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Abstract	 Alpha-	 and	 beta-band	 rhythms	 over	 the	 sensorimotor	 cortex	 are	 prominent	 and	
functionally	relevant	for	movement	selection.	However,	it	remains	unclear	whether	these	rhythms	

modulate	excitability	of	 the	same	neuronal	ensembles	 in	 the	same	direction	when	a	movement	 is	

selected	 across	 the	 sensorimotor	 cortex.	 Using	 electrocorticography	 in	 humans	 (N=11),	 we	

assessed	the	anatomical	and	functional	specificity	of	alpha-	and	beta-band	rhythms	sampled	around	

the	 central	 sulcus	 during	 the	 performance	 of	 a	 psychophysically-controlled	 movement	 imagery	

task.	Both	rhythms	displayed	effector-specific	 task-related	modulations,	 tracked	spectral	markers	

of	 action	 potentials	 in	 the	 local	 neural	 population,	 and	 showed	 spatially	 systematic	 phase	

relationships	 (traveling	 waves).	 Yet,	 alpha-	 and	 beta-band	 rhythms	 were	 weakly	 correlated,	

differed	 in	 their	 anatomical	 and	 functional	 properties,	 and	 travelled	 along	 opposite	 directions	

across	 the	 sensorimotor	 cortex.	 Alpha	 was	 stronger	 at	 postcentral	 electrodes	 evoking	

somatosensory	 sensations.	 A	 relative	 increase	 in	 alpha	 power	 in	 the	 somatosensory	 cortex	

ipsilateral	to	the	selected	arm	was	associated	with	spatially	unspecific	inhibition.	Beta	was	stronger	

at	central	electrodes	evoking	both	movements	and	somatosensory	sensations.	A	focal	reduction	in	

beta	power	over	 the	somatomotor	cortex	contralateral	 to	 the	selected	arm	was	associated	with	a	

local	 shift	 in	 balance	 from	 relative	 inhibition	 to	 excitation.	 These	 observations	 indicate	 the	

relevance	of	both	inhibition	and	disinhibition	mechanisms	for	precise	spatiotemporal	coordination	

of	movement-related	neuronal	populations,	and	illustrate	how	those	mechanisms	are	implemented	

through	 the	 substantially	different	neurophysiological	 properties	 of	 sensorimotor	 alpha	 and	beta	

rhythms. 	
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Introduction	
To	control	a	movement,	specific	neuronal	populations	supporting	particular	features	of	that	

movement	need	to	be	facilitated	while	other	populations	need	to	be	suppressed	(Ebbesen	and	

Brecht,	2017;	Greenhouse	et	al.,	2015;	Mink,	1996).	Both	operations	need	to	be	organized	in	a	

precise	spatiotemporal	pattern,	such	that	the	demands	of	coordinating	body	segments	for	

movement	are	dynamically	solved	through	the	selective	excitation	and	inhibition	of	relevant	and	

irrelevant	sensorimotor	neuronal	populations	(Bruno	et	al.,	2015;	Dombeck	et	al.,	2009;	Graziano,	

2016;	Shenoy	et	al.,	2013).	One	putative	mechanism	through	which	this	sensorimotor	coordination	

is	implemented	is	the	rhythmic	modulation	of	neuronal	local	field	potentials	in	the	alpha	(8	-	12	Hz)	

and	beta	(15	-	25	Hz)	frequency	range	(Brovelli	et	al.,	2004;	Pfurtscheller	and	Berghold,	1989;	

Picazio	et	al.,	2014;	van	Wijk	et	al.,	2012).	

Neuronal	local	field	potentials	in	the	sensorimotor	cortex	are	organized	in	two	prominent	

spectral	clusters,	alpha-	and	beta-band	rhythms,	known	to	be	relevant	for	movement	selection	and	

to	differ	across	several	features.	For	instance,	there	are	differences	in	the	cortico-subcortical	loops	

supporting	alpha-	and	beta-band	rhythms	(Bastos	et	al.,	2014;	Leventhal	et	al.,	2012;	

Schreckenberger	et	al.,	2004;	West	et	al.,	2018),	and	only	the	latter	rhythm	has	clear	modulatory	

effects	on	corticospinal	neurons	(Baker	et	al.,	1997;	Madsen	et	al.,	2019;	Mima	and	Hallett,	1999;	

van	Elswijk	et	al.,	2010).	Yet,	the	neurophysiological	characteristics	of	alpha-	and	beta-band	

rhythms	have	often	been	studied	by	aggregating	these	two	rhythms	into	the	same	(mu-)	rhythm	

category	(Cuevas	et	al.,	2014;	Hari,	2006;	Miller	et	al.,	2010),	an	approach	often	justified	by	the	

partial	overlap	in	their	spatial	and	spectral	distributions	(Bressler	and	Richter,	2015;	Haegens	et	al.,	

2014;	Salmelin	and	Hari,	1994;	Szurhaj	et	al.,	2003)	and	by	the	temporal	correlation	of	their	power	

envelopes	(Carlqvist	et	al.,	2005;	de	Lange	et	al.,	2008;	Tiihonen	et	al.,	1989).	By	aggregating	those	

rhythms,	it	has	been	recently	shown	that	4–22	Hz	activity	modulates	high-frequency	broadband	

power	in	primates’	frontal	cortex	(Bastos	et	al.,	2018;	Johnston	et	al.,	2019),	and	that	10-40	Hz	

activity	is	spatially	organized	in	traveling	waves	(Takahashi	et	al.,	2015).	It	remains	unclear,	

however,	whether	that	aggregation	could	obscure	differential	contributions	of	those	rhythms	to	

movement	selection.	For	instance,	it	is	an	open	question	whether	alpha-	and	beta-band	rhythms	

modulate	the	excitability	of	the	same	neuronal	ensembles	in	the	same	direction	when	a	movement	

is	selected	across	the	sensorimotor	cortex.	

Here	we	used	direct	recordings	from	the	human	cortical	surface	(electrocorticography,	

ECoG;	Figure	1A)	to	assess	the	anatomical	and	functional	specificity	of	alpha-	and	beta-band	

rhythms	and	their	effects	on	the	local	excitability	of	sensorimotor	neuronal	ensembles	during	
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movement	selection.	Local	cortical	effects	were	quantified	through	two	complementary	power-

spectral	metrics	of	excitability.	First,	we	considered	high-frequency	(60	-	120	Hz)	content	in	the	

ECoG	signal,	a	mesoscale	correlate	of	action	potentials	and	dendritic	currents	in	the	local	neural	

population	(Leszczynski	et	al.,	n.d.;	Manning	et	al.,	2009;	Ray	and	Maunsell,	2011;	Rich	and	Wallis,	

2017).	Second,	we	considered	the	slope	of	the	power-spectral	density	function	(1/f	slope),	a	

summary	index	of	synaptic	excitation/inhibition	balance	(Gao	et	al.,	2017).	Furthermore,	rather	

than	assuming	that	alpha-	and	beta-band	rhythms	are	spatially	stationary	across	the	sensorimotor	

cortex	(Brinkman	et	al.,	2016,	2014),	we	examined	the	spatiotemporal	distribution	of	the	two	

sensorimotor	rhythms	and	their	cortical	effects	through	two	complementary	analyses.	First,	we	

considered	the	organization	of	spatially	systematic	phase	relationships	among	rhythmic	signals	

(traveling	waves)	across	the	sensorimotor	cortex	(Ermentrout	and	Kleinfeld,	2001;	Muller	et	al.,	

2018).	Second,	we	explored	the	spatiotemporal	relation	between	rhythm	strength	and	local	cortical	

excitability	through	analysis	of	representational	similarity	between	those	spectral	markers	

(Kriegeskorte	et	al.,	2006).		

This	neurophysiological	characterization	of	alpha-	and	beta-band	rhythms	is	based	on	a	

principled	differentiation	of	the	two	sensorimotor	rhythms	along	spectral,	anatomical,	and	

movement-related	dimensions.	Spectrally,	alpha-	and	beta-band	signals	were	disambiguated	from	

arrhythmic	spectral	components	in	each	individual	participant	(Wen	and	Liu,	2015).	This	

procedure	increases	spectral	precision	and	physiological	interpretability	by	controlling	for	effects	

of	task-related	power-spectral	1/f	modulations	over	those	rhythms	(He,	2014).	Anatomically,	the	

ECoG	recordings	were	precisely	registered	to	the	cortical	anatomy	of	each	patient	(Stolk	et	al.,	

2018),	and	sorted	according	to	the	sensorimotor	responses	evoked	by	electrical	stimulation	of	the	

electrodes.	Functionally,	the	movement-related	specificity	of	alpha-	and	beta-band	signals	was	

experimentally	controlled	by	using	imagined	movements	psychophysically-matched	to	actual	

movements	(Figure	1B,	(Brinkman	et	al.,	2014;	Rosenbaum	et	al.,	1995)).	This	procedure	is	

grounded	on	the	close	correspondence	between	neural	mechanisms	of	movement	selection	and	

motor	imagery	(Cisek	and	Kalaska,	2004;	de	Lange	et	al.,	2006),	and	increases	functional	

interpretability	by	avoiding	confounding	execution-related	somatosensory	reafference	known	to	

differentially	affect	post-movement	power	dynamics	in	the	alpha-	and	beta-bands	(Alayrangues	et	

al.,	2019;	Jurkiewicz	et	al.,	2006;	Tan	et	al.,	2016).	
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Results	
Direct	cortical	recording	during psychophysically-controlled	movement	imagery	

Neurosurgical	epilepsy	patients	implanted	with	subdural	grid	and	strip	electrode	arrays	for	clinical	

diagnostic	purposes	performed	up	to	three	sessions	of	a	movement	imagery	task	where	they	

imagined	how	to	grasp	an	object	with	either	their	left	or	right	hand.	Eleven	patients	participated,	

eight	with	left	hemisphere	arrays,	and	three	with	arrays	on	the	right	(see	overlay	on	a	template	

brain	in	Figure	1A).	Two	participants	experienced	difficulties	adhering	to	the	task	instructions	and	

were	excluded	from	further	analysis.	

