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Abstract 

Microbes are the Earth’s most numerous organisms and are instrumental in driving major global 

biological and chemical processes. Microbial activity is a crucial component of all ecosystems, 

as microbes have the potential to control any major biochemical process. In recent years, 

considerable strides have been made in describing the community structure, i.e. diversity and 

abundance, of microbes from the Earth’s major biomes. In virtually all environments studied, a 
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few highly abundant taxa dominate the structure of microbial communities. Still, microbial 

diversity is high and is concentrated in the less abundant, or rare, fractions of the community, i.e. 

the “long tail” of the abundance distribution. The relationship between microbial community 

structure and activity, specifically the role of rare microbes, and its connection to ecosystem 

function, is not fully understood. We analyzed 12.3 million metagenomic and metatranscriptomic 

sequence assemblies and their genes from environmental, human, and engineered microbiomes, 

and show that microbial activity is dominated by rare microbes (96% of total activity) across all 

measured biomes. Further, rare microbial activity was comprised of traits that are fundamental to 

ecosystem and organismal health, e.g. biogeochemical cycling and infectious disease. The 

activity of rare microbes was also tightly coupled to temperature, revealing a link between basic 

biological processes, e.g. reaction rates, and community activity. Our study provides a broadly 

applicable and predictable paradigm that implicates rare microbes as the main microbial drivers 

of ecosystem function and organismal health. 

  

Background 

Members of the rare biosphere have been recognized as important drivers of many key 

ecosystem functions1–6. Rare microbes may control ecosystems as keystone members, i.e. 

community members that the whole ecosystem depends. For example, marine rhizobia are rare, 

but control the input of bioavailable nitrogen via N2 fixation7. Also, rare microbes may be 

disproportionately active relative to their abundance, e.g. the rarest detectable taxon by cell count 

in Lake Cadagno, Switzerland, an oligotrophic lake, was discovered to contribute to >40% and 

>70% of the total ammonium and carbon uptake8, respectively. However, these instances do not 

demonstrate the influence of rare microbes on total community activity. Sequencing of RNA 
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transcripts and DNA of single marker genes have been employed to understand the influence of 

rare microbes on community activity. These methods have revealed that rare microbes are 

potentially more active than abundant ones9–11, but can suffer from over extrapolations of 

genome wide function and activity from a single gene12. Specifically, ratios of rRNA gene 

transcripts and rRNA gene quantities have been shown to be poor indicators of cell wide 

activity13, e.g. cyanobacteria can have elevated levels of rRNA in dormant cells relative to 

vegetative cells14.  

 

To better understand the influence of rare microbes on community activity we employed a 

systems based approach to examine the molecular activity of the genomic content of 

microbiomes. We de novo assembled environmental DNA and RNA shotgun sequences from the 

genomic and transcriptomic reservoir of the global microbiome. Broadly, data are sourced from 

publicly available and novel environmental, host-associated, and human-engineered shotgun 

sequenced communities. Samples encompass the ocean, Amazon River15 and its plume into the 

ocean16,17, the human gut18, permafrost soil layers19, a thermokarst bog19, and human-engineered 

biogas plants20,21. Ocean samples span: the sunlit epipelagic22–28 (0 - 200 m), the dimly lit 

mesopelagic (200 - 1,000 m), dark bathypelagic (1,000 - 4,000 m), the benthic zone (near 

seafloor), and hydrothermal vent plumes29,30 (Table S1). Our analysis uses database independent 

de novo high resolution 99% average nucleotide (ANI) contiguous assemblies that captures the 

entire genomic repertoire from all domains of life. Using these assemblies, we examined the 

activities of rare and abundant microbes and their functional traits across many disparate 

environments. 
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Results/Discussion 

Microbial activity is consistently and commonly dominated by rare microbes. Relating 

community structure as a function of community activity in rare sequence assemblies across 

disparate environments consistently showed that total RNA expression of rare microbes was 

many folds higher than the total RNA expression of abundant microbes (Figs. 1, S1 - S3). 

Approximately 96% of all microbial activity was contributed by rare microbes (Table S2). In 

>90% of samples, >90% of total community activity was in the rare fraction (Fig. S4). Rare 

microbes were defined as those with sequence assemblies that are in the “tail” of the DNA rank 

abundance curve31, in this study >1000th rank or ~0.005% by relative abundance (Fig. S5A). 

Microbial activity was also dominated by rare microbes using assembly independent kmer 

counting (Fig. S3A), indicating that our finding is not a result of sequence assembly bias. 

