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Abstract 
Scores on intelligence tests have been reported to correlate significantly with educational, 

occupational and health outcomes. Twin and genome wide association studies in adults have 

revealed that intelligence scores are moderately heritable. We aimed to better understand the 

relationship between genetic variation and intelligence in the context of the developing brain. 

Specifically, we questioned if a genetic predictor of intelligence derived from a large GWAS 

dataset a) loaded on specific factors of cognition (i.e. fluid vs. crystallized) and b) were related to 

differences in cortical brain morphology measured using MRI scans. To do this we calculated a 

genome-wide polygenic score of intelligence (I-GPS) for the Adolescent Brain Cognitive 

Development (ABCD) baseline data, which consists of 11,875 nine- and ten- year old children 

across the US. We found that the I-GPS was a highly significant predictor of estimates of both 

fluid (t=7.1, p=1.2x10-12, 0.6% variance explained) and crystallized (t=15.0, p=3.5x10-50, 2.4% 

variance explained) cognition, with greater predictive power for crystallized than fluid (t=4.9, 

p=8.7x10-7). This indicates a stronger loading of I-GPS on crystallized cognition. I-GPS was 

significantly related to total cortical surface area (t=5.3, p=1.4x10-7, 0.3% variance explained), 

but not mean thickness (t=0.25, p=0.8). Vertex-wise analyses showed that the surface area 

association is largely global across the cortex. The stronger association of I-GPS with 

crystallized compared to fluid measures is consistent with recent results that more culturally 

dependent measures of cognition are more heritable. These findings in children provide new 

evidence relevant to the developmental origins of previously observed cognitive loadings and 

brain morphology patterns associated with polygenic predictors of intelligence. 
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Introduction 
Intelligence is an important indicator of health and societally defined measures of 

success1–3 that has been shown to be moderately heritable at around 50%4. In intelligence 

research two latent factors are often distinguished: crystallized and fluid5. Crystallized 

intelligence is related to aspects of cognition that are developed through experience, such as 

vocabulary, academic skills, and general knowledge. Conversely, fluid intelligence is related to 

an individual’s ability to perform well cognitively in novel situations. Traditional views of these 

factors predicted that crystallized intelligence would be less influenced by genetics as it was 

thought to be more impacted by experience and environment6. However, recent evidence has 

shown that this is not the case in adults. Twin studies in adults have demonstrated that more 

culturally dependent measures of cognition are more heritable7. Kan et al.7 speculated that these 

results may reflect the presence of gene-environment correlation (rGE). In this case rGE might 

reflect the fact that individuals with genotypes that initially bias them toward higher cognitive 

performance are more likely to end up in environments, or have experiences, that further develop 

these functions.  This could occur, for example as a result of streaming students into classes by 

aptitude. rGE can thus increase heritability estimates. It has been argued that rGE more strongly 

impacts culturally-dependent measures of intelligence, as society more readily creates 

environments that facilitate rGE for crystalized intelligence7. Higher heritability for more 

culturally dependent measures of intelligence has been shown for adults, but not for children7. As 

rGE is presumed to accumulate over time8 we hypothesize that this differentiation in heritability 

between fluid and crystallized intelligence might develop across childhood. We thus aimed to 

investigate the relationship between genetic variation and factors of intelligence in the early 

adolescent brain. 

A recent genome wide association study (GWAS) in 269,867 adults associated 205 

genomic loci and 1,016 genes to variability in intelligence9. By generating a genome-wide 

polygenic score (GPS) they explained up to 5.2% of the variability in intelligence in independent 

samples. They found that associated genes were strongly expressed in the brain, and specifically 

associated with hippocampal pyramidal neurons and striatal medium spiny neurons. 