The	motor	imagery	task	involved	60	trials	per	session.	Each	trial	started	with	the	

presentation	of	a	black-white	cylinder	on	a	computer	screen.	Participants	imagined	how	to	grasp	

the	middle-third	of	that	cylinder	with	the	either	their	left	or	right	hand,	in	alternating	blocks	of	10	

trials	(Figure	1B).	After	a	fixed	amount	of	time,	a	response	screen	appeared	where	the	participants	

indicated	whether	their	thumb	was	on	the	black	or	the	white	part	of	the	cylinder	at	the	end	of	the	

imagined	movement.	The	response	screen	consisted	of	two	squares	on	the	horizontal	plane	(one	

black	and	one	white),	where	participants	indicated	'black'	or	'white'	by	pressing	the	corresponding	

button	using	their	left	or	right	thumb	on	a	button	box	that	they	held	with	both	hands.	The	relative	

location	of	the	black	and	white	squares	on	the	screen	was	pseudo-randomized	across	trials	to	

prevent	the	preparation	of	the	thumb	response	during	the	simulation	of	the	grasping	movements.		

The	task	was	designed	to	assess	whether	participants	produced	imaginary	movements	

conforming	to	the	biomechanical	constraints	of	the	corresponding	real	movements.	On	each	trial,	

the	cylinder	was	pseudo-randomly	tilted	according	to	1	of	15	possible	orientations,	spanning	0	to	

360°.	This	task	manipulation	resulted	in	trials	affording	both	overhand	and	underhand	grasping,	

and	trials	that	afforded	grasping	in	a	single	manner	only	due	to	biomechanical	constraints	of	the	

hand.	As	seen	in	Figure	1C,	the	preferred	manner	in	which	participants	imagined	grasping	the	

cylinder	(thumb	on	black	or	white	part)	depended	on	the	orientation	of	the	cylinder	and	followed	

the	biomechanical	constraints	of	the	body.	This	is	supported	by	a	psychophysical	analysis	showing	

that	a	sine-wave	fit	to	the	over-/underhand	data	points	explained	81	±	4	%	of	the	variance	in	the	

left	hand	condition	(M	±	SEM;	t(8)	=	18.4,	p	<	0.001)	and	76	±	4	%	in	the	right	hand	condition	(t(8)	

=	21.6,	p	<	0.001),	consistent	with	the	prediction	of	two	orientation-dependent	switch	points	in	

each	hand’s	response	curve	(Brinkman	et	al.,	2014).	
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Figure	 1.	 Recording	 electrode	

locations	 and	 movement	

imagery	 task.	 (A)	Neural	 signals	

were	 recorded	 from	 the	 cortical	

surface	 of	 eleven	 epilepsy	

patients	 that	 were	 implanted	

with	 subdural	 electrode	 grids	

and	 strips.	 The	 electrode	

locations	 of	 all	 participants	 are	

overlaid	 on	 a	 template	 brain	

(black	 markers).	 Electrodes	

resulting	 in	 either	 a	

somatomotor	 or	 somatosensory	

response	in	the	upper	limb	upon	

electrical	 stimulation	 are	

highlighted	 in	 white.	 (B)	

Participants	 imagined	 grasping	

the	middle-third	of	a	black-white	

cylinder	with	either	 their	 left	or	

right	 hand.	 At	 the	 response	

screen,	 they	 indicated	 whether	

their	thumb	was	on	the	black	or	

the	white	part	of	 the	cylinder	at	

the	 end	 of	 the	 imagined	

movement.	 (C)	 The	 preferred	manner	 in	 which	 the	 cylinder	 was	 grasped	 (thumb	 on	 black	 or	 white	 part,	

related	 to	overhand	vs.	underhand	grasping)	was	modulated	as	a	 function	of	 the	cylinder’s	orientation	and	

differed	 for	 the	 left	 and	 right	 hand.	 Error	 bars	 indicate	M	±	 SEM	over	 nine	 participants.	 Lines	 and	 shaded	

areas	indicate	M	±	SEM	of	sine-wave	fits	to	individual	over-/underhand	data	points.	

	

Eight	out	of	nine	participants	additionally	completed	a	control	task	that	used	the	same	

visual	input	and	response	contingencies	as	the	motor	imagery	task,	but	where	no	imagery	was	

required.	In	the	control	task,	the	surface	areas	of	the	cylinder	differed	slightly	across	trials,	e.g.,	

54%	black	and	46%	white,	and	participants	reported	which	side	of	the	black-white	cylinder	was	

larger.	This	allowed	correcting	for	neural	changes	unrelated	to	the	movement	imagery	process,	

such	as	those	evoked	by	the	visual	input.	Participants	performed	the	control	task	with	high	

accuracy	(99.4	±	0.3	%	correct,	M	±	SEM).	
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In	the	following	sections,	we	first	characterize	the	anatomical	distribution	and	task-related	

temporal	profile	of	the	neuronal	ensembles	supporting	alpha-	and	beta-band	rhythms	across	the	

sensorimotor	cortex,	as	well	as	the	functional	consequences	of	electrical	stimulation	of	those	

ensembles.	Afterwards,	we	assess	the	influence	of	those	rhythms	on	the	spatiotemporal	pattern	of	

sensorimotor	excitability	during	the	selection	of	a	movement,	and	the	spatiotemporal	organization	

of	those	rhythms	across	the	sensorimotor	cortex.	

	

Alpha-	and	beta-band	rhythms	build	on	anatomically	distinct	neuronal	ensembles	

Neuronal	ensembles	producing	sensorimotor	alpha-	and	beta-band	rhythms	across	the	human	

sensorimotor	cortex	were	isolated	with	a	four-step	procedure.	The	goal	of	the	procedure	is	to	

characterize	the	spatial	distribution	of	rhythmic	and	spectrally	homogeneous	neural	activity	in	

sensorimotor	areas	in	each	participant’s	subdural	grid	and	strip	electrode	arrays.		

First,	for	each	participant,	we	selected	electrodes	that	upon	electrical	stimulation	yielded	

somatomotor	or	somatosensory	responses	of	the	upper	limb	contralateral	to	the	cortical	grid	(i.e.	

twitches,	movements,	tingling	of	either	fingers,	hand,	wrist,	arm,	or	shoulder).	This	procedure	

identified	cortical	regions	supporting	sensorimotor	components	of	movement	(white	electrodes	in	

Figure	1A,	2A).	Seven	out	of	nine	participants	showed	such	responses,	indicating	sensorimotor	

coverage	in	these	participants.	Second,	we	used	irregular-resampling	auto-spectral	analysis	(IRASA,		

(Wen	and	Liu,	2015))	of	the	neural	signal	recorded	at	the	stimulation-positive	electrodes.	This	

procedure	isolated	specific	rhythmic	activity	embedded	in	the	concurrent	broadband	1/f	

modulations.	Third,	mean	and	full-width	at	half-maximum	of	alpha	and	beta	spectral	distributions	

were	defined	for	each	participant	using	a	Gaussian	model	(red	and	blue	areas	of	the	power-spectra	

in	Figure	2A).	This	adaptive	approach	(Supplemental	Data)	avoids	having	to	rely	on	canonical	

frequency	bands	that	may	not	accurately	capture	the	neural	phenomena	of	interest	in	each	

individual	(Haegens	et	al.,	2014;	Szurhaj	et	al.,	2003).	Five	out	of	seven	participants	showed	a	

rhythmic	power-spectral	component	in	the	8	-	12	Hz	alpha	frequency	range,	one	had	a	rhythmic	

component	below	that	range,	and	all	seven	had	a	rhythmic	component	that	overlapped	with	the	15	

-	25	Hz	beta	range	(Figure	S1).	Participant	S7	exhibited	only	a	single	rhythmic	component	(in	the	

beta	range),	and	was	excluded	from	further	analysis.	On	average,	the	remaining	six	participants’	

alpha	and	beta	frequency	bands	were	centered	on	7.4	±	0.7	and	16.9	±	1.1	Hz	(M	±	SEM),	

respectively.	Fourth,	we	localized	cortical	sites	showing	relative	maxima	in	alpha	and	beta	power.	

We	selected	electrodes	that	exceeded	the	upper	limit	of	the	99%	confidence	interval	for	absolute	

spectral	power	in	the	respective	frequency	band	across	all	stimulation-positive	electrodes	defined	
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by	the	first	step.	This	analysis	yielded	4.0	±	1.2	alpha	and	3.4	±	0.8	beta	peak	activity	electrodes	for	

participants	S1	-	S5	(M	±	SEM,	red	and	blue	electrodes	in	Figures	2A	and	S1).	Due	to	limited	

sensorimotor	coverage,	the	number	of	electrodes	could	not	be	narrowed	down	for	participant	S6,	

and	the	4	stimulation-positive	electrodes	in	this	participant	were	used	for	analysis	of	temporal	

dynamics	only.	