Further, rare microbial expression was also highly overrepresented at the gene level (Fig. S3B), 

i.e. open reading frames (ORFs), and an approximate functional level based on clustering of 

ORFs at 60% amino acid identity (Fig. S3C). Sense, or coding strand, RNA transcript expression 

of ORFs was higher than antisense expression for rare microbes (Mann-Whitney U test; P < 2.2 

10-16) that were from samples prepared with methods that retained strand orientation (Figs. 2D 

and S6). Sense mRNAs are transcripts that are meant for downstream translation into protein, 

whereas antisense transcripts primarily act as post-transcriptional regulators by directly binding 

to sense transcripts32. Higher sense transcription indicates that most microbial transcription is 

ultimately meant for protein translation. This pattern is consistent across all sampled 

environments and lifestyles, e.g. free-living or attached (Fig. 2E). Further, our analysis captures 

the entire genomic representation of microbial communities and is not limited to single genes or 

processes. 
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Next, we examined the structure of microbial abundance and activity across environments. 

Samples clustered by environment across DNA, RNA, and specific activity10 (RNA:DNA) 

distributions (Fig. S7). Further, the rank abundance distributions, i.e. measures of biodiversity, 

from all environments using sequence assemblies follow a highly skewed curve, as has been 

widely reported for microbial communities using single-marker genes5,31,33 (Fig. S5A). This 

demonstrates that highly skewed rank abundance curves even at a genomic level are a consistent 

feature of microbial communities regardless of environment. Highly skewed rank abundance 

curves suggest that there are dominant genotypes in microbial populations, despite potentially 

high recombination rates34. The prevalence of dominant genotypes indicate that ecological 

pressures, e.g. nutrient limitation and predation, can select for specific “winning” genotypes 

among highly related microbial populations. RNA activity patterns were similarly skewed by 

rank expression, demonstrating that microbial activity is similarly dominated by a small number 

of overrepresented assembled sequences (Fig. S5B). Community activity was also more skewed 

toward a few assemblies, as indicated by lower Pielou’s evenness (J’) compared to community 

structure J’ (Fig. S8; Mann–Whitney U test; P < 2.2 x 10-16). The rank abundance and rank 

activity curves reflect that not only do a small number of microbes dominate community 

structure, but fewer types, relative to community structure, also dominate community activity. 

 

The extent that rare microbes contributed to activity varied within and between environments 

(Fig. 2A). This pattern was driven by temperature variation, as total activity of rare microbes 

decreased with increasing temperature (Fig. 2B; Spearman’s ρ = -0.42; P = 3.979 x 10-7). The 

degree that community activity was dominated by fewer microbes, i.e. activity dominance, 

alternatively increased with increasing temperature (Fig. 2C; Spearman’s ρ = 0.7; P < 2.2 x 10-
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16). Temperature is a first order determinant of chemical reaction kinetics, and, therefore, 

biochemical processes35. Higher temperatures induce higher metabolic rates that ultimately 

mediate biological activities36. This positive relationship between temperature and biological 

process rates has been implicated in controlling many ecological37–39 and evolutionary40,41 

patterns. Our observations show that temperature is also a major mediator of the structure of 

microbial community activity. 

 

We explored the functional contribution of rare microbes to community activity across all 

environments. Functional traits were examined that were more than two fold overexpressed in 

the rare fraction relative to the abundant fraction (Mann–Whitney U test; P < 3.9 x 10-71). Rare 

ORFs were enriched in the activity of functional traits that have a direct influence on total 

ecosystem function (Fig. 3), e.g. energy production and conversion, carbohydrate transport and 

metabolism, coenzyme transport and metabolism, inorganic ion transport and metabolism, 

nucleotide transport and metabolism, amino acid transport and metabolism, lipid transport and 

metabolism. Rare ORFs were also enriched for functional traits involved with cell motility, 

coinciding with the observation that rare microbes tend toward chemotactic lifestyles42–44 (Fig. 

3A). Other processes linked to growth were also overrepresented in rare ORFs, including cell 

growth and death, cell cycle control, cell division, chromosome partitioning, cell 

wall/membrane/envelope biogenesis, and translation (Fig. 3AB). This suggests that rare 

microbes have higher growth rates, as well as the aforementioned higher metabolic activity. 

Although higher growth rates should result in higher abundance, rare microbes were enriched in 

defense mechanisms and xenobiotic degradation, suggesting that they are subject to higher 

pressures of viral predation, grazing, host-defense, and allelopathy (Fig. 3B). Rare ORFs were 
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also enriched in infectious disease categories, implicating rare microbes in animal and human 

disease. Finally, many of the genes most expressed by rare microbes were directly involved in 

major biogeochemical processes, such as photosynthesis, N2 fixation, and ammonia oxidation 

(Fig. 3C). For example, a rare Candidatus Atelocyanobacterium thalassa45 (unicellular 

cyanobacteria group A member) had a nifH (iron binding component of nitrogenase) with the 

highest annotatable contribution to activity in the epipelagic South Atlantic Ocean (Table S3). 