Additionally, studies have found that total brain volume and intelligence are correlated at 0.24-

0.3310,11, with both gray and white matter volume contributing to this association12. This 

correlation between intelligence and both gray and white matter volume has been shown to be 

largely determined by genetics13,14. For adults, thicker cortex has sometimes been associated with 

greater intelligence13–15. A recent study, however, in children reported that at age 9 there was no 

significant relationship between intelligence and cortical thickness, but at age 12 a negative 

correlation between intelligence and thickness across the cortex was observed16. Conversely, 

cortical area has been shown to be positively associated with intelligence scores in adolescents17. 

Both thickness and area have been shown to be genetically correlated with intelligence in 

children and adolescents16,17. These findings suggest that brain morphology is related to 

intelligence and that the two share a common genetic basis.  

We aimed to further disentangle the associations between genetics, brain morphometry 

and intelligence in a large cohort (N= 9,511 individuals) of 9- and 10-year-old children obtained 

from the Adolescent Brain Cognitive Development (ABCD) study. To investigate these 

associations, we generated an genome-wide polygenic score for intelligence (I-GPS) for each 

individual in the ABCD dataset using summary statistics from a GWAS of intelligence on 

269,867 individuals9. After controlling for socioeconomic and demographic differences, we 
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predicted that the I-GPS would: 1) significantly predict cognitive performance in the ABCD 

sample; 2) be more associated with crystallized than with fluid intelligence; and, 3) be associated 

with cortical morphology. 

 

Methods and Data 

2.1 ABCD data  
The ABCD study (http://abcdstudy.org) consists of N=11,875 individuals aged 9/10 years 

old at baseline18. This longitudinal study was designed to follow the development of children at 

21 sites across the US for ten years. The cohort exhibits a large degree of socio-economic and 

demographic diversity. Exclusion criteria were limited to: 1) lack of English proficiency; 2) the 

presence of severe sensory, neurological, medical or intellectual issues that would inhibit the 

child’s ability to comply with the protocol; and, 3) an inability to complete an MRI scan at 

baseline. 

Here, we utilized baseline data from ABCD release 2.0 (DOI: 10.15154/1503209). A 

wide range of measurements were collected for each individual. In addition to demographic and 

socio-economic variables, for the current study we utilized three data sources: 1) cognitive 

assessments from the NIH Toolbox19; 2) whole-genome genotyping data20; and, 3) magnetic 

resonance imaging21,22. Each of these data types will briefly be described below.  

 

2.1.1 NIH Toolbox Cognitive Assessment:  
The NIH Toolbox® Cognition Battery (http://www.nihtoolbox.org)23, herein referred to as 

‘the Toolbox’, consists of seven different tasks that test executive function, working memory, 

episodic memory, attention, processing speed and language ability. The Toolbox® was normed 

on individuals between 3 and 85 years old. The total time to complete the battery is 

approximately 35 minutes. The ABCD study administers the Toolbox in English24, as eligibility 

criteria requires that youth participants are fluent in English.  

The Toolbox Reading Recognition Task® is a test in which individuals pronounce single 

words. The Toolbox Picture Vocabulary Task®25 tests participants vocabulary by asking them to 

match spoken words to pictures. The Toolbox Pattern Comparison Processing Speed Test®26 

measures processing speed by asking them to identify if two side by side pictures are the same or 

different as rapidly as possible. The Toolbox List Sorting Working Memory Test ® tests 

participants working memory by requiring them to order presented objects in size order. The 

Toolbox Picture Sequence Memory Test® assesses episodic memory by asking participants to 

reproduce a sequence of items in the correct order27. The Toolbox Flanker Task®, a variant of 

the Eriksen Flanker task28, is designed to measure cognitive control by requiring individuals to 

identify the direction of a central arrow that is flanked by either congruent or incongruent arrows. 

The Toolbox Dimensional Change Card Sort Task® is designed to measure cognitive 

flexibility29. All tasks  provide raw scores, uncorrected standard scores, and age-corrected 

standard scores24. Uncorrected task scores were used for all our analyses.  

Two summary scores also provided are the Crystallized Composite and Fluid Composite. 