The	cortical	sites	isolated	through	this	principled	four-step	procedure	had	systematically	

different	functional	and	anatomical	properties.	All	20	electrodes	with	alpha-band	local	maxima	

were	located	posterior	to	the	central	sulcus,	χ2(19)	=	40,	p	<	0.001	(pre	vs.	post	central	sulcus),	see	

the	red	electrodes	in	Figure	2D.	As	seen	in	the	same	figure,	the	17	blue	electrodes	with	beta-band	

local	maxima	were	localized	to	both	sides	of	the	central	sulcus,	χ2(16)	=	1.1,	p	=	0.3	(7	pre-	and	10	

post-central).	Furthermore,	only	7	out	of	30	combined	unique	electrodes	were	local	maxima	for	

both	sensorimotor	rhythms,	suggesting	that	alpha-	and	beta-band	rhythms	involve	largely	different	

neuronal	ensembles,	χ2(29)	=	17,	p	<	0.001.	On	average,	alpha-	and	beta-band	local	maxima	were	

separated	by	11.8	±	2.2	mm	(M	±	SEM).	
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Figure	 2.	 Anatomical	 and	 functional	 dissociation	 of	 sensorimotor	 alpha	 and	 beta.	 (A)	 Spectral	 and	 spatial	

distributions	 of	 alpha	 and	 beta	 rhythmic	 activity	 during	 imagined	 movement	 in	 two	 representative	

individuals.	The	 insets	show	in	 log-log	space	the	original	power-spectra	(in	gray)	and	extracted	arrhythmic	

1/f	content	(black)	that	gave	rise	to	the	participant-specific	rhythmic	content	shown	in	the	main	graph	on	the	

left.	The	color	axes	of	the	cortical	maps	run	from	minimum	in	blue	to	maximum	absolute	spectral	power	in	

yellow.	 White	 electrodes	 yielded	 somatomotor	 or	 somatosensory	 responses	 of	 the	 upper	 limb	 following	

electrical	 stimulation.	 Red	 and	 blue	 electrodes	 represent	 alpha-	 and	 beta-band	 local	 maxima	 across	

sensorimotor	 cortex,	 respectively.	 (B)	 As	 the	 cortical	 maps	 in	 A,	 but	 for	 60	 to	 120	 Hz	 high-frequency	

arrhythmic	content	(HFA)	of	the	ECoG	signal.	Green	electrodes	represent	high-frequency-band	local	maxima	

across	sensorimotor	cortex.	 (C)	Ditto,	but	 for	 the	1/f	 slope	between	30	and	50	Hz,	 indicated	by	 the	orange	

graph	 sections	 in	 the	 insets	 of	 A.	 The	 1/f	 slope	 is	 a	 putative	 power-spectral	 index	 of	 synaptic	

excitation/inhibition	 balance.	 Orange	 electrodes	 represent	 sensorimotor	 sites	with	 relatively	 the	 strongest	

inhibition,	 i.e.	 the	 steepest	 slope.	 (D)	 Template	 brains	 showing	 the	 local	 maxima	 from	 five	 individuals,	

visualized	 on	 the	 left	 hemisphere.	 Alpha	 is	 maximal	 at	 electrodes	 on	 the	 postcentral	 gyrus	 that	 yielded	

somatosensory	sensations	of	the	upper	limb	following	electrical	stimulation	(red	electrodes).	In	contrast,	beta	

is	strongest	at	electrodes	placed	over	the	central	sulcus,	with	electrical	stimulation	yielding	both	movements	

and	 somatosensory	 sensations	 (blue	 electrodes).	 White	 dashed	 lines	 indicate	 central	 sulci.	 (E)	 Temporal	

dynamics	of	power	changes	aggregated	across	the	relevant	local	maxima	during	imagined	movement	of	the	

contralateral	 or	 ipsilateral	 hand.	 Both	 neuronal	 ensembles	 producing	 alpha	 and	 beta	 rhythms	 showed	

effector-specific	modulation	during	motor	 imagery,	 from	0	to	2	sec.	Shaded	areas	 indicate	±1	SEM.	Colored	

bars	 along	 the	 x-axes	 indicate	 time	 intervals	 of	 statistically	 significant	 lateralization	 effects.	 Dashed	 black	

lines	represent	mean	activity	in	the	control	task,	for	reference.	

	

Alpha-	 and	 beta-band	 rhythms	 build	 on	 neuronal	 ensembles	 with	 different	 sensorimotor	

properties:	effects	of	electrical	stimulation	

To	test	whether	the	neuronal	ensembles	generating	alpha	and	beta	rhythms	had	different	

functional	properties,	we	probed	the	somatosensory	and	motor	responses	evoked	by	electrical	

stimulation	of	those	ensembles.	As	indicated	in	Figure	2D,	alpha	electrodes	yielded	predominantly	

(14	out	of	20	electrodes,	70%)	somatosensory	sensations	of	the	contralateral	upper	limb	following	

electrical	stimulation,	χ2(19)	=	12.4,	p	<	0.001.	Additionally,	a	subset	of	electrodes	(3	out	of	20,	

15%)	were	part	of	equally	many	stimulation	electrode	pairs	yielding	both	somatomotor	and	

somatosensory	responses.	These	observations	suggest	that	alpha	activity	predominantly	supports	

somatosensory	components	of	movement,	in	line	with	its	anatomical	distribution	along	the	

postcentral	gyrus.	By	contrast,	beta	electrodes	were	marginally	more	likely	(11	out	of	17,	65%)	to	
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elicit	a	somatomotor	than	a	somatosensory	response	of	the	upper	limb	following	electrical	

stimulation,	χ2(16)	=	2.9,	p	=	0.086.	

	

Alpha-	 and	 beta-band	 rhythms	 contribute	 to	movement	 selection	 with	 different	 temporal	

dynamics	

Since	alpha	and	beta	rhythms	are	anatomically	and	functionally	separated	at	the	cortical	level,	we	

asked	whether	the	neuronal	ensembles	supporting	the	two	sensorimotor	rhythms	provide	different	

contributions	to	the	selection	of	a	forthcoming	movement.	We	considered	the	temporal	dynamics	of	

power	changes	in	alpha-	and	beta-band	rhythms	aggregated	across	the	relevant	local	maxima.	

While	participants	were	engaged	in	movement	imagery,	alpha-	and	beta-band	power	(at	their	

respective	local	maxima)	was	more	strongly	attenuated	for	the	hemisphere	contralateral	to	the	

hand	used	in	the	imagined	movement	(Figure	2E).	It	can	be	seen	that,	during	motor	imagery,	alpha-

band	power	increases	in	the	(postcentral)	cortex	ipsilateral	to	the	hand	used	for	imagery,	as	

compared	to	baseline	levels	(~35%	between	900	and	1200	ms,	p	<	0.05).	In	contrast,	beta-band	

power	decreases	more	in	the	(pre-	and	post-central)	cortex	contralateral	to	the	hand	used	for	

imagery.	The	temporal	dynamics	of	these	power	changes	are	highly	consistent	with	previous	

observations	obtained	from	non-invasive	electrophysiological	recordings	over	sensorimotor	cortex	

during	performance	of	the	same	task,	cf.	Figure	3	in	(Brinkman	et	al.,	2014).	Furthermore,	these	

temporal	dynamics	were	robust	on	the	single-trial	level	and,	as	seen	in	Figure	S2,	represented	

modulations	of	sustained	rhythmic	activity	(Jones,	2016).				

	

Alpha-	and	beta-band	rhythms	arise	from	spatiotemporally	unrelated	neuronal	ensembles		

Since	the	temporal	dynamics	of	alpha	and	beta	rhythms	aggregated	across	local	maxima	is	

functionally	divergent	(Figure	2E),	we	asked	whether	that	dissociation	persists	at	more	fine-

grained	levels	of	analysis	across	ECoG	electrodes	and	across	trial-by-trial	sensorimotor	demands.	

First,	we	considered	the	temporal	and	spatial	correlations	between	alpha-	and	beta-band	power	

both	between	their	local	maxima	(Figure	3A)	and	across	sensorimotor	cortex	(Figure	3B,	C).	It	can	

be	seen	from	the	leftmost	bars	in	these	figures	that	alpha-	and	beta-band	rhythms	were	temporally	

as	well	as	spatially	uncorrelated.	This	finding	is	a	merit	of	the	current	procedure	separating	alpha	

and	beta	rhythmic	activity	from	concurrent	1/f	modulations	in	the	power	spectrum,	as	power	in	the	

two	frequency	bands	was	correlated	when	this	shared	variance	was	not	accounted	for	(Figure	S3).	

Second,	we	considered	the	representational	similarity	of	the	temporal	and	spatial	activity	patterns	

evoked	during	movement	imagery	in	the	alpha-	and	beta-bands	(Kriegeskorte,	2008).	This	analysis	
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directly	compares	neural	patterns	captured	by	each	spectral	marker,	while	obviating	the	need	for	

specifying	precise	correspondences	between	those	patterns	across	spectral	markers.	Namely,	

instead	of	calculating	direct	correlations	between	the	temporal	dynamics	or	the	spatial	distribution	

of	alpha-	and	beta-band	power	as	above,	we	considered	the	similarity	of	power	patterns	evoked	

across	all	trial	combinations.	Second-order	correlations	of	the	resulting	trial-by-trial	similarity	

matrices	were	used	to	quantify	similarity	between	alpha-	and	beta-band	power,	independently	

from	the	frequency-specific	patterns	evoked	within	a	trial.	Alpha-	and	beta-band	rhythms	showed	

weak	resemblances,	both	temporally	and	spatially	(Figure	3D-F).	These	relations	between	alpha-	

and	beta-band	effects	indicate	that	the	neuronal	ensembles	producing	these	two	sensorimotor	

rhythms	have	no	substantial	spatiotemporal	correspondences.	