Other relevant biochemical processes include ammonium, phosphate, and energy driven 

carbohydrate ABC transport. The influence of rare microbes in mediating important ecosystem 

processes highlights their role as keystone members of ecosystems. 

 

Deciphering the role of rare microbes in microbial communities is at the core of understanding 

the influence that microbes have on ecosystem function. We demonstrate that rare microbes are 

not only more active, but dominate microbial community activity in many different 

environments. This pattern is consistent across many disparate environments, ranging from the 

human gut to human engineered biogas plants to hydrothermal vents. The contribution of rare 

microbes to community activity varies across environments and is strongly influenced by 

temperature, implying that fundamental biological processes, e.g. reaction rates, control 

community activity structure. Rare microbes were more involved than abundant microbes in 

important ecosystem processes, e.g. energy transformation and biogeochemical cycling. Rare 

microbial activity was also enriched in genes related to infectious disease, underscoring the 

detrimental impacts of rare microbes on animal and human health. Our observations indicate that 

the dominance of rare microbial activity is a conserved trait for all of Earth’s biomes.  
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Figures 

 

Figure 1. Relationships between community structure and community activity of highly 

resolved sequence assemblies across disparate environments. Each point represents a 

sequence assembly and its relative contribution to community structure and activity. 

Environments are biogas plants, freshwater, freshwater plume into the ocean, the human gut, 

ocean (epipelagic, benthic zone, hydrothermal vents), permafrost, and thermokarst bog. 

Community structure is expressed as relative frequencies of DNA and community activity as 

relative frequencies of RNA of samples sequenced with Illumina platforms. All frequencies were 

adjusted to sequence assembly length and subsampled to account for uneven sequencing effort. 

Points are colored by RefSeq lowest common ancestor (LCA) taxonomy at the domain rank. 
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Figure 2. Patterns of rare high-resolution sequence assembly activity of Illumina sequenced 

samples across different environments, lifestyles, and temperatures.  a) Box and whisker 

plots of rare assembly activity across different environments. Mann–Whitney U test; P < 2.2 x 

10-16. b) Rare microbial activity expressed as a ratio of log10 rare:abundant % RNA as a function 

of temperature. Linear regression plotted with Spearman’s ρ = -0.42 and P = 1.701 x 10-7. c) 

Activity dominance expressed as Berger–Parker dominance of % RNA as a function of 

temperature. Linear regression plotted with Spearman’s ρ = -0.7 and P < 2.2 x 10-6. d) Box and 

whisker plots of rare antisense and sense microbial activity. e) Box and whisker plots of rare 

microbial activity in attached and free, i.e. planktonic, lifestyles. Samples with microbes with 

attached lifestyles were considered: sediment samples, i.e. permafrost, thermokarst bog, and 

aquatic (freshwater and marine) samples collected on filters >0.8 µm. Samples with microbes 

with free lifestyles were considered: the human gut and aquatic (freshwater and marine) samples 

collected on filters 0.1 - 3.0 µm.  
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Figure 3. Functional traits of Illumina sequenced rare microbial activity enriched in rare 

fraction relative to the abundant fraction. Overexpression of traits in the rare fraction was 

determined by selecting ORFs with >2X activity in the rare fraction that had a Mann–Whitney U 

with P < 1 x 10-70 a) Box and whisker plots of rare overexpressed NCBI Clusters of Orthologous 

Groups (COGs) functional categories. c) Box and whisker plots of KEGG BRITE categories 

overexpressed in the rare fraction. d) Box and whisker plots of KEGG BRITE “Energy 

metabolism” subcategories overexpressed in the rare fraction. Box and whisker plots are sorted 

by median and exclude ORFs where % RNA was 0. 
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Methods 

Sargasso Sea sample collection and sequencing 

Four samples were collected from the end of spring (3/24/2010 and 3/26/2010) and summer 

(8/20/2010 and 8/22/2010) from the Bermuda Atlantic Time Series station (BATS, 31° 29' 46'' 

N, 63° 59' 52'' W). 5 - 20 L were collected from a depth of 50 m and immediately amended with 

an equal volume of RNAlater once on board ship. The RNAlater amended samples were 

sequentially filtered through a glass fiber 0.8 µm GF/F filter (Whatman) and finally onto a 0.22 

µm Durapore (Millipore) filter within one hour of collection and stored at -80 °C. DNA and 

RNA were extracted as previously described in Campbell et al. 200946. DNA was fragmented 

with a Covaris S2 with the recommended parameters to generate 300 bp inserts prior to 

metagenome library preparation using an Encore NGS Library System I (NuGEN). RNA was 

purified from DNA as described previously46 and approximately 1 µg from spring samples were 

rRNA subtracted using the MICROBExpress Bacterial mRNA Enrichment Kit (Ambion). All 

RNAs were reverse transcribed following the manufacturer’s instructions for cDNA synthesis 

and metatranscriptome libraries prepared with an Ovation RNA-Seq System (NuGEN) kit. 

