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Abstract

Heterogeneity in oxygen distribution in solid tumours is recognised as a limiting factor for
therapeutic efficacy. Vessel normalisation strategies, aimed at rescuing abnormal tumour
vascular phenotypes and alleviating hypoxia, have become an established therapeutic
strategy. However, understanding of how pathological blood vessel networks and oxygen
transport are related remains limited. In this paper, we establish a causal relationship
between the abnormal vasculature of tumours and their heterogeneous tissue oxygenation.
We obtain average vessel lengths L̄ and diameters d̄ from tumour allografts of three
cancer cell lines and observe a substantial reduction in the ratio λ = L̄/d̄ compared
to physiological conditions. Mathematical modelling reveals that small values of the
measured ratio λ (i.e. λ < 6) can bias haematocrit distribution in tumour vascular
networks and drive highly heterogeneous tumour tissue oxygenation. Finally, we show an
increase in the average λ value of tumour vascular networks following treatment with the
DC101 anti-angiogenic cancer agent. Based on our findings, we propose a new oxygen
normalisation mechanism associated with an increase in λ following treatment with anti-
angiogenic drugs.

1 Introduction

Tissue oxygenation plays a crucial role in the growth and response to treatment of cancer.
Indeed, well-oxygenated tumour regions respond to radiotherapy better than hypoxic or
oxygen-deficient regions, by up to a factor of three [1, 2]. Further, the increased rates
of proteomic and genomic modifications and clonal selection associated with anoxia (i.e.,
total oxygen depletion), endow tumours with more aggressive and metastatic phenotypes
[3, 4]. Heterogeneous oxygen distributions in solid tumours are commonly attributed
to their abnormal vasculature [5, 6]. While vessel normalisation strategies, aimed at
reducing tumour hypoxia [7], have been shown to improve survival in e.g. glioblastoma
patients undergoing chemotherapy and/or radiotherapy [8], the identification of patients
who will benefit from such combined treatments remains an open question [3].

Detailed, functional imaging of the tumour microenvironment would enable the de-
velopment of patient-specific treatment plans [9]. However, the maximum spatial reso-
lution for imaging hypoxia via Positron Emission Tomography (PET) is currently 3–5
millimetres [10]. This resolution is three orders of magnitude larger than the micrometre
scale governing oxygen transport in tissue and cell responses to hypoxia [11]. Conse-
quently, PET images effectively mask intratumoural heterogeneity [10], which can lead
to poor outcomes and foster the emergence of resistant clones [12]. A mechanistic under-
standing linking abnormal tumour vascular structure at the micrometre scale and oxygen
heterogeneity at the tissue-scale is currently lacking. In this paper, we show how a mul-
tidisciplinary approach, which combines imaging with mathematical and computational
modelling can be used to close this resolution gap [11, 13].

Oxygen is transported through the vasculature by binding to haemoglobin in red
blood cells (RBCs) [13]. Haematocrit, or the volume fraction of RBCs in whole blood,
does not distribute uniformly at vessel bifurcations (i.e. branching points where three
vessels meet) [14, 15]. At a bifurcation with one afferent and two efferent branches, it
is typically assumed that the efferent branch with the highest flow rate will have the
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highest haematocrit [15, 16] due to, among other features, plasma-skimming caused by
the presence of a RBC-depleted layer or cell free layer (CFL) [17]. Several theoretical
models have been proposed to describe this effect e.g. [16, 18, 19]. Tumour vasculature
is characterised by abnormal branching patterns, reduced average vessel lengths, and
increased formation of arterio-venous shunts (see [20] for a review). While these changes
can impact haematocrit splitting (HS), and tumour oxygenation, they have received little
attention in the literature.

In this paper, we establish a causal relationship between the abnormal vasculature
of tumours and their heterogeneous tissue oxygenation. When we extract average vessel
lengths L̄ and diameters d̄ from tumour allografts of three cancer cell lines we observe
a substantial reduction in λ = L̄/d̄ compared to physiological conditions. Detailed nu-
merical simulations describing the transport of RBCs in plasma reveal that the average
measured λ value in the tumour allografts is too small for the CFL to recover full sym-
metry between consecutive branching points. Further, the resulting bias in haematocrit
distribution propagates and amplifies across multiple branching points. We argue that
this memory effect can explain observations of haemo-concentration/dilution in tumour
vasculature [21] and well perfused vessels that are hypoxic [22].

Based on the RBC simulations, we propose a new haematocrit splitting rule that ac-
counts for CFL disruption due to pathologically small λ values. We integrate this rule
into existing models of tumour blood flow and oxygen transport [23] and observe a haema-
tocrit memory effect in densely branched vessel networks. The predicted tissue oxygena-
tion is highly heterogeneous and differs markedly from predictions generated using rules
for haematocrit splitting specialised for healthy vessel networks (e.g. [24, 25, 26, 5, 27]).
Finally, we show an increase in the average λ value of tumour vascular networks following
treatment with the DC101 anti-angiogenic cancer agent. Based on our results, we pos-
tulate the existence of a previously unreported tumour oxygen normalisation mechanism
associated with an increase in the λ value after treatment with anti-angiogenic drugs.

2 Results

2.1 Distance between vascular branching points is on average
shorter in solid tumours than in healthy tissue

We implemented a protocol for in vivo imaging of tumour vasculature [28] and exploited
our recently published methods for vessel segmentation [29, 30] and three-dimensional
(3D) vascular network reconstruction to characterise the morphology of tumour vascula-
ture (see Methods section for more details). Briefly, tumour allografts of three murine
cancer cell lines (i.e. MC38, colorectal carcinoma; B16F10, melanoma; and LLC, Lewis
lung carcinoma) were implanted in mice, controlled for size, and imaged through an
abdominal window chamber using a multi-photon microscope over multiple days. The
vascular networks in the 3D image stacks were segmented and the associated network
skeletons and vessel diameters computed [29, 30]. Figure 1(a) shows the two-dimensional
(2D) maximum projection of an example network dataset along with a 2D projection
of its segmentation and a close-in overlaying segmentation and skeletonisation. Vessel
lengths (L) and diameters (d) in the networks followed a right-skewed distribution re-
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Figure 1: a) Maximum intensity projection of multiphoton image stack of a tumour
vessel network obtained via an abdominal imaging window in mouse. Red - perfusion,
Cyan - endothelial cells, Green - GFP tumor cells. Scale bar: 1 mm. The stack is
subsequently segmented and skeletonised and distributions of vessel diameters and lengths
are calculated. Mouse MC38-5 in Table 1. Scatter plots of vessel lengths versus diameters
for different cell lines studied: b) MC38 (Mouse 3 in Table 1), c) B16F10 (Mouse 1 in
Table 1), d) LLC (Mouse 1 in Table 1).

sembling a log-normal distribution (Figure 1(b)-(d)). No correlation was found between
the variables (Pearson’s r2 < 0.04 for all samples analysed, Figure 1(b)-(d), Supplemen-
tary Tables S2–S3).

Table 1 summarises last-day statistics for all the experiments and averages per cell line.
In the example MC38 dataset from Figure 1(a), average vessel length (L̄) and diameter (d̄)
were 143 µm and 45.5 µm, respectively We observe how the group average vessel length
is 128.6 µm, 125.9 µm, 108.8 µm for MC38, B16F10, and LLC, respectively. The average
diameters are 33 µm, 36.5 µm, 35.7 µm, respectively, which is within the range previously
described for tumour vasculature [31]. In addition, the length-to-diameter ratios (λ) are
4.0, 3.4, 3.0, respectively, which is substantially smaller than typical λ values reported
under physiological conditions in a variety of tissues (Table 2) and representative of the
high branching density encountered in tumour vasculature [20].
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Table 1: Mean branch lengths (L̄), mean vessel diameters (d̄), and length-to-diameter

ratio (λ = L̄
d̄

=
∑
Li∑
di

) measured in mouse for different tumour models over all the vessels
imaged. See Supplementary Tables S2–S3 for correlation between variables.