	

	
Figure	 3.	 Spatiotemporal	 dissociation	 of	 sensorimotor	 alpha	 and	 beta.	 (A	 -	 C)	 Temporal,	 spatial,	 and	

spatiotemporal	correlations	between	alpha,	beta,	high-frequency	activity	(HFA),	and	the	1/f	slope.	Alpha	and	

beta	 rhythms	were	weakly	 correlated	 in	 time	 and	 space	 during	movement.	 Both	 alpha	 and	beta	 showed	 a	

positive	relationship	with	high-frequency	activity,	yet	only	beta-band	power	closely	 tracked	changes	 in	 the	

1/f	 slope	 across	 sensorimotor	 cortex	 (B	 and	C).	 *:	p	 <	 0.05;	 **:	p	 <	 0.001.	 (D	 -	F)	Alpha	 and	beta	 rhythms	

showed	 weak	 similarity	 in	 sensitivity	 to	 sensorimotor	 demands	 across	 different	 movements.	 Echoing	 the	

correlations	 shown	 in	 panels	A	 to	 C,	 beta	 is	 largely	 sensitive	 to	 the	 same	 trial-by-trial	 demands	 as	 the	 1/f	

slope,	for	both	sensorimotor	demands	contained	by	temporal	dynamics	(D)	and	activity	patterns	(E	and	F).	
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Alpha-	and	beta-band	rhythms	have	different	influence	on	local	excitability		

The	previous	sections	provide	evidence	for	the	notion	that	the	neuronal	ensembles	generating	

alpha-	and	beta-band	rhythms	have	different	spatiotemporal	characteristics	during	motor	imagery,	

as	well	as	different	peripheral	consequences	following	electrical	stimulation.	These	observations	

confirm	and	qualify	the	findings	of	previous	ECoG	and	SEEG	reports	on	differences	between	alpha-	

and	beta-band	rhythms	over	the	sensorimotor	cortex	(Brovelli	et	al.,	2004;	Crone	et	al.,	1998;	

Jasper	and	Penfield,	1949;	Saleh	et	al.,	2010;	Szurhaj	et	al.,	2003;	Toro	et	al.,	1994;	Vansteensel	et	

al.,	2013).	Those	clear	differences	between	alpha-	and	beta-band	rhythms	raise	the	issue	of	

understanding	the	functional	consequences	of	those	differences	on	the	excitability	of	neuronal	

populations	in	the	sensorimotor	cortex	during	movement	selection.	We	indexed	those	

consequences	through	spectral	markers	of	local	population-level	activity	(arrhythmic	high-

frequency	activity	between	60	and	120	Hz	(Manning	et	al.,	2009;	Miller,	2010;	Ray	and	Maunsell,	

2011))	and	of	local	excitation/inhibition	balance	(steepness	of	the	power-spectral	1/f	slope,	

estimated	between	30	and	50	Hz	(Gao	et	al.,	2017)).	High-frequency	activity	showed	spatial	and	

temporal	correspondences	with	both	alpha-	and	beta-band	rhythmic	activity	during	movement	

selection	(Figure	3B,	C).	This	is	also	seen	in	the	spatial	distribution	of	local	maxima	in	high-

frequency	activity	(green	electrodes	in	Figure	2D),	which	were	localized	to	both	sides	of	the	central	

sulcus	and	involved	neuronal	ensembles	producing	alpha-	or	beta-band	rhythmic	activity	(14/22:	4	

producing	alpha,	4	producing	beta,	6	producing	both	alpha	and	beta,	and	8	with	no	overlap).	

However,	the	lack	of	clear	effector-specificity	(Figure	2E)	limits	the	functional	relevance	of	this	

index.		

Unlike	high-frequency	activity,	the	1/f	slope	index	showed	clear	functional	specificity.	This	

index	was	sensitive	to	the	laterality	of	the	effector	involved	in	the	motor	imagery	task	(Figure	2E).	

This	index	was	also	spatially	specific,	with	a	focal	reduction	of	excitation/inhibition	ratio	(i.e.	

steepest	1/f	slopes,	indicating	stronger	local	inhibition)	at	electrodes	placed	over	the	central	sulcus	

yielding	predominantly	somatomotor	rather	than	somatosensory	responses	following	electrical	

stimulation	(χ2(27)	=	10.3,	p	<	0.002;	orange	electrodes	in	Figure	2C,	D).	The	spatial	specificity	of	

the	1/f	slope	index	is	further	supported	by	a	direct	comparison	with	the	spatial	distribution	of	high-

frequency	activity:	despite	superficially	similar	distributions	across	the	central	sulcus	(Figure	2D),	

only	3	out	of	47	combined	unique	electrodes	were	both	local	maxima	for	high-frequency	activity	

and	local	inhibition	as	indexed	by	the	1/f	slope.	One	of	the	main	findings	of	this	study	is	that	the	1/f	

slope	index	had	a	differential	relationship	with	the	two	sensorimotor	rhythms.	Figure	3A-C	

illustrates	the	reciprocal	changes	observed	between	beta-band	activity	and	the	1/f	slope	during	
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task	performance.	Namely,	stronger	reductions	in	beta-band	power	correlated	with	stronger	

increases	in	local	excitability	across	sensorimotor	cortex.	Furthermore,	electrodes	with	local	

maxima	in	beta-band	activity	and	local	inhibition	were	similarly	distributed	across	the	central	

sulcus,	with	a	59%	(10/17)	spatial	correspondence.	Given	that	both	beta-band	and	1/f	slope	

indexes	were	similarly	responsive	to	the	laterality	of	the	effector	involved	in	the	motor	imagery	

task	(Figure	2E),	the	spatiotemporal	correspondence	between	beta-band	rhythm	and	1/f	slope	

indicates	that	the	stronger	beta-band	power	reduction	in	the	somatomotor	cortex	contralateral	to	

the	selected	arm	is	associated	with	a	relative	disinhibition	of	somatomotor	neuronal	populations.	

This	inference	is	supported	and	generalized	by	the	representational	similarity	analyses	of	the	

temporal	and	spatial	relations	between	those	two	spectral	indexes	evoked	during	movement	

imagery	(Figure	3D-F).	These	analyses	indicate	that	there	is	a	robust	spatiotemporal	similarity	

across	different	imagined	movements	between	beta-band	power	and	1/f	slope,	over	and	above	the	

within-trial	correlations	captured	in	Figure	3A-C.	

In	contrast,	the	1/f	slope	index	had	a	different	relationship	with	alpha-band	responses	to	

task	demands.	The	local	excitation/inhibition	balance	was	not	spatially	related	to	the	alpha-band	

response	(Figure	3B,	C),	with	a	25%	correspondence	(5/20)	between	electrodes	with	local	maxima	

in	alpha-band	activity	and	local	inhibition.	However,	there	was	a	significant	temporal	anti-

correlation	between	local	maxima	of	alpha-band	power	and	1/f	slope	(Figure	3A).	This	observation	

suggests	that	the	stronger	alpha-band	power	evoked	in	the	somatosensory	cortex	ipsilateral	to	the	

selected	arm	(Figure	2E)	is	associated	with	a	relative	but	spatially	unspecific	inhibition	of	the	

sensorimotor	cortex.	This	inference	is	partially	supported	by	the	representational	similarity	

analyses	(Figure	3D-F).	Although	the	trial-by-trial	variation	in	spatiotemporal	patterns	of	alpha-

band	power	and	1/f	slope	are	significantly	related	(Figure	3F),	there	are	no	clear	similarities	

between	those	two	spectral	indexes	when	only	temporal	or	spatial	profiles	are	considered	(Figure	

3D,	E).	

	

Alpha-	and	beta-band	rhythms	propagate	independently	across	sensorimotor	cortex		

The	differential	relation	of	alpha-	and	beta-band	rhythms	to	(dis)inhibition	of	the	sensorimotor	

cortex	raises	the	issue	of	understanding	whether	that	(dis)inhibition	is	propagated	in	a	consistent	

spatiotemporal	pattern.	This	possibility	is	functionally	relevant:	It	has	been	suggested	that	there	

are	consistent	phase	relationships	among	rhythmic	cortical	signals,	organized	in	sparse	traveling	

waves	that	could	facilitate	sequences	of	activation	in	proximal-to-distal	muscle	representations	in	

preparation	for	reaching	behavior	(Ermentrout	and	Kleinfeld,	2001;	Muller	et	al.,	2018).	We	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2019. ; https://doi.org/10.1101/636241doi: bioRxiv preprint 

https://doi.org/10.1101/636241
http://creativecommons.org/licenses/by-nc-nd/4.0/


explored	this	possibility	by	assessing	the	traveling	wave	characteristics	of	ECoG	signals	filtered	at	

individual	alpha-	and	beta-band	frequencies	and	examining	the	functional	relationship	of	those	

travelling	waves	with	neuronal	ensembles	generating	alpha	and	beta	rhythms.	

Visual	inspection	of	single-trial	filtered	activity	indicated	that	the	phase	of	alpha-	and	beta-

band	signals	varied	systematically	across	the	electrode	array	during	motor	imagery	(Figure	4A).	To	

quantitatively	verify	that	rhythmic	activity	spatially	progressed	as	traveling	waves	across	

sensorimotor	cortex,	we	estimated	spatial	gradients	of	instantaneous	rhythm	phase	computed	

using	the	Hilbert	transform	at	each	electrode	across	the	recording	array.	These	spatial	gradients	

represent	distance-weighted	phase	shifts	between	cortical	signals	at	neighboring	recording	

electrodes,	where	positive	phase	shifts	correspond	to	signals	that	have	covered	a	greater	distance	

along	the	unit	circle	and	thus	lead	the	oscillation.	To	test	whether	the	spatial	gradients	behaved	like	

propagating	waves	at	the	single-trial	level,	we	computed	the	phase-gradient	directionality	(PGD),	a	

measure	of	the	degree	of	phase-gradient	alignment	across	an	electrode	array	(Rubino	et	al.,	2006).	

