufficient data (few observations) are available to inform the model as to the existence 738 

of a new and distinct dietary state. Each line segment is a species in the empirical dataset. Each 739 

pie chart depicts the marginal posterior probabilities that a species is in a given diet state. Thus, 740 

fitting a model with only 2 states results in a third of the species sharing a diet state with 741 

ecologically dissimilar species. In a model with 5 states nearly all species in the empirical dataset 742 

share a similar pattern of resource utilization with the other species assigned to the same diet 743 

state. The two species with negative scores have a relatively high sampled percentage of 744 

amphibian prey items or a relatively broad diet compared to other species in the dataset but only 745 

modest sample sizes (compare to Fig. 2). 746 
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 749 

Figure 5. Performance of the method at identifying the true number of states (top) and the latent 750 

multinomial distributions underlying states (bottom). Each column summarizes the results of a 751 

set of 140 simulated datasets where the number of resource states varied from 2 (leftmost 752 

column) to 5 (rightmost column). Top: each bar chart shows the frequency of the number of 753 

resource states estimated using the qK rule discussed in the main text; black bars are the number 754 

of states in the generating model. The method correctly identifies the number of generating states 755 

in most cases. Bottom: each set of solid colored spokes represents the latent multinomial 756 

distribution underlying a resource state in the generating model. The direction of a spoke 757 

identifies its corresponding resource and its length equals the proportional utilization of that 758 

resource. Directions are slightly offset between diets states so that spokes with contacting edges 759 

represent the same resource. Spokes with colored outlines but unfilled centers are the model 760 

estimated multinomial distributions for the corresponding state. The method correctly identifies 761 

the major and minor resources of each state in most cases. 762 
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 766 

Figure 6. Accuracy of model-inferred resource state assignments for terminal and internal nodes 767 

across varying levels of phylogenetic signal. Each point is the reconstruction accuracy for a 768 

single simulation. Reconstruction accuracy is the probability that a randomly selected node was 769 

classified in the correct resource state. The horizontal dashed lines correspond to the expected 770 

reconstruction accuracy of a random guess. The reconstruction accuracy of terminal nodes is 771 

relatively constant across levels of phylogenetic signal. The reconstruction accuracy of internal 772 

nodes is comparable to the accuracy of terminal nodes when phylogenetic signal is high and, as 773 

expected, decays toward the random expectation as phylogenetic signal declines. This decline is 774 

expected because, with low signal, the tip data provide little information about states at internal 775 

nodes. Light weight dashed lines connect the median accuracy at each level of phylogenetic 776 

signal.  777 
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 784 

Figure 7. Posterior distributions of the expected number of character state changes per branch 785 

for simulated datasets with K = 2, 3, 4, and 5 states. Each violin plot summarizes the posterior 786 

distributions of 20 simulations at each of 7 different levels of phylogenetic signal. The black 787 

hatch mark within each violin is the expected number of changes per branch that was used to 788 

generate simulated datasets. The width of a violin measures how frequently estimated values 789 

appear in the posterior distributions. Phylogenetic signal increases as the expected number of 790 

changes decreases. At low phylogenetic signals posterior distributions largely recapitulate their 791 

uniform prior distributions but as phylogenetic signal increases they become concentrated around 792 

the true values. 793 
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 798 

Figure S1. As for Figure 5 in the main text except that simulations were made using transition 799 

probabilities from equation (3) rather than from equation (5). 800 
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 815 

Figure S2. As for Figure 6 in the main text except that simulations were made using transition 816 

probabilities from equation (3) rather than from equation (5). 817 
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 832 