Cell line MC38
Mouse 1 2 3 4 5 6 Av.
L̄, µm 123.9 129.9 143 112.4 132.1 130.0 128.6
d̄, µm 29.3 33.0 45.5 23.9 28.9 37.5 33.0
λ = L̄/d̄ 4.2 3.9 3.1 4.7 4.6 3.4 4.0

Cell line B16F10 LLC
Mouse 1 2 3 Av. 1
L̄, µm 123.2 123.5 131.0 125.9 108.8
d̄, µm 33.9 34.1 41.6 36.5 35.7
λ = L̄/d̄ 3.6 3.6 3.1 3.4 3.0

Table 2: Average vessel length and diameter reported under physiological conditions in
a variety of tissues.

Animal (tissue) Vessel type d̄(µm) L̄(µm) λ = L̄/d̄ Reference

Wistar Kyoto Rat (mesentery)
Arteriole 13.2 337.0 25.5 [32, 33]
Capillary 8.7 424.0 48.7 [32, 33]

Venule 20.6 334.0 16.2 [32, 33]

Myotis Bat (wing)
Arteriole 7.0 206.0 29.4 [34]
Capillary 3.7 74.0 20.0 [35]

Venule 21.0 200.0 9.5 [35]

Cat (sartorius muscle)
Arteriole 7.4 96.0 13.0 [36]
Venule 6.8 68.0 10.0 [37]

Golden Hamster (retractor muscle)
Arteriole 5.7 101.2 17.8 [38]
Venule 3.6 57.7 16.0 [38]

Human Capillary 5.0 350.0 70.0 [39]
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2.2 Plasma skimming in tumour-like vasculature is biased by
history effects arising from CFL dynamics

Our finding of reduced inter branching point distance in tumour tissue motivated us to
investigate a potential causal relationship between the reduction in L and λ and the pro-
foundly abnormal tumour haemodynamics and mass transport patterns described in the
literature [40]. In particular, we are interested in unravelling potential haemorheological
phenomena contributing to tumour heterogeneity and hypoxia.

The presence of a RBC-depleted region adjacent to the vessel walls (i.e. the cell
free layer (CFL)) is a key contributor to plasma skimming (PS) [15, 16, 17]. Previous
studies have shown CFL disruption after microvascular bifurcations and found that the
length required for CFL recovery is in the region of 10 vessel diameters (d) for d < 40µm
[16], 8 − 15d for d ∈ [20, 24]µm [41], and 25d for d ∈ [10, 100]µm [42]. These values are
substantially higher than the average λ values given in Table 1 and therefore we expect
that, on average, CFL symmetry will not recover between the branching points in the
networks under study.

Motivated by these findings, we exploited recent advances in blood flow simulation
methods [43] to investigate the link between CFL dynamics and PS in a tumour-inspired
microvascular network. Our intention is to understand whether CFL disruption effects
arising at any given bifurcation can affect haematocrit splitting in downstream bifurca-
tions for small inter-bifurcation distances relevant to tumour vasculature (see Methods
section for further details). Briefly, we define a set of networks of cylindrical channels
of constant radius, consisting of one main channel with an inlet and an outlet at either
side and two side branches, which effectively define two consecutive bifurcations (Sup-
plementary Figure S1). We consider inter-bifurcation distances of four and 25 channel
diameters based on our tumour vascular network analysis and the largest of the CFL re-
covery distances reviewed earlier. We position the two side branches on the same side of
the main channel or on opposite sides. A computational model of liquid-filled deformable
particles (discocytes approximating the shape of an RBC) suspended in an ambient fluid
is used to simulate blood flow in the networks, with RBCs inserted at the network inlet
and removed at the outlets (see Section 4 and Supplementary Material for a summary
of the simulation parameters). Flow rates at the inlets and the outlets of the network
are configured such that at each bifurcation flow is split evenly. We perform blood flow
simulations (3 runs in each network, with random perturbations in the RBC insertion
procedure) and, after the initial transient required to fully populate the network with
RBCs, we quantify haematocrit by an RBC-counting procedure.

Figure 2a–2b and Table 3 show how haematocrit split is close to even at bifurcation
1 for all geometries studied, as would be predicted by existing HS theoretical models.
However, different degrees of haematocrit splitting occur at bifurcation 2. In the double-
t geometry, we observe haemodilution in branch 3 and haemoconcentration in branch
4 (16.8% vs 23%, p < 0.001, Figure 2b). We will refer to these as the unfavourable
and favourable branches. These effects are no longer statistically significant in the same
branches in the extended double-t geometry (19.1% vs 19.4%, p = 0.3, Figure 2a). The
haemoconcentration/haemodilution effect is also present in the cross geometry but the
branches experiencing it are interchanged (22.1% vs 17.1%, p < 0.001, Figure 2c). In
contrast with these results, existing HS theoretical models would predict even haematocrit
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Table 3: Haematocrit calculated at the different branches of each bifurcation for the
extended double-t (EDT) geometry, double-t (DT) geometry, and cross (X) geometry.
Values are given as mean (standard error) over an ensemble of three simulations with
random perturbations in the RBC insertion procedure while the haematocrit at the inlet
is held constant.

Bifurcation 1 Bifurcation 2
Branch 0 Branch 1 Branch 2 Branch 1 Branch 3 Branch 4

EDT 20.06(0.03) 19.23(0.14) 20.8(0.1) 19.23(0.14) 19.05(0.22) 19.4(0.23)
DT 20.08(0.06) 19.96(0.19) 20.26(0.05) 19.96(0.19) 16.83(0.24) 23.04(0.46)
X 20.06(0.02) 19.67(0.09) 20.35(0.2) 19.67(0.09) 22.12(0.26) 17.09(0.13)

splitting at bifurcation 2, regardless of the inter-bifurcation distance, due to the prescribed
symmetrical flow and geometry conditions.

On closer inspection, the dynamics of the CFL show how, after bifurcation 1, CFL
width is initially negligible and rapidly increases on the side of channel 1 leading to
the favourable branch (θ = 0, Figure 2f). Conversely, CFL width increases after the
bifurcation and follows a downward trend in the opposite side (θ = π, Figure 2f). An
inter-bifurcation distance of four diameters is not sufficient for the CFL width to equalise
on both sides (Figures 2f). In contrast, CFL width has time to become symmetric on
both sides for an inter-bifurcation distance of 25 diameters (Figure 2g).

Taken together, these results show how CFL asymmetry can cause uneven haematocrit
split in bifurcation 2 (Figure 2e). Our results are consistent with the findings by Pries
et al., describing how asymmetry of the haematocrit profile in the feeding vessel of a
bifurcation has a significant influence on RBC distribution in the daughter vessels [16].
In addition, we provide quantitative evidence of how CFL asymmetry may be the main
contributing factor.

Interestingly, we observe small but statistically significant asymmetries in the haemat-
ocrit split in bifurcation 1 in the extended double-t geometry (19.2% vs 20.8%, p < 0.001,
Figure 2a) and cross geometry (19.7% vs 20.4%, p = 0.035, Figure 2c), which consistently
favour the side branch. We attribute this secondary effect to an asymmetrical streamline
split in the chosen geometry as investigated in [44].

We note that the effects described above depend on the angle defined by the planes
containing the two consecutive bifurcations. Our data suggest that for an angle of π

2

radian the favourable/unfavourable effects will not be observed (Supplementary Figure
S2).

2.3 Haematocrit history effects lead to highly heterogeneous
oxygen distribution in solid tumours

Existing theoretical models of HS [45, 19, 46] do not reproduce the haemoconcentra-
tion/haemodilution effects in the previous section. We hypothesise that this is because
they neglect CFL disruption at bifurcations and its impact on subsequent bifurcations.
We propose a new haematocrit splitting (HS) model which accounts for CFL dynamics
and show that it predicts history effects in dense networks (see the Methods section for
details and Supplementary Material for a description of its validation using the results
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(a) Extended double-t
geometry (see Suppl. Fig.