As	seen	through	the	small	cone-shaped	arrows	positioned	over	each	corresponding	grid-electrode	

in	Figure	4A,	both	alpha	and	beta	phase	gradients	exhibited	a	higher	degree	of	alignment	across	

sensorimotor	cortex	than	expected	by	chance	(mean	alpha	PGD	=	0.37,	mean	beta	PGD	=	0.35,	p	<	

0.001	in	each	patient	for	both	alpha	and	beta,	estimated	from	shuffled	data).	The	traveling	waves	

moved	in	a	consistent	direction	across	trials	and	over	trial-time	(circular	histograms	in	Figure	4A;	

Rayleigh	test	of	uniformity,	p	<	10-18	in	5	out	of	6	patients	for	alpha,	p	<	10-91	in	each	patient	for	

beta).	Across	participants,	mean	propagation	speeds	of	the	sensorimotor	waves	ranged	between	5	

and	9	cm/s	for	alpha	and	between	11	and	21	cm/s	for	beta	(Figure	4B),	consistent	with	previous	

reports	of	traveling	beta	waves	in	motor	cortex	(Rubino	et	al.,	2006)	and	in	the	lower	range	of	

traveling	alpha	waves	observed	in	posterior	cortex	(Bahramisharif	et	al.,	2013;	Halgren	et	al.,	2017;	

Zhang	et	al.,	2018).	These	observations	corroborate	and	extend	previous	studies	by	showing	that	

both	alpha-	and	beta-band	rhythms	are	organized	in	waves	traveling	across	the	sensorimotor	

cortex	(Halgren	et	al.,	2017;	Takahashi	et	al.,	2015;	Zhang	et	al.,	2018).		

A	novel	finding	of	this	study	is	that	alpha	and	beta	traveling	waves	propagate	independently	

across	sensorimotor	cortex,	as	indicated	by	the	distribution	of	propagation	directions	in	individual	

participants	(Figure	4A,	Movies	S1,	S2)	and	by	the	mean	probability	distribution	over	participants	

(Figure	4C;	mean	Kullback-Leibler	divergence	=	0.10,	p	<	0.001	in	each	patient,	estimated	from	

shuffled	data).	Alpha	waves	propagated	in	a	caudo-rostral	direction,	while	beta	waves	advanced	in	

a	rostro-caudal	direction	(Figure	4C).	This	analysis	also	revealed	that	electrodes	sampling	alpha-	or	

beta-band	rhythms	with	larger	amplitudes	were	not	sources	or	sinks	of	the	alpha-	or	beta-traveling	
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waves:	Previously	identified	local	maxima	in	alpha-	and	beta-band	activity	did	not	have	a	

systematic	phase	advantage	or	delay	in	relation	to	other	electrodes	across	the	sensorimotor	cortex	

(Figure	4A).	Nevertheless,	traveling-wave-like	activity	at	these	cortical	sites	was	task-relevant,	as	

indicated	by	an	increase	in	directional	consistency	(DC)	of	those	waves	during	movement	imagery.	

Directional	consistency	measures	the	degree	of	consistency	across	trials	in	phase-gradient	

direction	(Zhang	et	al.,	2018).	As	seen	in	Figure	4D,	alpha	rhythms	propagated	in	a	more	consistent	

direction	during	imagined	movement	of	the	ipsilateral	hand,	while	the	propagation	direction	of	

beta	rhythms	became	more	consistent	during	imagined	movement	of	the	contralateral	hand,	as	

compared	to	baseline	levels.	Together,	these	observations	indicate	that	the	larger	spatiotemporal	

context	in	which	rhythmic	cortical	signals	are	embedded	constitute	an	important	component	of	

movement	selection,	and	that	this	spatiotemporal	organization	differs	for	alpha	and	beta	rhythms.				

	

	

Figure	4.	 Dissociation	 of	 sensorimotor	 alpha	 and	 beta	 traveling	waves.	 (A)	 Propagation	 of	 alpha	 and	 beta	

rhythmic	activity	during	imagined	movement	in	two	representative	individuals.	Example	cortical	signals	are	

of	 the	same	data	segment	 in	each	participant	but	 filtered	at	 individual	alpha	and	beta	 frequencies.	Red	and	

blue	markers	 indicate	 electrodes	 previously	 identified	 as	 alpha-	 and	 beta-band	 local	maxima,	 respectively.	

Cortical	 phase	 maps	 indicate	 the	 average	 phase	 at	 each	 cortical	 site	 relative	 to	 a	 central	 sensorimotor	

reference	electrode.	Small	cone-shaped	arrows	indicate	the	mean	propagation	direction	at	each	stimulation-
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positive	electrode,	with	arrow	size	weighted	by	the	local	phase	gradient	magnitude.	Large	arrows	indicate	the	

mean	 propagation	 direction	 across	 sensorimotor	 cortex,	 with	 arrow	 size	 weighted	 by	 the	 alignment	 of	

sensorimotor	gradients	(phase	gradient	directionality,	PGD).	(B)	Mean	propagation	speeds	of	traveling	alpha	

and	 beta	 waves	 over	 participants.	 (C)	 Mean	 probability	 distribution	 of	 traveling	 wave	 direction	 over	

participants.	Alpha	rhythm	propagation	is	maximal	in	a	caudo-rostral	direction	(red	distribution),	while	beta	

rhythms	 predominantly	 moved	 in	 a	 rostro-caudal	 direction	 (blue	 distribution).	 Dashed	 black	 circle	

represents	 a	 uniform	 distribution	 of	 propagation	 directions,	 for	 reference.	 (D)	 Alpha	 traveling	 waves	

propagated	more	consistently	through	alpha-band	local	maxima	during	imagined	movement	of	the	ipsilateral	

hand	 (directional	 consistency,	 DC).	 In	 contrast,	 beta	 waves	 traveled	more	 consistently	 through	 beta-band	

local	maxima	during	 imagined	movement	of	 the	 contralateral	 hand.	 Colored	bars	 along	 the	 x-axes	 indicate	

time	 intervals	 of	 statistically	 significant	 DC	 changes	 from	 baseline	 levels	 for	 the	 effector	 involved	 in	 the	

imagined	movement.	
	

Discussion	
This	ECoG	study	qualifies	the	spatiotemporal	dynamics	of	alpha-	and	beta-band	rhythms	

and	their	effects	on	the	local	excitability	of	sensorimotor	neuronal	ensembles	during	movement	

selection,	in	the	context	of	a	psychophysically-controlled	motor	imagery	task.	Rhythmic	signals	in	

the	alpha-	and	beta-band	were	prominent	in	the	patients’	sensorimotor	cortex,	sustained	across	

each	trial,	motorically	relevant,	and	organized	in	spatially	consistent	waves	of	phase	relationships	

traveling	along	opposite	directions.	In	line	with	previous	reports	(Brinkman	et	al.,	2014;	Crone	et	

al.,	1998;	de	Lange	et	al.,	2008;	Miller	et	al.,	2010),	this	study	shows	that	the	power	envelopes	of	

those	two	rhythms	differentiated	between	imagined	movements	involving	the	contralateral	or	the	

ipsilateral	hand.	This	study	also	confirms	historical	accounts	by	showing	that	alpha-	and	beta-band	

rhythms	arise	from	anatomically	and	functionally	distinct	neuronal	ensembles	(Berger,	1938;	

Jasper	and	Penfield,	1949;	Salmelin	and	Hari,	1994).	Local	maxima	of	alpha-band	power	were	

distributed	on	the	postcentral	gyrus,	and	electrical	stimulation	of	those	electrodes	yielded	

somatosensory	sensations	of	the	upper	limb.	Sensorimotor	beta	was	strongest	at	electrodes	placed	

over	the	central	sulcus,	with	electrical	stimulation	yielding	both	movements	and	somatosensory	

sensations.	This	study	provides	a	novel	piece	of	empirical	evidence	showing	that	sensorimotor	

alpha	and	beta	rhythms	have	different	neurophysiological	properties,	(dis)inhibiting	different	

sensorimotor	neuronal	ensembles	and	dissociable	functional	components	of	movement	selection.	

Namely,	beta	rhythmic	activity	closely	tracked	task-related	modulations	of	the	1/f	slope	of	the	

power-spectrum,	an	index	of	excitation-inhibition	balance	(Gao	et	al.,	2017).	The	relation	between	
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beta	and	1/f	slope	held	across	the	spatial	extent	of	the	sensorimotor	cortex,	and	within	trials	as	well	

as	across	trials.	When	the	1/f	slope	transiently	increased	in	somatomotor	cortex	during	movement	

imagery,	indicating	a	shift	in	balance	from	relative	inhibition	to	excitation,	beta	rhythmic	activity	

showed	a	focal	reduction	in	signal	strength.	These	findings	suggest	that	imagery-related	reduction	

in	beta-band	power,	predominant	over	the	somatomotor	cortex	contralateral	to	the	selected	arm,	is	

associated	with	a	relative	disinhibition	of	somatomotor	neuronal	populations.	This	beta-band	

movement-related	disinhibition	was	embedded	within	travelling	waves	moving	along	a	rostro-

caudal	direction	across	the	fronto-parietal	cortex.	There	was	also	a	relative	increase	in	alpha-band	

power	in	the	somatosensory	cortex	ipsilateral	to	the	selected	arm,	an	effect	that	was	associated	

with	a	spatially	unspecific	inhibition	of	the	sensorimotor	cortex.	This	alpha-band	inhibition	was	

embedded	within	travelling	waves	along	a	caudo-rostral	direction	across	the	parieto-frontal	cortex.	

We	draw	two	main	conclusions	from	these	human	neurophysiological	observations.	First,	the	

evidence	points	to	the	relevance	of	both	disinhibition	and	inhibition	mechanisms	for	precise	

spatiotemporal	coordination	of	movement-related	neuronal	populations.	Second,	the	evidence	

points	to	the	dramatically	different	neurophysiological	properties	of	sensorimotor	alpha	and	beta	

rhythms,	questioning	the	practice	of	aggregating	those	rhythms	when	studying	cerebral	function.	