Figure S3. As for Figure 7 in the main text except that simulations were made using transition 833 

probabilities from equation (3) rather than from equation (5) and phylogenetic signal refers to the 834 

phylogenetic signal of the average branch length. 835 
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Figure S4. The main text defines a per-species adequacy score to assess how well the estimated 847 

multinomial distributions explain sampled observations for terminal taxa. The toy example in 848 

this figure depicts how such a score is calculated for species 2. In the main text, we use the 849 

negative logarithm of the likelihood ratio calculation depicted in the figure. Thus, positive values 850 

for the log likelihood ratio imply that the estimated multinomial is a good fit to sampled 851 

observations; negative values imply the opposite.  852 

 853 
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 855 

Figure S5. Correlation between true and estimated multinomial probabilities for datasets 856 

simulated under the ultra-common mechanism model and random local clocks model.  857 
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 868 

Figure S6. Two examples illustrating how high accuracy of estimated multinomial proportions is 869 

maintained even when the number of states is underestimated. In the left plot, the blue state only 870 

generated 1 sampled observation and the brown state only generated 5 sampled observations.  871 

In the right plot, the brown state only generated 8 observations; the blue state, 12; and the green 872 

state, 2. In both cases, these observations are few enough in number that they do not substantially 873 
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alter the estimated multinomial proportions when they are incorporated into the count data 874 

generated from the other states. 875 
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APPENDIX 899 

Derivation of 𝑝(𝐷|𝑋, 𝛽) 900 

We assume that conditional on the resource state the data for each species are sampled 901 

independently from the latent multinomial distribution underlying the state. That is, 902 

𝑝(𝐷#|𝑋, 𝜃) ∝5 𝑝(𝑑8|𝑋8 = 𝑘, 𝜃)
8

	903 

=5 5 𝜃1
�C
k

18
 904 

where we have omitted terms involving multinomial coefficients as well as the 905 

dependence of 𝜃 on k for ease of notation. We also assume that for each k the multinomial 906 

parameter 𝜃	~	Dirichlet0𝛽N,… , 𝛽32 so that, 907 

𝑝(𝐷#|𝑋, 𝛽) ∝ �𝑝(𝐷#|𝑋, 𝜃)
�

𝑝(𝜃|𝛽)𝑑𝜃	908 

= � u5 5 𝜃1
�C
k

18
|

�

Γ0∑ 𝛽11 2
∏ Γ0𝛽121

5 𝜃1
ek?N

1
𝑑𝜃	909 
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|

�

Γ0∑ 𝛽11 2
∏ Γ0𝛽121
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1
𝑑𝜃	910 
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∏ Γ0𝛽121
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Yh
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1�
𝑑𝜃	911 
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1 + 𝛽121
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�
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where the last equality follows because the integrand is the density function of a Dirichlet 914 

distribution with parameter 0𝑛#N + 𝛽N,… , 𝑛#
3 + 𝛽32. By assuming that 𝛽1 = 𝛽 for all j this reduces 915 

to equation (1) in the main text. 916 

Derivation of 𝑝(𝑋|𝛼) 917 

Under the fully symmetric Poisson model the probability of change across an ancestral-918 

descendant branch is, 919 

𝑝0𝑋89𝑋:;(8), 𝜆8, 𝑡82 = 01 − 𝑒?@�CDC2
1
𝐾 + 𝛿GCGHI(C)𝑒

?@�CDC  920 

 where 𝜆8 is the branch-specific rate of evolution, 𝑡8 is the length of the branch in units of 921 

time, and 𝛿GCGHI(C)  is the Kronecker delta. Because only the product 𝜆8𝑡8 matters, we can set 𝜆8 922 

equal to N
@?N

 (meaning that the average rate is normalized to 1) so that that 𝑡8 = 𝑣8 now measures 923 

time in units of expected number of changes. We assume that each 𝑣8	~	Gamma(𝛼, 1). Then, 924 

𝑝0𝑋89𝑋:;(8) ≠ 𝑋8, 𝛼2925 

= � 𝑝0𝑋89𝑋:;(8), 𝑣2𝑝(𝑣|𝛼)𝑑𝑣
�
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 where the last equality follows because the integrand is the density function of a Gamma 931 

distribution with parameters (𝛼, @
@?N

+ 1). A similar calculation shows that 932 

𝑝0𝑋89𝑋:;(8) = 𝑋8, 𝛼2 =
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