The Crystallized Composite score is derived from performance on the Reading Recognition and 

the Picture Vocabulary tasks, the Fluid Composite score from performance on the five remaining 

measures. These composite scales have been shown to have high convergent validity with ‘gold 

standard’ measures of fluid and crystallized intelligence in both adults30 and children31.  
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2.1.2 Genetic Data 
 Saliva samples were collected at the baseline visit and sent to Rutgers University Cell and 

DNA Repository for storage and DNA isolation. Genotyping was performed using the 

Smokescreen array32, consisting of 733,293 genetic variants. Quality controls (QC) on the 

genotyping were performed to ensure each genetic variant has been successfully called in more 

than 95 percent of the sample. After QC 573,845 SNPs remained. Based on genotyped data, we 

derived genetic ancestry using fastStructure33 with four ancestry groups. Genetic relatedness was 

calculated using PLINK. We then performed imputation using the Michigan Imputation Server34 

using hrc.r1.1.2016 reference panel, Eagle v2.3 phasing and multiethnic imputation process. 

PLINK35 was used to convert dosage files to plink files using a best guess threshold of 0.9 for 

each loci.  

 

2.1.3 Neuroimaging Data 
 The imaging component of the ABCD study was developed by the ABCD Data Analysis 

and Informatics Center (DAIC) and the ABCD Image Acquisition Workgroup. Imaging methods 

were developed and optimized to be harmonized across all 21 sites and 3 scanner platforms: 

Siemens Prisma, General Electric 750 and Phillips. Details of these data collection methods and 

scanning protocols can be found at 22. Image postprocessing was conducted by the ABCD 

DAIC21. For each subject, a 3D model of their cortical surface was reconstructed using 

Freesurfer (http://surfer.nmr.mgh.harvard.edu/). Vertex-wise cortical thickness was estimated 

after defining the cortical surface and underlying white/gray matter boundary. Vertex estimates 

of cortical area were computed by calculating the area of elements of the standardized 

tessellation mapped to each subject’s native space. Details of this procedure can be found at 36–40. 

 

2.2 Methods 

2.2.1 Computing the Polygenic Score 
 Polygenic scores aggregate the effects of individual SNPs estimated from a previous 

GWAS discovery analysis, to produce a single score for each individual. The discovery dataset 

was computed on 269,867 individuals by Savage et al, using a meta-analysis in which 

neurocognitive tests primarily gauged fluid cognitive performance9. The summary statistics from 

this analysis were downloaded from (https://ctg.cncr.nl/software/summary_statistics). As nearby 

SNPs are correlated with one another these are removed before polygenic scoring; this process is 

known as clumping and pruning. After imputation was performed for the ABCD sample we 

performed clumping and pruning of SNPs using PRSice41 with a clumping window of 250 kb, 

clumping r2 of 0.1 and no thresholding of significance on the summary statistics. SNPs from the 

major histone compatibility complex were also removed from the analysis. The polygenic score 

for each individual was then computed as a sum of their SNPs, with each SNP being weighted by 

the effect in the discovery sample. 

 

2.2.2 Statistical Model for Behavioral Tasks 
 To assess the association between the I-GPS and cognitive performance in ABCD, we fit 

Generalized Linear Mixed-Effect Models (GLMMs). Each model had a different task or 

composite score from the NIH Toolbox as the dependent variable. In addition to the I-GPS, all 

models included the fixed effects of sex at birth, parental marital status, age, education level of 

parent/caregiver, household income and estimated genetic ancestry factors (AMR: American, 

EAS: East Asian, AFR: African, referenced to EUR: European). Data collection site and family 
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were input as random effects. Continuous variables were z-scored before model fitting to allow 

coefficients to be interpreted as standardized effect sizes. GLMMs were implemented using the 

R gamm4 package42. In order to assess the increased predictive power of the I-GPS beyond the 

covariates alone, we calculated the change in variance explained between the null model (just 

covariates) and the full model (covariates + I-GPS) and performed a likelihood ratio test to 

provide a level of significance. To test if standardized regression coefficients differed between 

analogous regressions we performed a z-test on the difference between coefficients, based on the 

propagated standard error for the two regression coefficients.  