These	findings	emphasize	how	increased	excitability	of	the	sensorimotor	cortex	goes	hand	

in	hand	with	increased	(and	spatially	widespread)	inhibition.	Speculatively,	the	spatiotemporal	

profile	of	increased	excitability	observed	in	the	contralateral	sensorimotor	cortex	might	support	

the	coordination	of	multiple	sensorimotor	cortical	ensembles	toward	a	movement-effective	neural	

subspace	(Elsayed	et	al.,	2016;	Shenoy	et	al.,	2013).	In	contrast,	the	spatially	unspecific	inhibition	of	

the	ipsilateral	sensorimotor	cortex	suggests	that	movement	selection	also	requires	suppression	of	

task-irrelevant	movements	and	in	particular	inhibition	of	their	somatosensory	correlates.	It	seems	

unlikely	that	this	inhibitory	effect	was	driven	by	somatosensory	attention	to	the	hand	used	during	

imagery,	since	there	were	no	lateralized	power	changes	in	the	prestimulus	baseline	period,	during	

which	participants	knew	which	hand	they	would	use.		

	

Interpretational	issues	

Previous	micro-ECoG	studies	in	non-human	primates	have	shown	systematic	phase	relationships	

between	motor	cortical	signals	less	than	a	millimeter	apart	(Rubino	et	al.,	2006;	Takahashi	et	al.,	

2015).	Here,	we	add	to	those	findings	by	showing	that	alpha-	and	beta-band	travelling	waves	

propagate	across	the	human	sensorimotor	cortex,	independently.	High-density	laminar	recordings	

of	alpha	and	beta	rhythmic	activity	might	be	able	to	test	whether	those	rhythms	propagate	through	
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different	cortical	layers	(van	Kerkoerle	et	al.,	2014).	Another	possibility	is	that	different	cortico-

thalamo-cortical	and	cortico-striatal-thalamo-cortical	circuits	lead	to	different	alpha	and	beta	

travelling	waves	across	the	sensorimotor	cortex	(Bastos	et	al.,	2014;	Schreckenberger	et	al.,	2004;	

West	et	al.,	2018).	The	latter	possibility	could	accommodate	the	observation	that	sources/sinks	of	

the	traveling	waves	were	independent	from	electrodes	sampling	rhythms	with	larger	amplitudes,	

and	that	there	were	no	obvious	phase-shifts	between	neighboring	electrodes	spanning	a	cortical	

fold.	Large-scale	corticothalamic	recordings	of	alpha	and	beta	waves	might	be	able	to	define	the	

precise	mechanisms	supporting	those	traveling	waves	over	human	sensorimotor	cortex	(Halgren	et	

al.,	2017).	

Alpha-	and	beta-band	rhythms	are	embedded	within	(but	physiologically	different	from)	

arrhythmic	broadband	1/f	components	of	the	signal,	and	their	spectral	distributions	differ	between	

individuals.	Supplementary	analyses	indicate	that	ignoring	those	facts,	as	standard	analytical	

pipelines	do,	led	to	strong	but	spurious	correlation	between	alpha	and	beta	power	envelopes.	

Furthermore,	the	spatial	differentiation	between	alpha-	and	beta-band	cortical	sources	might	prove	

too	subtle	for	many	non-invasive	electrophysiological	recordings	(Brinkman	et	al.,	2014).	These	

considerations	might	help	to	understand	why	those	two	sensorimotor	rhythms	are	often	

aggregated	into	the	same	(mu-)	rhythm	category	(Cuevas	et	al.,	2014;	Hari,	2006).	Having	shown	

that	those	two	rhythms	are	anatomically	and	functionally	distinct	phenomena,	it	becomes	relevant	

to	know	whether	alpha	and	beta	rhythms	can	also	be	systematically	differentiated	in	other	frontal	

brain	regions	(Bastos	et	al.,	2018;	Johnston	et	al.,	2019).	

	

Conclusions		

The	 current	 findings	 indicate	 that	 alpha-	 and	 beta-band	 rhythms,	 besides	 having	 different	

anatomical	 distributions	 and	 traveling	 along	 opposite	 directions	 across	 the	 sensorimotor	 cortex,	

have	 different	 effects	 on	 cortical	 excitability	 during	 movement	 selection.	 Increased	 rhythmic	

activity	in	the	alpha-band	supports	the	disengagement	of	somatosensory	cortical	regions	ipsilateral	

to	the	selected	arm,	whereas	a	reduction	in	beta-band	power	over	the	motor	cortex	contralateral	to	

the	 selected	 arm	 is	 associated	with	 a	 spatially-focal	 shift	 in	 excitation/inhibition	 balance	 toward	

excitation.	These	findings	increase	our	understanding	of	how	cortical	rhythms	can	mechanistically	

support	the	precise	spatiotemporal	organization	of	neuronal	ensembles	necessary	for	coordinating	

complex	movements	in	humans. 	
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Materials	and	methods	
Participants	

Eleven	 participants	 (7	 males,	 14	 -	 45	 y	 of	 age)	 were	 implanted	 subdurally	 with	 grid	 and	 strip	

electrode	arrays	on	 the	cortical	 surface	 to	 localize	 the	seizure	onset	zone	 for	subsequent	surgical	

resection	 (Figure	 1A).	 The	 electrode	 arrays	 (10	 mm	 inter-electrode	 spacing,	 2.3	 mm	 exposed	

diameter;	 Ad-Tech,	 Racine,	 USA)	 were	 placed	 at	 the	 University	 Medical	 Center	 Utrecht,	 The	

Netherlands,	on	either	right	or	 left	 (8	cases)	hemisphere.	The	number	and	anatomical	 location	of	

the	electrodes	varied	across	participants,	depending	on	the	clinical	considerations	specific	to	each	

case	 (mean	 number	 of	 electrodes	 ±	 SEM:	 81.3	 ±	 11.2).	 The	 sample-size	 was	 determined	 by	 the	

availability	of	participants	with	(partial)	electrode	coverage	of	the	central	sulcus	during	the	funding	

period	of	the	project	(four	years).	All	participants	had	normal	hearing	and	normal	vision,	and	gave	

informed	 consent	 according	 to	 institutional	 guidelines	 of	 the	 local	 ethics	 committee	 (Medical	

Ethical	Committee	of	the	University	Medical	Center	Utrecht),	in	accordance	with	the	declaration	of	

Helsinki.	 No	 seizures	 occurred	 during	 task	 administration.	 Two	 participants	 had	 difficulties	

adhering	 to	 the	 task	 instructions	 and	 frequently	 confused	 left	 and	 right	 hand	 conditions	 of	 the	

study.	 One	 of	 these	 participants	 had	 cavernous	 malformations	 in	 temporoparietal	 and	 frontal	

cortex.	 The	 other	 participant	 had	 experienced	medical	 complications	 prior	 to	 task	 performance,	

leaving	 nine	 participants	 for	 analysis	 of	 the	 behavioral	 data.	 Two	 participants	 had	 no	 electrode	

coverage	 of	 upper	 limb	 sensorimotor	 areas	 as	 indicated	 by	 electrocortical	 stimulation,	 leaving	

seven	participants	for	analysis	of	the	neural	data.	

	

Movement	imagery	task	

Participants	were	positioned	in	a	semi-recumbent	position	in	their	hospital	bed	and	performed	up	

to	three	sessions	of	a	movement	selection	task	(mean	number	of	sessions	±	SEM:	2	±	0.2).	 In	this	

task,	participants	imagined	grasping	the	middle-third	of	a	black-white	cylinder	with	either	their	left	

or	right	hand	(Figure	1B).	The	cylinder,	tilted	according	to	1	of	15	possible	orientations	(24°	apart,	

presented	pseudo-randomly,	size	17.5	x	3.5	cm),	was	presented	on	a	gray	background	at	the	center	

of	 the	 computer	 screen	 that	was	 placed	within	 reaching	 distance	 in	 front	 of	 the	 participant.	 The	

duration	for	which	the	cylinder	stayed	on	the	screen	was	adjusted	for	each	participant	(2	-	5	sec)	

such	that	they	could	comfortably	perform	the	task	at	a	pace	that	suited	their	current	physical	and	

mental	 state.	 Next,	 a	 response	 screen	 appeared	 where	 the	 participants	 indicated	 whether	 their	

thumb	was	on	the	black	or	the	white	part	of	the	cylinder	at	the	end	of	the	imagined	movement.	The	

response	screen	consisted	of	two	squares	on	the	horizontal	plane	(one	black	and	one	white),	where	
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participants	indicated	'black'	or	'white'	by	pressing	the	corresponding	button	(left	or	right	button)	

using	 the	 left	 or	 right	 thumb	 on	 a	 button	 box	 that	 they	 held	with	 both	 hands.	 The	 order	 of	 the	

squares	(black	 -	 left,	white	 -	 right,	or	vice	versa)	was	pseudo-random	across	 trials	 to	prevent	 the	

preparation	of	a	response	during	the	simulation	of	the	grasping	movements.	After	the	response,	a	

fixation	 cross	 appeared	 on	 the	 screen	 for	 3	 to	 4	 seconds	 (drawn	 randomly	 from	 a	 uniform	

distribution),	after	which	the	next	trial	started	(intertrial	interval).	A	single	session	consisted	of	60	

trials	(10	minutes).	The	hand	used	to	imagine	the	movement	alternated	every	10	trials,	prompted	

by	 a	 visual	 cue.	 The	 task	 exploited	 the	 fact	 that	 certain	 cylinder	 orientations	 afforded	 both	

overhand	 and	 underhand	 grasping,	 whereas	 other	 orientations	 afforded	 grasping	 in	 a	 single	

manner	 only,	 due	 to	 biomechanical	 constraints	 of	 the	 hand	 (Figure	 1C).	 This	 task	 manipulation	

provided	 a	 test	 of	 participants’	 imagery	 performance	 as	 to	 whether	 their	 preferred	 manner	 for	

grasping	the	cylinder	(thumb	on	black	or	white	part)	was	modulated	by	biomechanical	constraints,	

varying	as	a	function	of	cylinder	orientation	and	differently	for	the	left	and	right	hand.	