S1a)

(b) Double-t geometry (see
Suppl. Fig. S1b)

(c) Cross geometry (see
Suppl. Fig. S1c)

(d) Simulated RBCs in domain. (e) Illustration of CFL dynamics and plasma
skimming.

(f) CFL branch 1 (double-t geometry) (g) CFL branch 1 (extended double-t
geometry)

Figure 2: Haematocrit at different geometry branches (see Supplementary Figure S1 for
geometry schematics): a) extended double-t geometry, b) double-t geometry, c) cross
geometry. Example simulation in the double-t geometry: d) vessel network is rendered
semi-transparent in grey, RBC membranes are rendered in red suspended in transparent
blood plasma. e) Schematic describing the impact of CFL dynamics on haematocrit split.
CFL width in opposite sides of channel 1: f) double-t geometry, g) extended double-t
geometry.
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from Section 2.2). Computationally, the new model is significantly less expensive than
the RBC simulations.

We use Murray’s law [47] and our experimentally measured values of λ to design an
idealised vessel network (see Supplementary Figure S4a and Methods section for details).
Most notably we choose equal flow split and radii in daughter branches of any bifurcation,
a scenario where existing HS models would predict homogeneous haematocrit throughout
the network. We simulate network blood flow using a Poiseuille flow approximation with
a HS model originally proposed by Pries et al. [16, 45] (without memory effects) and our
new model (accounting for memory effects). As for the RBC simulations, differences in
haematocrit between daughter branches emerge after two bifurcations (Supplementary
Figure S4c), and are amplified with increasing vessel generation number (Supplementary
Figure S4d). By contrast, existing models predict uniform splitting of the flow and
haematocrit if the daughter vessels have equal radii (Supplementary Figure S4d).

Our model predicts the emergence of a compensatory mechanism in daughter branches.
Increased flow resistance in the branch experiencing haemoconcentration leads to partial
re-routing of flow in the other branch (Supplementary Figure S4b). This, in turn, atten-
uates the haemoconcentration/haemodilution effects described in Section 2.2 due to HS
dependence on flow ratios.

We now consider how this memory effect in the haematocrit distribution may affect
oxygen distribution in the tissue being perfused by the network. Following [23] (see
Methods section for a description of the coupled model), the calculated haematocrit
distribution in the synthetic network acts as a distributed source term in a reaction-
diffusion equation for tissue oxygen. We define sink terms so that oxygen is consumed
at a constant rate everywhere within the tissue. The equation is solved numerically
and oxygen distributions generated using the two HS models (with and without memory
effects) are compared for a range of λ values. The results presented in Figure 3c and
Supplementary Figure S5 show that for larger values of λ the differences in the oxygen
distribution in the tissue for the two haematocrit splitting models are not statistically
significant (λ = 10, p = 0.14). However, as λ decreases, statistically significant differences
appear (for example, with λ = 4, p < 0.001). Without memory effects, the oxygen
distributions become more focussed as λ decreases; with memory effects, the oxygen
distributions are flatter for all values of λ. A similar trend is observed for moderate
values of λ but the distributions are significantly more diffuse (see Supplementary Figure
S5c).

2.4 Vascular normalisation therapies increase lambda ratio in
tumours

Our findings of reduced λ ratio in tumour vasculature and associated predictions of in-
creased oxygen heterogeneity led us to investigate whether existing vascular normalisation
therapies modulate this parameter. Previous reports (Table 4) have extensively demon-
strated in multiple animal models that anti-angiogenic treatment leads to reduction in
tumour vessel diameters. In those studies that analyse vessel length and diameter post-
treatment, vessel length either remains unchanged or decreases to a lesser extent than
vessel diameter. These findings indicate an increase in lambda ratio post-treatment.
Furthermore, Kamoun et al. also reported a reduction in tumour haemoconcentration
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(a) λ = 4, model without memory effects (b) λ = 4, model with memory effects
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(c) Tissue oxygen concentration distributions for varying λ

Figure 3: For λ = 4.0, the model with memory effects clearly yields more heterogeneity,
especially in the region of interest, as highlighted in (a) and (b) (note that the spatial
scales are in microns). Violin plots in (c) show oxygen distributions for varying λ and
the two models under consideration. Heterogeneity increases with λ for the model with-
out memory effects as expected, but the model with memory effects predicts increased
heterogeneity for very low λ. The horizontal lines in oxygen distributions in (c) represent
25, 50 and 75% percentiles.
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Figure 4: λ ratio in MC38 tumours over time following DC101 treatment compared with
control (n=5). DC101 raw data is given in Supplementary Table S1.

post-treatement [48], which suggests an in vivo link between an increase in λ, haematocrit
normalisation and oxygen transport homogenisation.

We validated these results in our animal model by calculating the λ ratio follow-
ing DC101 treatment. Our results indicate that in the first two days post-treatment
λ increases significantly and then decreases to match the control trend (Figure 4, Sup-
plementary Table S1). This change is explained by a linear increase in vessel length
immediately after treatment (absent in the control group), which is compensated after
two days by an increase at a higher rate in vessel diameter (comparable to the control
group) (Supplementary Figure S6).

3 Discussion

Hypoxia compromises the response of many tumours to treatments such as radiotherapy,
chemotherapy and immunotherapy. Dominant causative factors for hypoxia associated
with the structure and function of the tumour vasculature include tortuosity, immature
blood vessels that are prone to collapse, and inadequate flow regulation. Motivated by
morphological analyses of vascular networks from different tumour types and detailed
computer simulations of RBC transport through synthetic networks, we have proposed a
new, rheological mechanism for tumour hypoxia.

We analysed vascular networks from murine MC38, B16F10, and LLC tumour al-
lografts. For each vessel segment within each network, we calculated a novel metric λ
which is the ratio of its length and diameter. Average λ values for the three tumour cell
lines were similar in magnitude (λ ∈ [3, 4.2]) and several fold smaller than values from a
range of healthy tissues (λ ∈ [9.5, 70]).‘ Detailed numerical simulations of RBC transport
in plasma confirmed previous reports of transient alterations in the CFL downstream
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of network bifurcations (e.g. asymmetries in the cross-sectional haematocrit profile fol-
lowing a bifurcation [54] and the temporal dynamics governing its axisymmetry recovery
[42]). Further, for the λ values measured in our tumours and the capillary number
considered in our simulations, the CFL did not become symmetric between consecutive
branching points. This bias is amplified across branching points and drives haemocon-
centration/haemodilution at the network level. Based on these findings, we developed a
new rule for haematocrit splitting at vessel bifurcations that accounts for CFL disruption
due to abnormally short vessel segments. We then used our existing computational soft-
ware [23] to demonstrate that this haematocrit memory effect can generate heterogeneous
oxygen distributions in tissues perfused by highly branched vascular networks and that
the network metric λ controls the extent of this heterogeneity. Finally, we reported an
increase in the average λ value of tumour vascular networks following treatment with the
DC101 anti-angiogenic cancer agent.

The implications of our findings are multiple. We have introduced a simple metric to
characterise tumour vasculature based on the mean length-to-diameter ratio of vessel seg-
ments (= λ), and demonstrated how it can generate oxygen heterogeneity in an idealised,
densely vascularised, tissue model. Our findings, of structurally induced haemodilution
in vascular networks with low λ values, provide a mechanistic explanation for experi-
mental observations of haemodilution in tumour vascular networks [21], the existence of
well-perfused vessels that are hypoxic [22], and a possible explanation for the presence
of cycling hypoxia in tumour microenvironment [55]. We conclude that vessel perfusion
is a poor surrogate for oxygenation in tissue perfused by vascular networks with low λ
values. Further, predictions of tissue oxygenation based on diffusion-dominated oxygen
transport (e.g. [24, 25, 26, 5, 27]) may be inaccurate if they neglect heterogeneity in the
haematocrit distribution of the vessel network. One way to address the resolution gap
in current imaging modalities is to leverage mathematical modelling to infer micrometre
scale information about oxygen levels from tissue scale images [11]. Such a theoreti-
cal framework must account for the complex interplay between microvascular structure,
blood rheology, and oxygen transport, as highlighted in the current work.