Libraries were sequenced via a paired end 2 x 100 bp strategy using an Illumina HiSeq 2000. 

Libraries from DNA extracted from 3/24/2010 and 8/20/2010 samples were also sequenced on 

the Roche 454 GS FLX+ platform and using circular consensus sequencing on a PacBio RS. 

 

San Pedro Ocean Time-series (SPOT) benthic zone sample collection and extraction 

Seawater samples (1 - 20 L) were collected approximately monthly over ~2.5 years (n = 32) 

from near the ocean floor (890 m) in the Southern California Bight at the SPOT station (33° 

33’N, 118° 24’W) aboard the R/V Yellowfin. Samples were serially filtered through a nylon mesh 
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(80 µm), Acrodisc (Pall) glass fiber filter (~1 µm), and terminally with a Sterivex-GP (Millipore) 

polyethersulfone filter (0.22 µm). Acrodisc and Sterivex filters were preserved with 250 µl and 

500 µl of RNAlater, respectively, and subsequently incubated at ambient temperature for 2 min. 

Samples were immediately frozen in LN2 and stored at -80˚C. The 0.22 µm - 1µm fraction was 

selected for sequencing and DNA was extracted from each Sterivex cartridge using a modified 

AllPrep DNA/RNA (Qiagen) kit. RNAlater was sparged from each Sterivex using a syringe. 

High salt concentrations can lower DNA yields with the AllPrep DNA/RNA kit. To desalt 

RNAlater while maximizing nucleic acid concentrations we used an Amicon Ultra 3k. Briefly, 

500 µl RNAlater (Ambion) was transferred to an Amicon Ultra 3k 0.5 ml spin concentrator and 

centrifuged at 14,000 g for 30 min at 4˚C. This was repeated with any remaining unconcentrated 

RNAlater. 400 µl of 4˚C nuclease free water was added directly to the concentrator and 

concentrate to desalt and centrifuged at 14,000 g for 1 hr at 4 ˚C 2 ml of 65˚C RLT+ lysis buffer 

and 20 µl beta-mercaptoethanol were added to the previously desalted and concentrated 

RNAlater. The Sterivex cartridge was sealed with luer lock caps and vortexed for 5 s, flipped and 

vortexed again for 5s. The Sterivex cartridge was horizontally rotated for 15 min at 65˚C. The 

lysate was removed, and the Sterivex filter was lysed again with 1ml RLT+ and 10 µl beta-

mercaptoethanol. The lysates were combined and DNA was purified following the 

manufacturer’s protocol and finally eluted with buffer AE. RNA was purified from the DNA 

purification flow through following the manufacturer’s instructions with a 30 min on-column 

DNAse step and a final elution with 50 µl nuclease free water. 1 µl of RiboGuard RNase 

Inhibitor (Epicentre) was added to the eluted RNA to protect against ribonucleases. RNA 

quantities were determined using a Qubit RNA High Sensitivity (ThermoFisher) kit. 
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SPOT benthic zone metagenome library construction and sequencing 

DNA concentrations were determined for each sample using a Qubit High Sensitivity DNA 

assay (Invitrogen) and diluted to 10 ng. Samples were amended with the DNA of 4 exotic 

genomes from American Type Culture Collection with a range of 34.5 - 59.9 %G+C content 

(Table S4). Each genome was added in 2 fold increasing concentrations at ~1% of the total DNA 

concentration of each sample. Metagenomes were prepared from each amended sample using a 

Covaris S2 (130 µl) with parameters: duty cycle (10%), intensity (5) cycles/burst (200), time (60 

s). Insert and dual indexed libraries were prepared using a modified NEBNext Ultra DNA II dual 

indexing kit (New England Biolabs) without size selection. The protocol was modified to control 

for chimeric PCR amplicons and reduce overamplification biases. Adaptor ligated and end 

repaired fragments were amplified with 0.1X of 10,000X SYBR Green I (Invitrogen). 