Eight	out	of	nine	participants	whose	behavioral	data	are	reported	(5	out	of	6	participants	

whose	 neural	 data	 are	 reported),	 completed	 a	 control	 task	 that	 used	 the	 same	 visual	 input	 and	

response	 contingencies,	 but	 where	 no	 imagery	 was	 required.	 In	 the	 control	 task,	 participants	

reported	 which	 side	 of	 the	 black-white	 cylinder	 was	 larger.	 That	 is,	 the	 surface	 areas	 differed	

slightly	 across	 trials,	 e.g.,	 54%	 black	 and	 46%	white,	 or	 vice	 versa.	 This	 allowed	 controlling	 for	

neural	changes	unrelated	to	the	movement	imagery	process,	such	as	those	evoked	by	visual	input	

during	task	performance.		

	

ECoG	acquisition	and	analysis	

Electrophysiological	 data	 were	 acquired	 using	 the	 128-channel	 Micromed	 recording	 system	

(Treviso,	Italy,	22	bits),	analog-filtered	between	0.15	and	134.4	Hz,	and	digitally	sampled	at	512	Hz.	

During	 the	 recordings,	 participants	 were	 closely	 monitored	 for	 overt	 movements	 or	 distracting	

events.	Epochs	were	these	occurred	were	excluded	from	the	analysis	(6	±	2%	of	the	total	amount	of	

trials).	 Anatomical	 images	 were	 acquired	 using	 preoperative	 T1-weighted	 Magnetic	 Resonance	

Imaging	 (MRI,	 Philips	 3T	 Achieva;	 Best,	 The	 Netherlands)	 and	 post-implantation	 Computerized	

Tomography	(CT,	Philips	Tomoscan	SR7000).	

Data	 were	 analyzed	 using	 the	 open-source	 FieldTrip	 toolbox	 (Oostenveld	 et	 al.,	 2011),	

performing	an	integrated	analysis	of	anatomical	and	electrophysiological	human	intracranial	data.	

The	 procedure	 for	 the	 precise	 anatomical	 registration	 of	 the	 electrophysiological	 signal	 in	 each	

patient	is	described	in	detail	elsewhere	(Stolk	et	al.,	2018).	In	brief,	electrode	locations	in	relation	to	
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the	brain's	anatomy	and	the	electrophysiological	signal	were	obtained	through	identification	of	the	

electrodes	 in	 a	 post-implantation	 CT	 fused	 with	 the	 preoperative	 MRI.	 To	 correct	 for	 any	

displacement	 following	 implantation,	 the	 electrodes	 were	 projected	 to	 individually	 rendered	

neocortical	surfaces	along	the	local	norm	vector	of	the	electrode	grid	(Hermes	et	al.,	2010).	We	used	

FreeSurfer	to	extract	anatomically	realistic	neocortical	surfaces	from	each	participant's	MRI	(Dale	

et	al.,	1999).	FreeSurfer	also	allows	registering	the	surfaces	to	a	template	brain	on	the	basis	of	their	

cortical	 gyrification	patterns	 (Greve	et	 al.,	 2013).	Using	 these	 surface	 registrations,	we	 linked	 the	

electrodes	 from	 all	 participants	 to	 their	 template	 homologs,	 preserving	 the	 spatial	 relationship	

between	cortical	folding	and	electrode	positions	in	each	participant.	This	allowed	for	anatomically	

accurate	comparison	of	local	maxima	in	neural	activity	across	participants.	

The	 electrophysiological	 signals	were	 visually	 inspected	 to	 ensure	 that	 they	were	 free	 of	

epileptic	activity	or	other	artifacts	 (2	±	2%	of	 the	 total	amount	of	 trials	excluded).	Next,	 the	data	

were	 digitally	 filtered	 (1	 -	 200	 Hz	 band	 pass,	 Butterworth,	 zero-phase	 forward	 and	 reverse),	

removed	from	power	line	noise	components	(50	Hz	and	harmonic	band	stop),	and	re-referenced	to	

the	 common	 average	 of	 all	 channels	 to	 remove	 global	 noise	 shared	 across	 all	 channels	 from	 the	

potential	in	each	channel.	We	focused	the	analysis	on	the	trial	epochs	during	which	the	participants	

selected	and	imagined	a	movement,	preceded	by	the	appearance	of	the	black-white	cylinder.	Using	

time-resolved	Fourier	analysis,	we	calculated	spectral	power	with	1000	ms	rolling	Hanning-tapered	

windows	at	50	ms	increments.	This	produced	time-frequency	estimates	up	to	200	Hz	with	a	1	Hz	

spectral	 and	 a	 20	 Hz	 temporal	 resolution.	 Inter-session	 offsets	 in	 absolute	 spectral	 power	 were	

compensated	 for	 using	 linear	 regression	 analysis	 considering	 mean	 power	 across	 all	 time-

frequency	estimates	in	a	session.	For	temporal	dynamics	analysis,	the	spectral	data	were	expressed	

as	percentage	changes	from	bootstrapped	spectral	power	during	a	pre-cylinder	baseline	interval	(-

750	 to	 -500	ms	 to	cylinder	onset)	and	resampled	 to	 identical	duration	across	participants	 (2	sec,	

after	anti-aliasing).	Differences	in	spectral	power	between	the	left	and	right	hand	conditions	were	

evaluated	using	nonparametric	cluster-based	permutation	statistics	(two-sided	dependent	samples	

t-tests,	 p	 <	 0.05,	 10,000	 randomizations	 (Maris	 and	 Oostenveld,	 2007)),	 considering	 electrodes	

containing	local	maxima	in	neural	activity	as	the	unit	of	observation.	

	

Spectral	features	extraction	from	sensorimotor	cortex	

Alpha	and	beta	spectral	and	anatomical	distributions	were	defined	on	a	participant-by-participant	

basis,	 using	 a	 four-step	 procedure.	 First,	 electrodes	 covering	 cortical	 regions	 supporting	

sensorimotor	components	of	movement	were	identified	using	Electrocortical	Stimulation	Mapping	
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(ESM,	 Micromed	 IRES	 600CH),	 a	 standard	 clinical	 practice	 involving	 the	 pairwise	 electrical	

stimulation	of	adjacent	cortical	electrodes	(typically	at	50	Hz	for	1	-	2	sec,	with	a	0.2	-	0.5	ms	pulse	

duration	and	1	-	4	mA	intensity).	Intensity	of	the	stimulation	was	individually	tailored,	maximizing	

effect	 size	while	minimizing	 the	occurrence	of	 after-discharges.	 For	 each	participant,	we	 selected	

electrodes	 that	 were	 part	 of	 a	 stimulation	 electrode	 pair	 yielding	 motor	 or	 somatosensory	

responses	 of	 the	 upper	 limb	 contralateral	 to	 the	 cortical	 grid	 (twitches,	 movements,	 tingling	 of	

either	fingers,	hand,	wrist,	arm	or	shoulder).	

											Second,	we	used	irregular-resampling	auto-spectral	analysis	(IRASA,	(Wen	and	Liu,	2015))	of	

the	signal	recorded	at	the	stimulation-positive	electrodes,	allowing	distinguishing	rhythmic	activity	

from	concurrent	power-spectral	1/f	modulations.	This	technique	virtually	compresses	and	expands	

the	time-domain	data	with	a	set	of	non-integer	resampling	factors	prior	to	Fourier-based	spectral	

decomposition,	 redistributing	 rhythmic	 components	 in	 the	 power-spectrum	 while	 leaving	 the	

arrhythmic	 1/f	distribution	 intact.	 Taking	 the	median	 of	 the	 resulting	 auto-spectral	 distributions	

extracts	the	power-spectral	1/f	component,	and	the	subsequent	removal	of	the	1/f	component	from	

the	original	power-spectrum	offers	a	power-spectral	estimate	of	rhythmic	content	in	the	recorded	

signal.	 It	 should	 be	 noted	 that	 the	 extracted	 spectral	 components	 no	 longer	 contain	 phase	

information	 and	 that	 their	 estimated	 magnitudes	 are	 susceptible	 to	 any	 phase	 relationships	

between	 the	 two	components,	 as	 indicated	by	Equation	9	 in	 the	original	paper	 (cf.	 two	opposite-

phase	oscillations	 cancelling	out	one	another	 in	 the	 summed	signal).	As	a	 consequence,	power	 in	

the	rhythmic	component	 is	negative	at	 frequencies	where	 the	arrhythmic	1/f	component	exceeds	

power	of	the	original	power-spectrum.	In	cases	where	this	happened	(never	at	spectral	peaks),	we	

set	power	to	zero	to	accommodate	spectral	curve	fitting	with	exponential	models	in	the	next	step.	