Finally, anti-angiogenic drugs have been shown to generate transient periods of height-
ened homogeneous tissue oxygenation, due to improved restructuring and reduced per-
meability of tumour vessels [52]. This phenomenon, termed ‘vascular normalisation’ [6],
can correct the deficient transport capabilities of tumour vasculature, homogenise drug
and oxygen coverage, and, thereby, improve radiotherapy and chemotherapy effective-
ness [2]. Based on our findings, we postulate the existence of a previously unreported
oxygen normalisation mechanism associated with an increase in the average λ value of
tumour vascular networks post treatment with anti-angiogenic drugs. Our results demon-
strate how such morphological changes would lead to a less heterogeneous haematocrit
distribution and more uniform intratumoural oxygenation. Further experimental work,
measuring haematocrit before and after anti-angiogenic treatment, is needed to test this
hypothesis and elucidate its importance in comparison with established mechanisms of
normalisation (e.g. permeability reduction, vessel decompression [56]). If confirmed, this
finding would provide a theoretical foundation for the development of therapeutic ap-
proaches for the normalisation of tumour oxygenation involving the administration of
vascular targeting agents that normalise λ and, therefore, homogenise haematocrit and
tissue oxygenation. Possible mechanisms to be targeted would include, among others, the
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promotion of post-angiogenic vascular remodelling [57, 58, 59], in particular vessel prun-
ing and diameter control, or the modulation of currently unexplored temporal regulators
of vascular patterning [60].

In summary, tissue oxygenation is central to cancer therapy. Understanding what
controls tumour tissue oxygen concentration and transport properties is key to improving
the efficacy of cancer treatments based on new and existing methods. Unravelling the
causal relationship between vessel network structure and tissue oxygenation will pave the
way for new therapies.

4 Methods

4.1 Tumour allograft model and abdominal imaging window
protocol

We used an abdominal window chamber model in mice, which allowed for intravital
imaging of the tumors [28]. The abdominal window chamber was surgically implanted in
transgenic mice on C57Bl/6 background that had expression of red fluorescent protein
tdTomato only in endothelial cells. The murine colon adenocarcinoma - MC38, murine
melanoma - B16F10, and murine Lewis Lung Carcinoma – LLC tumors with expression
of green fluorescent protein (GFP) in the cytoplasm were induced by injecting 5 µl of
dense cell suspension in a 50/50 mixture of saline and matrigel (Corning, NY, USA). For
DC101 treatment, mice bearing MC38 tumors were treated with anti-mouse VEGFR2
antibody (clone DC101, 500 µg/dose, 27 mg/kg, BioXCell) injected intraperitoneally on
the first and fourth day of imaging. Prior to imaging we intravenously injected 100 µl of
Qtracker 705 Vascular Labels (Thermo Fisher Scientific, MA, USA) which is a blood-pool
based labelling agent, thus allowing us to determine whether vessels were perfused or not.
Isoflurane inhalation anesthesia was used throughout the imaging, mice were kept on a
heated stage and in a heated chamber and their breathing rate was monitored. Tumor
images were acquired with Zeiss LSM 880 microscope (Carl Zeiss AG), connected to a Mai-
Tai tunable laser (Newport Spectra Physics). We used an excitation wavelength of 940 nm
and the emitted light was collected with Gallium Arsenide Phosphide (GaAsP) detectors
through a 524–546 nm bandpass filter for GFP and a 562.5–587.5 nm bandpass filter
for tdTomato and with a multi-alkali PMT detector through a 670–760 bandpass filter
for Qtracker 705. A 20x water immersion objective with NA of 1.0 was used to acquire
a Zstacks-TileScan with dimensions of 512x512 pixels in x and y, and approximately 70
planes in z. Voxel size was 5 µm in the z direction and 0.83 µm x 0.83 µm in the x-y plane.
Each tumor was covered by approximately 100 tiles. The morphological characteristics
of tumor vasculature were obtained from the acquired images as previously described
[29, 30]. All animal studies were performed in accordance with the Animals Scientific
Procedures Act of 1986 (UK) and Committee on the Ethics of Animal Experiments of
the University of Oxford.

4.2 RBC simulations in synthetic capillary networks

We define a set of networks of cylindrical channels of diameter d. An inlet channel
of length 25d (channel 0) bifurcates into two channels of length δ and 25d at π and

14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 16, 2019. ; https://doi.org/10.1101/640060doi: bioRxiv preprint 

https://doi.org/10.1101/640060
http://creativecommons.org/licenses/by/4.0/


Table 5: Parameters in blood flow simulations

Parameter Description Value Reference
d Cylindrical channel diameter 33 µm Own results
L′ Inlet/outlet channel length 25d [42]
δ distance between branching points 4d, 25d [42], Own results

v̄inlet inlet mean velocity 600 µm/s [21]
Hinlet inlet discharge haematocrit 20% [21]

π/2 radians clockwise, respectively (channels 1 and 2). Channel 1 bifurcates into two
channels of length 25d at π and α radians clockwise, respectively (channels 3 and 4).
We consider the following configurations (Supplementary Figure S1): double-t geometry
(δ = 4d, α = π/2), cross geometry (δ = 4d, α = 3π/2), and extended double-t geometry
(δ = 25d, α = π/2).

A model of liquid-filled elastic membranes (discocytes of 8 µm diameter approximating
the shape of an RBC) suspended in an ambient fluid is used to simulate blood flow in the
networks. We use the fluid structure interaction (FSI) algorithm previously presented
and validated by Krüger et al. [61], which is based on coupling the lattice Boltzmann
method (LBM), finite element method (FEM), and immerse boundary method (IBM).
The discocyte membranes are discretised into 500 triangles, which imposes a voxel size of
0.8µm on the regular grid used in the LBM simulation. The mechanical properties of the
membrane are defined to achieve a capillary number (i.e. the ratio of viscous fluid stress
acting on the membrane and a characteristic elastic membrane stress) of 0.1 in channel
0. The coupled algorithm is implemented in the HemeLB blood flow simulation software
[62, 63] (http://ccs.chem.ucl.ac.uk/hemelb). Simulations ran on up to 456 cores of
the ARCHER supercomputer taking 11–32 hours. See Supplementary Material A.2 for
full details.

A constant flow rate of Q0 = v̄inletπd
2/4 and a procedure for RBC insertion with

tube haematocrit Hinlet is imposed at the network inlet. The outlet flow rates are set to
Q2 = Q0/2 and Q3,4 = Q0/4 to ensure an equal flow split at each bifurcation. RBCs are
removed from the computational domain when they reach the end of any outlet channel.
Table 5 summarises the key model parameters in the model. We performed blood flow
simulations (3 runs in each network, with random perturbations in the RBC insertion
procedure) and, after the initial transient required to fully populate the network with
RBCs, we quantified haematocrit by an RBC-counting procedure.

4.3 Hybrid model for tissue oxygen perfusion that accounts for
history effects in vascular networks

We first explain how our vascular networks are designed. Then, we describe how blood
flow and haematocrit are determined. Next, we introduce the HS models and explain
how CFL memory effects are incorporated and the resulting flow problem solved. We
conclude by describing how the resulting haematocrit distribution is used to calculate
oxygen perfusion in the surrounding tissue. The basic steps of our method are summarised
in the flow chart in Supplementary Figure S3.
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4.3.1 Network design

Our networks have one inlet vessel (with imposed blood pressure and haematocrit; we
call this generation 0), which splits into two daughter vessels (generation 1), which then
split into two daughter vessels (generation 2), and so on until a prescribed (finite) number
of generations is reached. Thereafter, the vessels converge symmetrically in pairs until
a single outlet vessel is obtained (with imposed blood pressure). At every bifurcation,
the diameters of the two daughter vessels are assumed to be equal and determined by
appealing to Murray’s law [47]. Using the same vessel diameters in all simulations, we
vary vessel lengths, so that for all vessels in the network, the lengths equal the product
of λ (which is fixed for a given network) and the vessel diameter. We focus on λ-values
in the range measured in our tumours (see Section 2.1 and Supplementary Material).