Amplification was monitored on a CFX96 real-time PCR machine (BioRad) and stopped in the 

exponential phase to avoid overamplification. The reaction was held at 98˚C for 30 s followed by 

6 cycles of amplification at 98˚C for 10 s, 65˚C for 5 min, and a final extension of 30 min. 

Extension times were increased to reduce chimeric amplicons. Libraries were subsequently 2 x 

250 bp paired end sequenced on an Illumina HiSeq 2500. 

 

SPOT benthic zone metatranscriptome library construction and sequencing 

40 ng of RNA was amended with 8 µl of a 10,000X dilution of External RNA Control 

Consortium47 (ERCC) Spike-In Mix 1 (Ambion). The ERCC mix consists of 92 transcripts 

ranging from 250 to 2,000 nt in length with a large dynamic fold range. The transcripts are 

mostly novel synthesized sequences, but do contain Bacillus subtilis transcripts. The added 

genome and ERCC controls are sequencing controls used to verify that our sample preparation 
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and bioinformatic protocols are accurate and reproducible. The amended RNA samples were 

rRNA depleted using a RiboZero Bacteria rRNA removal kit. RNA was fragmented using a 

Covaris S2 targeting 600 bp: sample volume (130 µl), peak incident power (50 W), duty factor 

(20%), cycles per burst (200), treatment time (60 s), temperature (7˚C). Strand specific cDNA 

was generated using random priming without size selection from a NEBNext Ultra RNA 

directional kit. Illumina libraries were constructed from the resulting cDNA using a modified 

NEBNext DNA Ultra II dual indexing kit. The protocol was modified to use RT-PCR to control 

for overamplification and longer extension times to control for chimeric amplicons as previously 

described (Chapter 1), and resulted in 12 cycles of amplification. Metagenomic and 

metatranscriptomic libraries were sequenced 2 x 250 bp using an Illumina HiSeq 2500.  

  

Sequence and metadata retrieval 

Raw metagenomic and metatranscriptomic reads from Illumina, 454, Sanger, and PacBio 

sequencing platforms from 504 sequence libraries covering a number of disparate environments 

were downloaded for each publicly available dataset (Table S1). Ocean samples encompass the 

epipelagic, mesopelagic, bathypelagic, the benthic zone, and hydrothermal vent plumes, ranging 

in depths 0 - 4,946 m. Epipelagic samples include coastal and open ocean sites. Other samples 

come from the Amazon River and its plume into the Atlantic Ocean, active and frozen 

permafrost, a thermokarst bog, human guts, and biogas plants. Data were retrieved from 

iMicrobe, NCBI SRA, and ENA (Table S1). Metagenome and metatranscriptome sample 

pairings and sample metadata (e.g. temperature and environment) were determined using 

sequence database metadata or directly from the source publications. Human gut sample 
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temperatures were not publicly available and were inferred to be 37˚C based on the typical 

human body temperature48. 

  

Sequence quality control and assembly 

The majority of samples were sequenced using Illumina based flow cell technologies (Table S1). 

Illumina reads were adapter and quality trimmed in one pass to retain the largest regions with Q 

> 25 (BBMap49 v36.19; bbduk.sh qtrim=rl trimq=25 ktrim=r k=25 mink=11 hdist=1 

ref=truseq.fa.gz). Reads from long read sequencing platforms, Roche 454, Sanger, and Pacbio 

RS, were similarly trimmed to Q > 20 (BBMap v36.19; bbduk.sh qtrim=rl trimq=20). Genome 

and ERCC controls were removed from each SPOT benthic zone sample prior to assembly and 

mapping. Reads were mapped to the added genome and ERCC controls at 95% identity and the 

unmapped reads and their paired end mates were retained for downstream assembly and mapping 

(BBMap49 v36.19; bbmap.sh idfilter=0.95). Each metagenome and metatranscriptome from each 

sample was individually assembled de novo using MEGAHIT50 in paired end mode if sequence 

libraries were paired end sequenced. MEGAHIT was run to ensure that no bubbles were merged 

that were < 99% to ensure that only highly-resolved assemblies were generated (MEGAHIT 

v1.0.6; megahit --merge-level 20, 0.99 --k-min 21 --k-max 255 --k-step 6). All assemblies were 

combined and dereplicated using a semi-global alignment method that merged together 

assemblies that were totally contained and >99% similar (BBMap v36.19; dedupe.sh 

minidentity=0.99). Assemblies <1 kb were discarded. Processing resulted in 12,338,658 

assemblies, comprised of 25.48 Gbp. 
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Annotation 

Open reading frames (ORFs) were predicted (ORFfinder51 -s 1 -n T) and ORFs > 200 amino 

acids were retained. The resulting ORFs were searched against the KEGG reference database 