 

2.2.3 Neuroimaging Analysis 
 In order to test the association between I-GPS and overall measures of brain morphology, 

we used the same GLMMs described for predicting Toolbox measures but instead predicted total 

cortical surface area and overall mean thickness. To explore regional brain morphology features 

associated with individuals’ I-GPS, we fit univariate general linear models to predict vertex-wise 

area and thickness from I-GPS. The fixed effects were the same as those used for behavioral 

data. We used scanner ID instead of study site as a covariate, as this is more relevant for imaging 

measures. All covariates were treated as fixed effects due to the large computational burden of 

fitting vertex-wise mixed models. Family was excluded as a covariate as treating it as a fixed 

effect would have drastically increased the number of estimated parameters. Once again 

predictors and responses were z-scored to allow coefficients to be mapped and interpreted as 

standardized effect sizes. False discovery rate (FDR) corrected p-values were calculated for each 

vertex, these were also plotted as maps and used to threshold the maps at an FDR-corrected p 

value of 0.05. 

 

 

Results  

Behavioral Results 
 Due to missing demographic information and/or Toolbox scores 1,308 individuals were 

removed, with 1,018 of those being due to missing declared household income. Failure of 

individuals’ genetic data to pass QC metrics (high calling quality, missing rate lower than 20 

percent, and expected genetic relatedness given outbred samples) resulted in a further 1,424 

individuals being removed. Table 1 shows behavioral and demographic statistics for the 

remaining individuals used in this analysis. Note: self-declared race is in this table for the 

readers’ information, however for statistical models estimates of genetic ancestry were used as 

covariates (see methods).  

 

  Total Analyzed Sample 

Total N 9143 

 Mean(SD) 

Toolbox Fluid Composite Score 92.11 (10.47) 

Toolbox Crystallized Composite Score  86.84 (6.92) 

Age - months  119.04 (7.47) 

Gender N(%) 

   F 4367 (47.8) 
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   M 4776 (52.2) 

Parent Married = Yes 6435 (70.4) 

Parental Education 
 

   < HS Diploma 339 (3.7) 

   HS Diploma/GED 704 (7.7) 

   Some College 2302 (25.2) 

   Bachelor 2472 (27.0) 

   Post Graduate Degree 3326 (36.4) 

Household Income 
 

   [<50K] 2554 (27.9) 

   [>=50K & <100K] 2627 (28.7) 

   [>=100K] 3962 (43.3) 

Race Ethnicity 
 

   White 5103 (55.9) 

   Hispanic 1745 (19.1) 

   Black 1144 (12.5) 

   Asian 195 (2.1) 

   Other 946 (10.4) 
Table 1: Summary of demographics and composite toolbox scores for individuals with full data used in behavioral analysis. (Self 

declared race is reported here,, however continuous estimates of genetic ancestry were used as covariates instead) 

 

Fitting GLMMs showed that the I-GPS was a significant predictor of both composite 

scores of the Toolbox (fluid: t=7.1, p=1.2x10-12 and crystallized: t=15.0, p=3.5x10-50). The 

change in percent variance explained between the base (covariates only) and full model (adding 

in I-GPS) was 0.6% for fluid (2(1)=50.6, p=1.1x10-12) and 2.4% for crystallized (2(1)=222.2, 

p=3.0x10-50). Due to z-scoring of variables, regression coefficients can be interpreted as 

standardized effect sizes. Comparing the effect size of I-GPS between the two composite scales, 

we see that the effect size on crystallized was significantly greater than that for fluid (z=4.9, 

p=8.7x10-7). A full table of outputs from these two regressions can be found in Supplementary 

Table 1 and 2. We also compared the results with a regression excluding parental education and 

income as covariates which resulted in a larger percent variance explained by I-GPS, see Supp. 

Figure 1. 