4.3.2 Blood flow and haematocrit splitting

Network flow problem. Tissue oxygenation depends on the haematocrit distribution
in the vessel network perfusing the tissue. The haematocrit distribution depends on the
blood flow rates. These rates are determined by analogy with Ohm’s law for electric
circuits, with the resistance to flow depending on the local haematocrit via the Fahraeus-
Lindquist effect (for details, see Supplementary Material and [64]). The flow rates and
haematocrit are coupled. We impose conservation of RBCs at all network nodes1. A HS
rule must then be imposed at all diverging bifurcations.

HS model without memory effects. The empirical HS model proposed by Pries
et al. [65] states that the volume fraction of RBCs entering a particular branch FQE

depends on the fraction of the total blood flow entering that branch FQB as follows:

logit(FQE) = A+B logit

(
FQB −X0

1− 2X0

)
, (1)

where logit(x) = ln (x/(1− x)), B serves to as a fitting parameter for the nonlinear
relationship between FQE and FQB, and A introduces asymmetry between the daughter
branches (note that for an equal flow split FQB = 0.5, A 6= 0 yields uneven splitting
of haematocrit). Finally, X0 is the minimum flow fraction needed for RBCs to enter a
particular branch (for lower flow fractions, no RBCs will enter)2; the term (1 − 2X0)
reflects the fact that the CFL exists in both daughter vessels (see Supplementary Figure
S7a).

HS model with memory effects. We account for the effects of CFL disruption and
recovery by modifying the parameters A and X0 (as already observed in [16]). For
simplicity, and in the absence of suitable data, we assume that the parameter B is the
same in both daughter branches. If X0,f (Af ) and X0,u (Au) denote the values of X0

1
∑
i

Q̃iHi = 0, where we sum over all vessels i meeting at a given node with haematocrit Hi and

signed flow rates Q̃i (of magnitude Qi).
2The dependences of A, B and X0 on the diameters of the participating vessels and on the parent

vessel haematocrit are described in Supplementary Material, see equations (S.14)-(S.16).
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(A) in the favourable and unfavourable daughter branches (see Figure 2e), then our new
model of HS can be written as:

logit(FQE,f ) = Af +B logit

(
FQB,f −X0,f

1−X0,u −X0,f

)
, (2)

where subscripts f and u relate to favourable and unfavourable branches, respectively (see
Supplementary Figure S7a for a graphical depiction). It is possible to rewrite Equation (2)
in terms of the suspension flow rates Q ≡ QB and haematocrit levels Hof the favourable
f , unfavourable u, and parent P vessels as (for details see Supplementary Material):

Hf

Hu

= eAf ×
(
Qf −X0,fQP

Qu −X0,uQP

)B
× Qu

Qf

. (3)

This formulation of our HS model facilitates comparison with other HS models [18, 19, 46].
Functional forms for Af , X0,f and X0,u are based on our RBC simulation results and the
existing literature (see Supplementary Material). We use an iterative scheme (as in [19])
to determine the flow rates and haematocrit in a given network.

4.3.3 Calculating the tissue oxygen distribution

We embed the vessel network (described in Section 4.3.1) in a rectangular tissue domain.
A steady state reaction-diffusion equation models the tissue oxygen distribution, with
source terms at vessel network locations proportional to the haematocrit there, and sink
terms proportional to the local oxygen concentration modelling oxygen consumption by
the tissue. This equation is solved numerically using Microvessel Chaste (see [23] and
Supplementary Material for details). In order to highlight the influence of HS on tissue
oxygen, we focus on the central 25% of the domain which is well-perfused and ignore the
avascular corner regions (see Figures 3a and 3b)
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(a) Extended double-t
geometry

(b) Double-t geometry (c) Cross geometry

Figure S1: Computational domains considered showing the numbering of the different
channels in the network: a) extended double-t geometry, b) double-t geometry, c) cross
geometry.

Figure S2: CFL channel 1 double-t geometry perpendicular to bifurcation planes.

A Supplementary Material

The Supplementary material is organised as follows. In A.1, we provide experimental
evidence which supports the hypothesis that vessel lengths and diameters are uncorrelated
in tumour environments. We describe the FSI algorithm used for the RBC simulations
in A.2 and the method used to calculate the width of the CFL in A.3. We present our
hybrid model of tissue perfusion in A.4 and introduce our new HS model in A.5. In A.6,
we comment on the higher mean oxygen values predicted by our oxygen perfusion model
for small λ values.

Table S1: λ values measured in MC38 tumours following DC101 treatment over time.

Day Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5
0 4.532 4.065 4.141 4.122 4.054
1 5.301 4.098 4.336 4.432 3.878
2 6.222 4.429 4.396 5 4.756
3 5.382 4.465 3.89 5.353 5.068
4 4.395 4.418 3.273 6.342 4.237
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Start:
input λ

(2 ≤ λ ≤ 20)

Generate synthetic
vessel network

Solve haematocrit
and flow problems
using HS model
without memory

Solve haematocrit
and flow problems
using HS model
with memory

Embed vessel
network into
tissue domain

Define spatial
domain and

discretise it using
a regular grid

Solve reaction-
diffusion equation

to determine
tissue oxygen
distribution

Compare output
from the two
HS models

End

Vessel network: blood flow and haematocrit

Tissue oxygenation

Figure S3: Flow chart summarising the main components of our hybrid model for tissue
oxygen perfusion, as implemented within Microvessel Chaste (see [23]).
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(a) A typical forking vessel network (b) Vessel flow rates (in m3/s)

(c) Distribution of haematocrit across vessel
network (model with memory effects)
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(d) Propagation of memory effects

Figure S4: (a) A typical symmetric forking network with 6 generations of vessels. (b) Flow
rates almost halve between consecutive vessel generations. However, small differences in
flow rates between daughter vessels arise due to non-uniform haematocrit splitting, as can
be observed in inset (note that the range of the colour bar has been adjusted to represent
only the selected vessels). (c) Differences in the predicted haematocrit levels of daughter
vessels (within a single vessel generation) become more pronounced as the generation
number increases. (d) For the new HS model, the haematocrit distribution becomes
more disperse as the number of bifurcations included in the network increases (the red
horizontal line represents the predicted haematocrit when memory effects are neglected
and haematocrit is distributed uniformly across the network). Each circle corresponds to
a single vessel and different colours correspond to different vessel generations.
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(a) Boxplots showing tissue oxygen concentration distribution as
a function of λ
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(b) Mean oxygen concentration as a function of λ
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(c) Standard deviation (oxygen) as a function of λ

Figure S5: Summary statistics illustrating how for a vessel network with 6 generations
its λ value and the HS model affect tissue oxygenation. a) Boxplots showing how the
tissue oxygen distribution changes as λ varies for the two different HS rules. b) Mean
oxygen concentration increases as λ decreases (and the vessel density increases). c) Stan-
dard deviation in the tissue oxygen concentration increases with λ when memory effects
are neglected (Equation (1)). When memory effects are considered (Equation (2)), the
standard deviation increases for small λ values. The mean and standard deviation for the
two models converge for large λ values. Model parameter values as per Supplementary
Table S4.
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Figure S6: Vessel length and diameter in MC38 tumours over time following DC101
treatment compared with control (n=5).

A.1 Vessel lengths and diameters in tumour microvasculature
are uncorrelated

In Supplementary Tables S2 and S3 we list Pearson’s r-values quantifying the correlation
between vessel lengths, L, and diameters, d,

ρL,d =
cov(L, d)

σLσd
, (S.1)

where cov(i, j) is the covariance of two variables and σi is the standard deviation of
variable i, for the three tumour cell lines used in our experiments. Results are presented
for each mouse and each scan. Day 0 was chosen as the day when the tumour vascular
network appeared to be fully formed. This normally occurred about 8 days after tumour
induction, when the tumour size was approximately 4mm in diameter. We note also that
the duration of the observation period is cell-line specific; some tumours grew faster than
others and soon started pushing on the window thus the animal had to be culled as per
licence limitations. The Pearson’s r-values are too low to conclude that a correlation
exists between L and d in the tumour vascular networks studied.