(DIAMOND52; diamond blastp -e 1e-5 --sensitive), KEGG modules and pathways were retrieved 

using the KEGG API. Only the best hits with E-value < 1 x 10-10 were assigned. ORFs were also 

searched against the complete non-redundant NCBI RefSeq Release 8353 protein database 

(DIAMOND; diamond blastp --top 5 -e 1e-5) and hits with E-value < 1 x 10-10 were retained. A 

best hit was determined by sorting by E-value, bit score, and percent identity. Taxonomy was 

assigned for each sequence assembly using a lowest common ancestor (LCA) approach. RefSeq 

hits for each ORF that were within 5% of the bit score of the best hit were retained. The 

remaining hits were used to assign a LCA taxonomy for each assembly. 

  

Metagenome and metatranscriptome mapping and counting 

Mapping and counting were performed within each sequencing platform where both 

metagenomes and metatranscriptomes were sequenced, i.e. Roche 454 and Illumina platforms. 

Small subunit (16S and 18S) and large subunit (5S, 5.8S, 23S, and 28S) rRNAs were removed 

from each read set prior to mapping reads from each environment to each dereplicated set of 

assemblies (SortMeRNA54 v2.1; sortmerna --paired_out --fastx --ref silva-bac-16s-id90.fasta 

silva-arc-16s-id95.fasta silva-euk-18s-id95.fasta rfam-5s-database-id98.fasta rfam-5.8s-database-

id98.fasta silva-arc-23s-id98.fasta silva-bac-23s-id98.fasta silva-euk-28s-id98.fasta). The 

resulting rRNA filtered reads from each library were mapped to the dereplicated set of 

assemblies. Filtered reads were mapped to retain all sites with the highest score, ie. the 

assemblies that are the best matches, and >99% identity (BBMap v36.19; bbmap.sh 
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ambiguous=all maxsites=1000000000 maxsites2=1000000000 sssr=1.0 secondary=t minid=0.98 

idfilter=0.99). 

 

Mapped counts were determined for each sample and all mapped sites with a minimum read 

length of 50 bp were considered (featureCounts55 v1.5.3; featureCounts -f -O -M --minOverlap 

50 -s 0). ORF expression and abundance were similarly counted by using the previously mapped 

reads and ORF start and stop locations for counting (featureCounts v1.5.3; featureCounts -f -O -

M --minOverlap 50 -s 0). Strand specific, i.e. sense and antisense, counts were determined for 

RNA libraries prepared to retain strand information (Table S1) using featureCounts v1.5.3  in 

forward (featureCounts v1.5.3; featureCounts -f -O -M --minOverlap 50 -s 1) and reverse 

(featureCounts v1.5.3; featureCounts -f -O -M --minOverlap 50 -s 2) strand counting modes. All 

strand specific libraries were prepared using methods that result in sequencing reads that are the 

reverse complement of the transcribed RNA sequence. Accordingly, the reverse counts were 

considered as the sense counts and the forward counts as the antisense counts. Next, assemblies 

that matched to the Centrifuge56 NCBI nucleotide index56 (12/06/2016) and matches to human 

sequences >90% assemblies coverage were removed (Centrifuge v1.0.3-beta56; default 

parameters). Assemblies that matched to the genome, ERCC, and PhiX 174 controls were also 

removed (NCBI BLAST+57 v2.6.0; blastn -evalue 0). 

 

Prior to counting, assemblies matching mapped counts were divided by assembly length or ORF 

length to account for higher recruitment of longer assemblies or ORFs. Assemblies and 

unstranded ORF length adjusted counts were subsampled, i.e. rarefied, to the length adjusted 

counts of the smallest sample to account for uneven sequencing coverage. Stranded forward and 
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reverse length adjusted counts were subsampled to the total forward and reverse length adjusted 

counts of the smallest sample. Subsampling was done separately for Illumina and 454 sequences 

to maintain high counts for Illumina samples because the 454 based sequencing effort was much 

lower than the Illumina based sequencing effort. Length adjusted and subsampled counts for 

each assembly or ORF were normalized to the total length normalized count of each sample to 

obtain a relative count, e.g. relative DNA abundance or relative RNA expression. Pairings 

between RNA and DNA counts were determined from sample database metadata or from the 

sample publications. In some cases, there were multiple pairings with a sample. Some samples 

had > 1 DNA or RNA library sequenced. For example, if a sample has 2 DNA and 2 RNA 

sequence libraries, there are 4 possible DNA and RNA pairs. All data manipulations were done 

using Python58 and Pandas59. Specific activity was determined as a ratio by dividing relative 

RNA and relative DNA counts10. 