Fitting separate regression models for each individual test of the Toolbox, we found that 

I-GPS was a significant predictor for each cognitive measure (all p values<10-3), except the 

pattern comparison processing speed task (t=2.51, p=0.01) which did not survive a Bonferroni-

corrected significance threshold of 0.05/9=0.006.  Standardized coefficients for I-GPS predicting 

each cognitive measure are displayed in Figure 1 (fluid components – blue, crystallized 

components – red), alongside the composite score regression coefficients. In this figure there is a 

clear separation where the cognitive measures used to produce the fluid composite score have 

consistently lower I-GPS standardized regression weights than the two measures used to produce 

the crystallized composite score.  
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Figure 1: Standardized regression coefficeints of Intelligence GPS for fitting linear mixed models to each Toolbox measure and 

the two composite scales (fluid and crystallized). Units making up the fluid subscale have consistantly lower regression 

coefficients than those making up the crystallized subscale.  

 

Neuroimaging Results 
 For the neuroimaging analyses an additional 261 individuals were excluded due to 

missing or failed QC of MRI scans. At the level of the whole brain, I-GPS was significantly 

associated with larger total cortical surface area (t=5.3, p=1.4x10-7) explaining 0.3% of the 

variance in cortical surface area above and beyond the socioeconomic and demographic 

covariates. I-GPS was not associated with mean thickness (t=0.25, p=0.8). Figure 2 shows the 

regional pattern of cortical area associations with higher I-GPS. The maps are of a) standardized 

regression coefficients (as in Figure 1) and b) FDR-corrected p-values. Both maps are 

thresholded at an FDR-corrected p-value of 0.05. They suggest a distributed and global cortical 

area phenotype associated with high I-GPS, characterized by slightly larger associations in 

bilateral parietal and left lateral pre-frontal regions. 
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Figure 2 Vertex-wise associations between I-GPS and area. a) Standardized Effect Sizes (predictors and  response variables z 

scored – i.e. units of standard deviation) b) -log10(PFDR). Both maps are thresholded at 0.05 FDR corrected p value. 

 

Discussion 
 Results reveal that a GPS of intelligence is more predictive of crystallized than fluid 

cognitive performance in a large sample of 9- and 10-year-old children, despite the fact that the 

discovery GWAS was trained predominantly on fluid dimensions of cognition9. Conventional 

theories of general intelligence would predict that more culturally-dependent cognition should be 

more impacted by ones environment and therefore less heritable6. We show here, however, that 

this is not the case, similar to heritability estimates from a prior twin study7. It is in fact the more 

culturally-mediated measures of crystallized intelligence that are more strongly predicted by 

genetics. A plausible explanation that has been suggested for this unexpected result attributes the 

effect to gene-environment correlation7. For example, individuals with an initial slight bias 

toward higher cognitive performance may be more likely to end up in environments or having 

experiences (e.g., reading more or taking more advanced classes in school) that are likely to 

exaggerate the effect of this initial genetic predisposition. It is argued that the reason for this 

effect being stronger for culturally-loaded factors of intelligence is that these factors represent 

societal demands43. As such, society creates environments that facilitate gene-environment 

correlations (rGE) for culture-mediated factors, in a way that it does not for culture-reduced 

factors. If this argument holds, we expect that as participants in ABCD get older the effects of 

gene-environment correlation will become greater and the association presented here should 

become larger (i.e. a larger difference in predictive power of I-GPS between fluid and 

crystallized factors).  In a recent study, Beam and Turkheimer modeled the effects of increasing 

rGE and showed that it could explain often observed increases in the heritability of measures of 

cognitive function between childhood and adolescence8. We anticipate testing this hypothesis in 

later time points of this longitudinal study.  