A.2 Red blood cell suspension model

LBM numerically approximates the solution of the Navier-Stokes equations for a weakly
compressible Newtonian fluid discretised on a regular lattice. We employ the D3Q19
lattice, the Bhatnagar–Gross–Krook collision operator extended with the Guo forcing
scheme [66], the Bouzidi-Firdaouss-Lallemand (BFL) implementation of the no-slip bound-
ary condition at the walls [67], and the Ladd implementation of the velocity boundary
condition for open boundaries [68]. All these methods have been extensively used and
analysed in the literature (see [69, 70] for a complete presentation).

The RBC membrane is modelled as a hyperelastic, isotropic and homogeneous ma-
terial, following the model described in [43]. The different contributions to the total
membrane energy W is given by W = W S + WB + WA + W V , where the superscripts
denote strain, bending, area and volume. We employ the surface strain energy density
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Table S2: Timecourse of Pearson’s r-values calculated for different mice at different days
of measurement implanted with the MC38 cell line. Day 0 corresponds to the day of the
first measurement, when the tumour reached a specified size (4mm in diameter; see the
main text). The corresponding values of L̄, d̄ and λ are reported in the main text (see
Table 1). The missing datum for tumour 3 on Day 3 is due to the laser on the microscope
failing during imaging.

Day 1 2 3 4 5 6
0 0.05 -0.06 -0.07 0.10 -0.13 0.00
1 0.03 -0.05 -0.07 -0.07 -0.13 -0.00
2 -0.08 -0.07 -0.06 -0.17 -0.19 0.02
3 -0.09 -0.09 - -0.14 -0.13 -0.02
4 -0.14 -0.11 -0.08 -0.17 -0.12 -0.07
5 - -0.09 - - -0.07 -0.11
6 - -0.04 - - - -
7 - -0.08 - - - -

Table S3: Timecourse of Pearson’s r-values for mice implanted with the B16F10 and
LLC cell lines. Day 0 corresponds to the day of the first measurement, when the tumour
reached a specified size (4mm in diameter; see the main text). The corresponding values
of L̄, d̄ and λ are reported in the main text (see Table 1).

B16F10 LLC
Day 1 2 3

0 -0.08 -0.08 -0.06 0.03
1 -0.05 -0.06 -0.09 0.02
2 -0.05 -0.12 -0.06 -
3 -0.03 -0.11 -0.06 -
4 - - -0.06 -
5 - - -0.05 -
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wS proposed by Skalak et al. [71]:

wS =
κs
12

(
I2

1 + 2I1 − 2I2

)
+
κα
12
I2

2 , (S.2)

I1 = λ2
1 + λ2

2 − 2 , (S.3)

I2 = λ2
1λ

2
2 − 1 , (S.4)

where κs and κα are the shear and dilation moduli, λ1, λ2 are the local principal in-plane
stretch ratios, and W S =

∫
dA wS. The shape of the discocyte membrane is approximated

by a number Nf of flat triangular faces, and W S is numerically calculated based on an
FEM approach as

W S =

Nf∑
j=1

A
(0)
j wsj , (S.5)

where A
(0)
j is the undeformed area of face j. The bending energy of the RBC membrane

is numerically calculated as

WB =
√

3κB
∑
〈i,j〉

(
θi,j − θ(0)

i,j

)2

, (S.6)

where κB is the bending modulus, θi,j is the angle between the normals of two neigh-

bouring faces i and j, and θ
(0)
i,j is the same angle for the undeformed membrane. Finally,

we penalise deviations of the total membrane surface area and volume by defining two
additional energy contributions:

WA =
κA
2

(
A− A(0)

)2

A(0)
, (S.7)

W V =
κV
2

(
V − V (0)

)2

V (0)
, (S.8)

where κA, κV are the surface area and volume moduli, A and A(0) are the current and
undeformed membrane surface areas, and similarly with V . The principle of virtual work
yields the force acting on each membrane vertex i at position xi through

Fi = −∂W ({xi})
∂xi

. (S.9)

The immersed boundary method [72] is used to couple fluid and membrane dynamics.
The fluid velocity is interpolated at the positions xi of the RBC mesh vertices, and a
forward-Euler scheme is used to advect the vertices to satisfy the no-slip condition. The
vertex forces Fi are spread to the lattice where they are used as input to the forcing term
in the LBM, which ensures local momentum exchange between the membrane and the
fluid. See [43] for a detailed numerical analysis of the algorithm.

25

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 16, 2019. ; https://doi.org/10.1101/640060doi: bioRxiv preprint 

https://doi.org/10.1101/640060
http://creativecommons.org/licenses/by/4.0/


A.3 CFL width calculation

To calculate the CFL width in channel 1 of the domains in Supplementary Figure S1, let
us consider a vessel cross-section of diameter d at distance l downstream from the first
bifurcation in the network. The RBC density, φ(r, θ, l, t), is 1 if there is a RBC at time t
occupying the point with radial coordinate r and angular coordinate θ of the cross-section
and 0 otherwise. The average RBC density flux Φ(l) going through the cross-section is

Φ(l) =
1

N

N∑
i=1

∫ 2π

0

dθ

∫ d/2

0

rdrφ(r, θ, l, ti)v(r, θ, l, ti) · n ,

where v is the fluid velocity, n is the cross-section normal vector and N is the number of
simulation time steps in the average (0.5 s of real time simulation sampled every 0.0215
s, N = 23, in our case).

We define χ = 0.01 as the average fraction of RBC density flux crossing the CFL. Now
we are able to numerically determine the local CFL width W (l, θ): consider a 2D-cone
centered and contained in the cross-section with orientation θ and size ∆θ = π/2. The
width W (l, θ) is the distance such that

χ =
4

ΦN

N∑
i=1

∫ θ+∆θ/2

θ−∆θ/2

dθ′
∫ d/2

d/2−W
rdrφ(r, θ′, l, ti)v(r, θ′, l, ti) · n .

Since we are only interested in the spatial evolution of the CFL, the specific value of χ
used in the definition is arbitrary. The choice of χ will change the width of the CFL after
symmetry recovery, but it will not affect the local characterisation of the CFL spatial
evolution after a bifurcation. For example, for any value of χ, the CFL recovery distance
can be calculated as the shortest distance l for which the CFL width W do not depend
on coordinate θ.

A.4 Hybrid model of oxygen transport in vascularised tissue

A.4.1 Choice of vessel diameters and branching angles in vascular networks

In the branched networks used in Section 2.3, we fix the diameter of the inlet vessel so
that dinlet = 100 µm. The diameters of the two daughter vessels (dα and dβ) are assumed
to be equal and determined from the parent vessel diameter (dP ) via Murray’s law [47]
so that:

d3
P = d3

α + d3
β = 2d3

α,

which means that

dα =
dP

2
1
3

.

The network is symmetric about its central axis and so vessels on the converging side of
the network have the same diameter as those of the same generation on the diverging
side; see Supplementary Figure S4a. For all simulations the networks have 6 generations
of vessels. The length L of a vessel segment in a given network is related to its diameter
d via L = λd.
For complete specification of the network geometry, in two-dimensional cartesian geome-
try it remains to embed the network in a spatial domain. This is achieved by specifying
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either the branching angles, or (equivalently) the lengths of the projections of the vessels
on the y axis. Denoting by Lvert1 the length of the projection of a vessel of generation 1,
the lengths of the projection of vessels of generation i > 1 are given by Lverti = 1

2
Lverti−1 .

As a result, the vertical size of the domain will not exceed 4Lvert1 for any number of
generations. Finally, we require Lvert1 < L1 = length of vessels of generation 1. In our
simulations, we fix Lvert1 = 0.9L1 to ensure adequate spatial extent in the y− direction.