  

SPOT benthic zone metagenomic and metatranscriptomic controls 

Genome (DNA) and ERCC (RNA) controls were analyzed using the same mapping and counting 

protocols that we used to quantify abundance and expression. Mapping and counting were 

performed exactly as for mapping and counting of all Illumina sequences from all environments. 

Trimmed and rRNA filtered metagenomic and metatranscriptomic from the SPOT benthic zone 

samples were mapped to the genome and ERCC control sequences (BBMap v36.19; bbmap.sh 

ambiguous=all maxsites=1000000000 maxsites2=1000000000 sssr=1.0 secondary=t minid=0.98 

idfilter=0.99). Counts (featureCounts v1.5.3; featureCounts -f -O -M --minOverlap 50 -s 0) were 

transformed into relative counts by length dividing and normalizing to the total mappings from 

each sample. Performance was quantified by plotting against the expected genome and ERCC 
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control concentrations. Both genome and ERCC controls had high agreement between input 

quantities and measurements (R2 > 0.99) using the afforementioned protocols (Fig. S9).  

 

Approximate functional clusters 

Functional clusters were generated by clustering ORFs based on percent identity. ORFs longer 

than 200 amino acids were grouped into protein clusters with >60% identity (cd-hit60 v4.6; cd-hit 

-c 0.6 -n 4). Relative counts for clusters were determined by summing the length adjusted 

subsampled normalized counts of each ORF contained within a cluster. 

 

Assembly free kmer based analysis 

Two samples were randomly selected from each environment for verification of abundance and 

activity relationships using an assembly free kmer counting. Counts of all canonical 31 letter 

kmers were generated for each sample (BBMap v36.19; kmercountexact.sh k=31). Kmers of 31 

letters were chosen because they have been shown to be able to distinguish approximate 

microbial species61. Kmers with low complexity (Shannon entropy ≤ 1.84) were removed to 

increase the likelihood of capturing kmers that can separate microbes at the species-level.  

  

Diversity metrics and statistics 

Diversity metrics were calculated using relative counts for metagenomes and 

metatranscriptomes. Pielou’s evenness (J’) and Berger–Parker dominance were calculated using 

scikit-bio. Linear regressions and nonparametric statistics were calculated using Spearman’s ρ 

and the Mann-Whitney U test from the R62 stats package. Non-metric dimensional scaling plots 
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(NMDS) were generated using the vegan63 R package and Bray-Curtis dissimilarities (vegan 

v2.4-4; metamds (distance=”bray”). 
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Supplementary information 

 
Figure S1. Relationships between relative abundance (% DNA) and activity (% RNA). 

Relationships between relative abundance and activity regardless of taxonomy that were 

sequenced with the a) Illumina and b) Roche 454 platforms.  
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Figure S2. Relationships between abundance and activity for samples sequenced with 

methods that retain RNA strand direction and absolute quantifications. a) Stranded 

(directional) relationships between relative abundance and relative activity. Strandedness is only 

retained at the ORF level therefore mappings were counted at the ORF level. The sense (yellow) 

reflects transcripts that directly correspond to mRNA that will be translated into peptides. Anti-

sense (blue) transcripts directly correspond to transcripts that are the reverse complement of 

mRNA and can act as transcriptional and post-translational regulators1. b) Relationships between 

absolute abundance (DNA sequence L-1) and absolute activity (RNA sequence L-1)  from the 

Amazon River2 and the Amazon River plume3,4. Absolute quantities were generated by 

multiplying relative frequencies by measured quantities of DNA and RNA from Satinsky et al., 

2014a19, Satinsky et al., 2014b20, Satinsky et al., 201518. Briefly, DNA and RNA samples were 

amended with known quantities at the time of nucleic acid extraction. The percent recovery of 

the DNA and RNA additions provide a direct conversion of relative frequencies.   
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Figure S3. Relationships between relative abundance (% DNA) and relative activity (% 

RNA) of kmers, ORFs, and approximate functional clusters. a) Abundance and activity of 

microbial communities using kmer counts. Kmers with low complexity were removed and only 

those with counts >2 per sample that were represented in both DNA and RNA fractions were 

retained. b) Relationships between abundance and activity of ORFs. c) Abundance and activity 

of functional protein clusters were generated by semi-global clustering of ORFs at 60% identity. 