 In our sample we also found that total cortical area was associated with higher  

I-GPS. This is consistent with the findings in adults that total brain volume is positively 

correlated with intelligence10,11 and that they share a common genetic basis13,14. Vertex-wise 

analysis showed that the pattern of cortical area associated with higher I-GPS was global across 

the cortex with a few bilateral parietal and left prefrontal regions showing slightly higher 
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associations. Neither mean nor vertex-wise cortical thickness were found to be significantly 

associated with I-GPS. This is consistent with a recent study’s finding that in 9-year-old children 

that there was no relationship between cortical thickness and intelligence16. The same study 

showed the emergence of a negative correlation between thickness and measures of intelligence 

at 12 years of age. We may therefore find that I-GPS is negatively correlated with cortical 

thickness for future time points as brain development proceeds in the ABCD sample. 

 A note of caution should be added when interpreting the I-GPS: it should not simply be 

thought of as a proxy for genetics or ‘nature’. Each individual in this study inherited half of their 

genome from each parent and so these genetic effects can also have indirect influences on their 

cognitive performance through the cognitively enriching environments that parents provide. 

Indeed a recent study demonstrated that up to 30% of a polygenic score based on individuals can 

be explained through a score based on non-transmitted alleles of parents44. We find that the 

association of I-GPS on cognitive performance is attenuated after accounting for parental 

education and income, see Supp. Figure 1, which suggests that there is shared predictive variance 

between the I-GPS and parental education and income. Furthermore, it should be emphasized 

that in addition to one’s DNA sequence, epigenetic effects of chromatin and histone 

modifications as well as DNA methylation are also biological factors that have been shown to 

impact cognition45. These are biological mechanisms that can be impacted by one’s environment 

and influence one’s cognitive function and brain structure dynamically over the lifespan. 

 A limitation of the current study is that the polygenic score discovery dataset was trained 

only on individuals of European ethnic ancestry9, which we have deployed in the ABCD dataset 

– a highly admixed population. Despite controlling for genetic ancestry in our analysis, training 

and validating polygenic scores on different ancestry groups can cause issues. These issues can 

result from alleles being present for a certain ancestry group, but being not represented in the 

mono-ethnic discovery GWAS. Indeed, training polygenic scores on one ancestry group and 

deploying them in different ancestry groups can decrease predictive performance46,47.  New 

methods are being developed to generalize polygenic scores across ethnic groups48 and these will 

be important tools to try to ensure that technologies and findings from genetic studies are not 

limited to overrepresented groups49. 

 Although the association between I-GPS and cognitive performance is highly significant, 

the effect is a moderate one (fluid:0.18 and crystallized: 0.35). We expect that these effects 

will become larger for later time points collected in the ABCD study. This expectation is based 

on the robust finding that heritability of intelligence increases over age50–52 and studies finding 

that a GPS based on educational attainment (the number of years completed in education) has 

stronger correlations with school performance of older children53,54. The predictor with the 

largest effect size in our analysis was parental education, with children of highly educated 

parents (post graduate) on average having crystallized scores 0.89 standard deviations higher 

than those of low educated parents (<high school diploma) – see Supp. Table 2. Parental 

education is an important socioeconomic measure that is partially a proxy for material resources. 

However, it is also confounded by genetics: highly educated individuals are likely to possess 

genotypes that are advantageous for performing better in school and this in turn will be passed on 

to their children. It will be important to leverage the wealth of data available in ABCD and other 

studies to develop new methods that can partial socioeconomic and environmental effects from 

genetic ones. More precisely characterizing these components will enable us to inform societal 

policies that can maximize the cognitive potential of individuals. 
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U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, 

U24DA041123, and U24DA041147. A full list of supporters is available at 

https://abcdstudy.org/nih-collaborators. A listing of participating sites and a complete listing of 

the study investigators can be found at https://abcdstudy.org/principal-investigators.html. ABCD 

consortium investigators designed and implemented the study and/or provided data but did not 

necessarily participate in analysis or writing of this report. This manuscript reflects the views of 

the authors and may not reflect the opinions or views of the NIH or ABCD consortium 

investigators.  

The ABCD data repository grows and changes over time. The ABCD data used in this report 

came from [NIMH Data Archive Digital Object Identifier (10.15154/1503209)].  
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