A.4.2 Poiseuille’s law and Fahraeus-Lindquist effect

We simulate flow in the branched networks by following the approach of Pries et al. [65].
For blood vessels of length L and diameter d, we assume Poiseuille’s law

Q =
π

128

∆pd4

Lµ
, (S.10)

where Q is the vessel flow rate, ∆p is the pressure drop along the vessel and µ is the
viscosity of blood [64]. Following [73] we assume that the blood viscosity depends on
vessel diameter and haematocrit via the empirical relationship:

µ = µp

[
1 + (µ45 − 1)

(1−H)C − 1

(1− 0.45)C − 1

(
d

d− 1.1

)2 ][
d

d− 1.1

]2

,

where µp is the plasma viscosity, H is the vessel haematocrit,

µ45 = 6e−0.085d + 3.2− 2.44e−0.06d0.645

and

C =
(
0.8 + e−0.075d

)(
−1 +

1

1 + 10−11d12

)
+

1

1 + 10−11d12
.

Introducing signed flow rates Q̃i for the sake of brevity, we impose the conservation of
blood and haematocrit at each network bifurcation, so that∑

i

Q̃i = 0, (S.11)

and ∑
i

Q̃iHi = 0. (S.12)

In Equations (S.11) and (S.12) we sum over the three vessels that meet at that bifurcation.
At diverging bifurcations, we impose a HS rule: we use Equation (1) when CFL memory
effects are neglected and Equation (2) when they are included. Denoting by NB the
number of network bifurcations and NV the number of vessels, we have NB unknown
pressures P , NV unknown flow rates Q and NV − 1 unknown haematocrit levels (the
inlet haematocrit being prescribed) - altogether NB + 2NV − 1 unknowns. At the same
time, we impose Poiseuille’s law (S.10) for every vessel (NV times), conservation of blood
(S.11) and haematocrit (S.12) at every bifurcation node (NB times), and an HS rule at all
diverging bifurcations (NB/2 times), yielding a total of NV + 5NB/2 algebraic equations.
Since every bifurcation connects 3 vessels, we have NV = (3NB +2)/2, where every vessel
is counted twice, except for the inlet and outlet vessels (+2 in the numerator). From this,
it follows that the number of equations (NV + 5NB/2) equals the number of unknowns
(NB + 2NV − 1).
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A.4.3 Oxygen distribution in tissue

In this section, we determine the oxygen concentration c in the tissue. Following [23],
we assume that the dominant processes governing its distribution are delivery from the
vessel network, diffusive transport through the tissue and consumption by cells in the
tissue. We focus on the long time behaviour and therefore adopt a quasi-steady state
approximation

D∇2c︸ ︷︷ ︸
diffusive transport through the tissue

+ πdlγ

(
βref
Href

Hl − c
)
δnetwork︸ ︷︷ ︸

delivery from the blood vessels

− κc︸︷︷︸
consumption by the tissue

= 0 .

(S.13)
In Equation (S.13), the positive constants D, γ and κ represent the diffusion coefficient
for oxygen in the tissue, the vessel permeability to oxygen and the rate at which it is
consumed by the cells in the tissue. The vessel network is represented by a collection of
Dirac point sources δnetwork where

δnetwork(x) =

{
1 if vessel is located at x
0 otherwise

and for any x satisfying δnetwork(x) = 1, dl and Hl are the diameter and haematocrit of
the vessel at that location (where the latter has been calculated as described in the previ-
ous section). The constant βref represents the oxygen concentration of a reference vessel
containing haematocrit Href (here we fix Href = 0.45, the inlet haematocrit) and we
suppose that the oxygen concentration of a vessel with haematocrit Hl is βrefHl/Href .
In Equation (S.13) we assume that the oxygen is supplied by vessels to the tissue at
a rate which is proportional to their circumference πdl, the vessel permeability γ, and
βrefHl/Href − c. Finally, we have βref = cstpprefαeff , where cstp denotes an ideal gas
concentration at standard temperature and pressure, pref denotes the reference partial
pressure at the inlet vessel, and αeff denotes the volumetric oxygen solubility [74]. A
summary of the parameter values used to solve Equation (S.13) is presented in Supple-
mentary Table S4.

A.5 Derivation of and justification for the HS model with CFL
memory

A.5.1 Parameter dependencies in HS model without memory from [45]

The dependencies of the parameters A, B and X0 (discussed in Section 4.3.2; see Equation
(1)) on the diameters of the parent and both daughter vessels (dP , dα and dβ, respec-
tively), and the discharge haematocrit HP in the parent vessel were first introduced in [65]
and later adjusted in [45] to achieve a better approximation under extreme combinations
of dα, dβ, dP and HP . We will use the functional forms from [45], which read

A = −13.29
[(
d2
α/d

2
β − 1

)
/
(
d2
α/d

2
β + 1

)](
1−HP

)
/dP , (S.14)

B = 1 + 6.98

(
1−HP

dP

)
(S.15)
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Table S4: Parameters used to simulate tissue oxygen.

Parameter Description Value Unit Reference
D Diffusivity 0.00145 cm2 min−1 [75]
κ Consumption rate 13.0 min−1 [75]
γ Vessel permeability 6.0 cm min−1 [75]
cstp See Section A.4.3 1

0.0224
mol m−3 [76]

pref Reference partial pressure 20 mmHg [75]
αeff Volumetric solubility 3.1× 10−5 mmHg−1 [74]
Hinlet Inlet haematocrit 0.45 - [77]
dinlet Diameter of inlet vessel 100 µm Estimated from [64]
Ashift See Section A.5.2 0.5 - Estimated Sec. A.5.2
ω See Section A.5.2 4 - Estimated Sec. A.5.2
µp Plasma viscosity 10−3 Poiseuille Similar to [75]
pin Inlet pressure 3.32× 103 Pa Similar to [75]
pout Outlet pressure 2.09× 103 Pa Similar to [75]

and
X0 = 0.964(1−HP )/dP . (S.16)

These functional forms assume that dP is without units (given in microns). We will stick
to this convention throughout this section.

A.5.2 HS model with memory

Simplifying assumptions. Before we discuss the further details of the newly-developed
extension to the model from [45] incorporating the memory effects in detail, we briefly
comment on its main simplifying assumptions. Our model at the moment does not in-
clude any information on local flow rate (apart from information on the distance to the
previous bifurcation) and a more realistic model for the CFL recovery should include
such information. Furthermore, the current model is two-dimensional. However, these
simplifying assumptions could easily be relaxed in future work. For instance, in three
dimensions, one needs to consider information on the angle defined by the planes contain-
ing the current and previous bifurcation in the model. Therefore, the model presented
here should be regarded as a first attempt to account for CFL disruption effects in HS.

Rewriting of the model. In this section, we rewrite the HS model with memory effects
given in terms of the fractional blood (FQB) and erythrocyte (FQE) flow rates (Equation
(2)) so that it is expressed in terms of haematocrit levels H and flow rates Q experienced
by the vessels belonging to a given bifurcation (Equation (3)). The definitions of FQE,f

and FQB,f can be mathematically written as:

FQE,f =
QfHf

QPHP

, FQB,f =
Qf

QP

.

Substituting these expressions into Equation (2) from the main text gives:

logit

(
QfHf

QPHP

)
= Af +B logit

(
Qf/QP −X0,f

1−X0,u −X0,f

)
,
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and recalling that logit(x) = ln (x/(1− x)), we have

ln

(
QfHf

QPHP −QfHf

)
= Af +B ln

(
Qf −X0,fQP

QP −Qf −X0,uQP

)
.

Using the conservation of blood (overall)

QP = Qf +Qu

and RBCs (in particular)
QPHP = QfHf +QuHu (S.17)

at diverging bifurcations, we arrive at

ln

(
QfHf

QuHu

)
= Af +B ln

(
Qf −X0,fQP

Qu −X0,uQP

)
.

This can also be written as

ln

(
Hf

Hu

)
= Af +B ln

(
Qf −X0,fQP

Qu −X0,uQP

)
− ln

(
Qf

Qu

)
,

which yields
Hf

Hu

= eAf ×
(
Qf −X0,fQP

Qu −X0,uQP

)B
× Qu

Qf

.