Relative frequencies for each cluster were generated by summing the relative frequencies of 

ORFs that formed each cluster.   
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Figure S4. Distribution of rare activity across all Illumina sequenced samples. Rare activity 

is expressed as the relative RNA frequencies of assemblies in the rare fraction.  
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Figure S5. Relative abundance (% DNA) as a function of DNA rank abundance of 

metagenomic and metatranscriptomic sequence assemblies for Illumina sequenced 

samples. a) Rank abundance curves by environment. Rare assemblies are colored blue and 

abundant assemblies are yellow. Rare is considered >1000th rank and are in the tail of the rank 

abundance curves or a mean of 0.005%. b) Rank activity curves by environment. Rank activity is 

plotted as activity (% RNA) as a function of rank activity.  
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Figure S6. Comparison between antisense and sense expression in whole and rare 

community fractions. a) Box and whisker plot of antisense and sense rare microbial activity (P 

= 3.6 x 10-6). b) Box and whisker plot of antisense and sense whole community activity (P = 

0.1). 
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Figure S7. Non-metric multidimensional scaling (NMDS) based ordination of samples by 

environment. Sample distances are based on Bray-Curtis dissimilarities of a) abundance (% 

DNA) b) activity (% RNA) c) specific activity (RNA:DNA ratios). 
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Figure S8. Box and whisker plots of abundance (DNA) and expression (RNA) evenness 

across all Illumina sampled sequences. Evenness is calculated as Pielou’s evenness (J’) of 

sequence assemblies and their relative frequencies in metagenomes and metatranscriptomes 

(Mann–Whitney U test; P < 2.2 x 10-16).  
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Figure S9. Evaluation of control sequences. a) Mean measured and relative frequencies from 

SPOT benthic zone metagenomes for each amended genome control with SEM (n = 32). b) 

Linear regression of measured metagenomic relative frequencies against expected relative 

frequencies of SPOT benthic zone amended genome controls plotted with 95% confidence 

interval and SEM (n = 32; R2 = 0.9933). c) Mean measured and relative frequencies from SPOT 

benthic zone metatranscriptomes for each ERCC control with SEM (n = 30). d) Linear regression 

of measured metatranscriptomic relative frequencies against expected relative frequencies of 

SPOT benthic zone ERCC controls plotted with 95% confidence interval and SEM (n = 30; R2 = 

0.9932) 
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Table S1. Data sources used in this study (see excel table). Most data sources are provided by 

NCBI SRA or ENA accession numbers. Sequence libraries are characterized by nucleic acid 

source (DNA or RNA), sequencing technology, preparation methods, source environment, 

attached/free lifestyle, and sample temperature. Pair bin denotes matching DNA and RNA 

samples. Pairing information was retrieved from the data source databases and source 

publications. Public data were retrieved from: Alberti et al., 201729, Baker et al., 201232, 

Bremges et al., 201524, Dupont et al., 201526, Franzosa et al., 201421, Gilbert et al., 201027, 

Hultman et al., 201522, Li et al., 201533, Maus et al., 201623, Satinsky et al., 2014a19, Satinsky et 

al., 2014b20, Satinsky et al., 201518, Shi et al., 201125, Sieradzki et al., 201730, Sunagawa et al., 

201528, and Thrash et al., 201731.    

 

Table S2. RNA contribution of rare and abundant microbes (see excel table). % RNA of 

rare and abundant microbes was totaled for each sample sequenced on Illumina platforms. Total 

% RNA across samples was calculated by summing % RNA for across all samples and 

renormalizing to the summed % RNA for each abundance fraction.  

 

Table S3. Annotations of the most expressed ORFs (see excel table). RefSeq and KEGG 

annotations of the most expressed ORFs from each sample pairing that had a RefSeq match.  
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NCBI 

Accession 

Genome 

name 

% 

G+

C 

Fol

d 

NCBI Taxonomy 

NC_006322 Bacillus 

lichenifor

mis DSM 

13 = 

ATCC 

14580 

46.2 1 Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; 

Bacillus 

NC_011593 Bifidobact

erium 

longum 

subsp. 

infantis 

ATCC 

15697 

59.9 4 Bacteria; Actinobacteria; Bifidobacteriales; 

Bifidobacteriaceae; Bifidobacterium 

NC_003450 Corynebact

erium 

glutamicu

m ATCC 

13032 

53.8 2 Bacteria; Actinobacteria; Corynebacteriales; 

Corynebacteriaceae; Corynebacterium 

NC_010321 Thermoana

erobacter 

pseudethan

olicus 

ATCC 

33223 

34.5 8 Bacteria; Firmicutes; Clostridia; 

Thermoanaerobacterales; Thermoanaerobacteraceae; 

Thermoanaerobacter 

Table S4. Genome controls used to amend SPOT metagenomes. Each genome was selected 

to encompass a range of %G+C. 
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