Choice of parameters and CFL recovery function. Now we introduce the func-
tional forms for Af , X0,f and X0,u, using empirical data to justify our choices. Guided
by the dependence of A on the branching history of the network described in [16] (see
Figure 7 therein), we propose

Af = A+ Ashiftf(l; dP ), (S.18)

where A is given in (S.14), the positive constant Ashift corresponds to the maximum
CFL disruption effect, and the function f(l; dP ) describes how the recovery of the CFL
depends on the distance l to the previous bifurcation and the diameter dP of the parent
vessel3.
For parameter A, we only have access to the scattered data with respect to the regressor
from [65] (as opposed to the regressor from [45]), which reads

A = −6.96 ln

(
dα
dβ

)
/dP (S.19)

and using the extreme values of A in these data (see Supplementary Figure S7c), we
estimate Ashift = 0.5. Note that in branching networks with every pair of daughter
vessels having equal radii (as is the case in Section 4.3), both [65] and [45] yield A = 0.
Thus, for our networks, the choice of A does not affect Af at all (see Equation (S.18)).

3Consistency of the model requires that Au = A−Ashiftf(l; dP ).
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Table S5: Haematocrits predicted by the model with CFL memory effects

Distance Hinlet Hu Hf

δ = 4d 20.0 17.7 22.3
δ = 11d 20.0 19.6 20.4
δ = 18d 20.0 19.9 20.1
δ = 25d 20.0 20.0 20.0

For simplicity, we model the CFL recovery using an exponential function

f(l; dP ) = e
− l

ωdP , (S.20)

where ω controls the temporal dynamics of CFL recovery. From [42], we note that the
CFL width is (approximately) 90% recovered at a distance l90 = 10dP from the previous
bifurcation (see also Figure 2g). Accordingly, we choose ω so that

0.1 = e−
10
ω =⇒ ω =

10

ln (10)
≈ 4.

Guided by the dependence of X0,f on flow history described in [16], we propose

X0,f = X0 (1− f(l; dP )) . (S.21)

Assuming, as a first approximation, that X0,f +X0,u is constant and independent of the
distance to the previous bifurcation (see Figure 2g), we define

X0,u = X0 (1 + f(l; dP )) . (S.22)

A.5.3 Validation of the HS model with memory

We validate the HS model with memory by comparing its predictions with results from
the RBC simulations in the double-t geometry in Section 2.2. We assume that all vessels
have the same diameter (d = 33 µm), and that the flow rate splits evenly at both
bifurcations. If we assume further that the CFL is fully established at the network
inlet vessel, Hinlet = 20%, then Equation (1) supplies H1 = H2 = Hinlet = 20%. We
use conservation of RBCs (S.17) and the new HS model (3) to estimate haematocrit
values in the unfavourable and favourable daughter branches after the second bifurcation
(channels 3 and 4, respectively) for varying inter-bifurcation distances δ. The results
are summarised in Supplementary Table S5. For δ = 4d, the new HS model predicts
haematocrits within 5% of the values calculated from RBC simulations in Section 2.2.
Given the uncertainty in determining discharge haematocrit in the RBC simulations and
given that the new model neglects effects due to asymmetric streamline splitting [44], we
conclude that our new model provides a good leading-order approximation to the effect
of CFL disruption on HS.

Finally, we compare the CFL evolution dynamics calculated from the RBC simulations
(for θ = 0 and θ = π) with those predicted from the proposed evolution of X0,f and X0,u
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(a) Flow and haematocrit separation
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(c) Dispersion of data for A from [16]

Figure S7: (a) A schematic diagram presenting the geometric intuition behind (blood)
flow and haematocrit separation helps us understand the need for two distinct minimum-
flow fractions for the favourable and the unfavourable branches. Blood flow separation at
the two consecutive bifurcations is shown in dotted green, streamlines are sketched with
yellow curved arrows, and the CFL recovery on the favourable (unfavourable) side of the
parent vessel after the first bifurcation is sketched in red (blue). Whenever FQB,f < X0,f

(FQB,u < X0,u), the favourable (unfavourable) branch only draws blood from the CFL
and it thus receives pure plasma. (b) Model of CFL recovery as described by Equation
(S.25) shows similar trends to and is in satisfactory agreement with the CFL width data
from RBC simulations in Figure 2g (given the simplifying assumptions). The established
CFL width of 1.8 µm chosen by inspection for this particular dataset. (c) Dispersion of
values for A (reproduced using Figure 6 from [16]) is used with the regression from [65]
to estimate the value of Ashift ≈ 0.5 in Equation (S.18), based on deviation from the
regression. We assume the CFL disruption to be the primarily cause of this deviation,
and thus its maximum (absolute) value should correspond to l = 0 in (S.20) (i.e. f = 1
in (S.18)).
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(Equations (S.21) and (S.22)). In the absence of a known functional form relating the
CFL width W and the minimum flow fraction X0, we define

X0,f/u =
Wf/u

dP
. (S.23)

Equation (S.23) is based on the diagram in Supplementary Figure S7a and the assump-
tions of a cross-sectionally uniform velocity profile within a one-dimensional vessel cross-
section. Combining (S.16), (S.23), (S.21) and (S.22), we conclude

Wf/u = dPX0,f/u = dPX0 (1∓ f(l, dP )) = 0.964× (1−HP )
(

1∓ e−
l

4×dP

)
. (S.24)

We remark that for a well-established CFL (i.e. l→∞), Equation (S.24) predicts (noting
that channel 1 serves as the parent vessel for the second bifurcation and concluding the
valueHP = 0.2 from Table 5) a CFL width of about 0.77 µm, whereas our RBC simulation
predicts a value of approximately 1.8 µm (see Supplementary Figure S7b). We postulate
that this discrepancy is caused by our oversimplification of the relationship between the
CFL width and the minimum flow fraction (Equation (S.23)). Nevertheless, we can
adjust Equation (S.24) so that it is consistent with the established CFL width of 1.8 µm
by writing

Wf/u = 1.8×
(

1∓ e−
l

4×dP

)
. (S.25)

In this case the CFL evolution (for θ = 0 and θ = π) follows a trend similar to that
observed in our RBC simulations (Supplementary Figure S7b). In particular, our as-
sumption that l90 = 10dP is in good agreement with our simulation results (see dashed
line in Supplementary Figure S7b).

A.6 Explanation of higher mean oxygen values for small λ

In Section 2.3, we observed that CFL-disruption effects increase the mean oxygen con-
centration in the chosen network. Here, we provide an explanation of this phenomenon.

We define
∆αH = Hα −HP , ∆βH = Hβ −HP , (S.26)

where P is the parent branch and α and β are the daughter branches of any diverging
bifurcation. Conservation of blood and RBCs at this bifurcation then yields

Qα +Qβ = QP (S.27)

Qα (HP + ∆αH) +Qβ (HP + ∆βH) = QPHP . (S.28)

Combining (S.28) and (S.27) supplies

Qα

Qβ

= −∆βH

∆αH
. (S.29)

We deduce that, at diverging bifurcations, the haematocrit level in the daughter branch
with higher flow rate deviates less (in absolute value) from the haematocrit in the parent
vessel than the branch with lower flow rate.
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We note further that all paths connecting the inlet and outlet vessels in the direction
of blood flow in a given network are topologically and geometrically equivalent. There-
fore, heterogeneity in haematocrit splitting arises solely from CFL-disruption effects. If
haematocrit is elevated in one of the daughter branches, its impedance will increase, and,
as a result, it will receive a lower flow rate.

Combining these two effects, we see that, in the chosen networks, haemoconcentra-
tion in any daughter branch is more significant than haemodilution in its sibling. As a
consequence, and given that the strength of the oxygen source term in Equation (S.13)
is a linear function of H, we observe higher mean oxygen levels when the effects of CFL
disruption are taken into account (especially for small λ). Future work will investigate
this effect by making source term a function of RBC mass flux (i.e. QH) or relaxing the
assumption that the RBCs have infinite oxygen carrying capacity.
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