Third,	mean	and	full-width	at	half-maximum	of	alpha	and	beta	spectral	distributions	were	

defined	 for	 each	 participant	 using	 a	 two-term	 or	 three-term	 Gaussian	 model,	 depending	 on	 the	

presence	of	a	third	low-frequency	phenomenon	in	the	rhythmic	component	of	the	power-spectrum	

(<5	 Hz	 in	 two	 subjects,	 see	 power-spectra	 in	 Figure	 S1).	 This	 adaptive	 approach	 (Supplemental	

Data)	avoids	having	to	rely	on	canonical	frequency	bands	that	due	in	part	to	their	narrowness	may	

not	accurately	capture	 the	neural	phenomena	of	 interest	 in	each	 individual	(Haegens	et	al.,	2014;	

Szurhaj	et	al.,	2003).	On	average,	alpha	and	beta	rhythmic	activity	were	centered	on	7.4	±	0.7	and	

16.9	±	1.1	Hz,	respectively.	High-frequency	neural	activity	was	defined	as	activity	within	a	broad	60	

-	120	Hz	range	(Lachaux	et	al.,	2012).	Because	of	its	hypothesized	relationship	with	non-oscillatory	

population-level	 firing	 rate	 (Manning	 et	 al.,	 2009;	 Ray	 and	Maunsell,	 2011),	 we	 estimated	 high-

frequency	activity	using	 the	arrhythmic	1/f	component	obtained	above	(see	also	Figure	S4	 for	an	
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empirical	argument).	We	additionally	considered	the	slope	of	the	arrhythmic	1/f	component,	in	log-

log	 space.	 Computational	 modeling	 and	 local	 field	 potential	 recordings	 from	 rat	 hippocampus	

suggest	 that	 the	 slope	 between	 30	 and	 50	 Hz	 is	 a	 power-spectral	 correlate	 of	 synaptic	

excitation/inhibition	 balance,	 such	 that	 a	 steeper	 slope	 corresponds	 to	 greater	 inhibition	 in	 a	

neuronal	ensemble	measured	by	the	recording	electrode.	Notably,	electrocorticography	recordings	

in	the	non-human	primate	brain	indicate	that	the	1/f	slope	tracks	the	increase	of	inhibition	induced	

by	propofol	across	space	and	time	(Gao	et	al.,	2017).	We	here	assessed	this	measure's	potential	for	

capturing	movement	initiation	and	suppression	in	human	sensorimotor	cortex.	

Fourth,	 for	 a	 fine-grained	 anatomical	 characterization,	we	 localized	 all	 four	 sensorimotor	

neuronal	phenomena	(alpha	and	beta	rhythmic	activity,	high-frequency	arrhythmic	activity,	and	the	

1/f	slope)	by	selecting	electrodes	that	exceeded	the	upper	limit	of	the	99%	confidence	interval	for	

absolute	spectral	power	in	the	respective	frequency	band	across	all	stimulation-positive	electrodes	

defined	by	the	first	step	(for	the	1/f	slope	we	used	the	lower	limit	of	the	confidence	interval).	This	

analysis	yielded	4	±	1.2	alpha,	3.4	±	0.8	beta,	4.4	±	0.7	high-frequency,	and	5.6	±	1.4	1/f	slope	local	

maxima	 in	sensorimotor	cortex	 for	participants	S1	 -	5.	Due	 to	 limited	sensorimotor	coverage,	 the	

number	of	electrodes	could	not	be	narrowed	down	for	participant	S6,	and	all	4	stimulation-positive	

electrodes	were	considered	for	further	analysis	involving	temporal	dynamics.	Participant	S7	lacked	

a	rhythmic	power-spectral	component	in	the	alpha	frequency	range	and	was	excluded	from	further	

analysis.	

We	 used	 chi-squared	 tests	 of	 electrode	 anatomical	 location	 and	 electrical	 stimulation	

response	 type	 to	 assess	 differential	 basic	 sensorimotor	 properties	 of	 alpha	 and	 beta	 rhythms.	

Anatomical	location	was	defined	as	the	electrode's	spatial	relationship	to	the	central	sulcus	(pre	vs.	

post	 central	 sulcus),	 and	 response	 type	 as	 the	 sensorimotor	 nature	 of	 the	 evoked	 response	

following	electrical	stimulation	(motor	response	vs.	somatosensory	sensation).	

	

Spatiotemporal	relations	between	spectral	features	

To	 assess	 whether	 sensorimotor	 alpha,	 beta,	 high-frequency	 activity	 and	 the	 1/f	 slope	 shared	

features	 during	 task	 performance,	 we	 performed	 a	 correlation	 analysis	 of	 their	 activity	 patterns	

across	 time,	 space,	 as	well	 as	 time	and	 space	 combined.	 First,	within-trial	 correlations	of	 activity	

dynamics	between	 -750	and	2000	ms	 (relative	 to	 the	onset	of	 the	visual	 stimulus)	quantified	 the	

temporal	similarity	between	the	four	spectral	features.	These	temporal	correlations	considered,	for	

each	participant,	mean	activity	across	local	maxima	of	each	spectral	feature	(as	identified	with	the	

procedure	described	above).	Each	pair	of	spectral	features	produced	a	single	correlation	value	per	
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trial.	 Second,	 a	 similar	 procedure	 was	 used	 to	 assess	 whether	 those	 spectral	 features	 involved	

spatially	 overlapping	 or	 distinct	 neuronal	 ensembles	 across	 sensorimotor	 cortex.	We	 considered	

within-trial	 correlations	 of	 cortical	 activity	 patterns	 across	 stimulation-positive	 electrodes.	 In	

contrast	 to	 temporal	 correlation,	 spatial	 correlation	 considered	 the	 mean	 activity	 per	 electrode	

within	a	trial	(converted	into	a	vector),	from	visual	stimulus	presentation	onset	until	the	end	of	the	

movement	imagery	interval	(0	to	2000	ms).	A	third	correlation	analysis	quantified	the	similarity	of	

spatiotemporal	 activity	 patterns	 across	 all	 stimulation-positive	 electrodes	 during	 a	 trial	 (-750	 to	

2000	ms).	Group-level	analysis	 considered	 the	average	correlation	 in	each	participant,	where	 the	

reliability	 of	 these	 correlations	 across	 the	 sample	 population	 was	 assessed	 using	 one-sample	 t-

tests.			

To	assess	whether	the	different	neural	phenomena	were	sensitive	to	the	same	sensorimotor	

demands	 across	 individual	 movements,	 we	 performed	 representational	 similarity	 analysis	 on	

temporal,	spatial,	and	spatiotemporal	activity	patterns	(Kriegeskorte,	2008).	Instead	of	calculating	

correlations	 between	 the	 neural	 phenomena	 directly,	 this	 approach	 calculates	 the	 similarity	 in	

activity	patterns	between	all	possible	trial	combinations,	resulting	in	a	neural	similarity	matrix	for	

each	phenomenon	with	as	many	rows	and	columns	as	 there	are	 trials.	Given	 that	 the	bottom-left	

and	 top-right	 entries	 are	 identical	 in	 these	 matrices,	 we	 extracted	 only	 the	 top	 right	 entries	

excluding	 the	 diagonals	 containing	 auto-correlations,	 and	 converted	 these	 entries	 into	 vectors.	

Next,	 second-order	 (Spearman)	 correlations	 of	 these	 trial-by-trial	 representational	 similarity	

vectors	quantified	the	similarity	in	sensitivity	to	sensorimotor	demands	between	all	combinations	

of	neural	phenomena.	This	approach	abstracts	away	from	the	activity	patterns	themselves	such	that	

similarities	 in	 sensitivity	 to	 sensorimotor	 demands	 across	 different	 movements	 between	

temporally	 or	 spatially	 non-overlapping	 neural	 phenomena	 can	 still	 be	 revealed.	 As	 above,	 the	

reliability	 of	 these	 representational	 similarities	 across	 the	 sample	population	was	 assessed	using	

one-sample	t-tests.	

	

Traveling	wave	analysis	

Alpha	 and	 beta	 traveling	 waves	 were	 identified	 as	 cortical	 signals	 showing	 systematic	 phase	

variation	 across	 the	 electrode	 array	 (Ermentrout	 and	 Kleinfeld,	 2001;	 Muller	 et	 al.,	 2018).	 We	

filtered	 the	 time-domain	 data	 with	 a	 two-pass	 third-order	 zero-phase	 shift	 Butterworth	 at	

individual	 alpha	 and	 beta	 frequency	 ranges	 determined	 using	 the	 four-step	 procedure	 outlined	

above.	We	 applied	 the	Hilbert	 transform	 to	 extract	 the	 instantaneous	phase	 of	 ongoing	 rhythmic	

activity	at	each	electrode	and	estimated	for	each	instance	of	time	(every	~2	ms)	the	spatial	phase	
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gradient	 across	 the	 recording	 array.	 These	 spatial	 gradients	 represent	 distance-weighted	 phase	

shifts	 between	 cortical	 signals	 at	 neighboring	 recording	 electrodes,	 where	 positive	 phase	 shifts	

correspond	to	signals	 that	have	covered	a	greater	distance	along	the	unit	circle	and	thus	 lead	the	

oscillation	 (Berens,	 2009).	 To	 quantify	 traveling	wave	 direction	 and	 velocities	 along	 the	 cortical	

sheet,	we	projected	and	interpolated	the	phase	data	onto	a	two-dimensional	plane	defined	by	the	

first	 two	 principal	 axes	 of	 the	 electrode	 array.	 This	 approach	 facilitates	 visualization	 and	

interpretation	of	 the	subsequent	gradient	data	and	allows	aggregating	non-equidistant	electrodes	

from	adjacent	 grid	 and	 strip	 arrays.	Wave	directionality	was	 then	 found	by	 calculating	 the	 angle	

between	 spatial	 gradients	 estimated	 in	 both	 principal	 directions	 (1	 cm	 in	 each	 direction).	Wave	

velocity	was	found	by	the	ratio	between	the	mean	frequency	of	the	rhythm	and	gradient	magnitude.	

To	visualize	the	spatial	progression	of	rhythmic	activity	across	the	electrode	array,	we	subtracted	

the	 phase	 value	 of	 a	 central	 sensorimotor	 reference	 electrode	 at	 that	 time	 before	 averaging.	We	

visualized	 the	 sample	 mean	 traveling	 wave	 direction	 by	 projecting	 and	 averaging	 over	 each	

participant’s	probability	distribution	of	traveling	wave	directions	onto	the	brain	sagittal	plane.	

	 To	 assess	whether	 the	 sensorimotor	 spatial	 gradients	 behaved	 like	 propagating	waves	 at	

the	single-trial	 level,	we	computed	 the	phase-gradient	directionality	 (PGD)	across	all	 stimulation-

positive	 electrodes.	 PGD	 measures	 the	 degree	 of	 phase	 gradient	 alignment	 across	 an	 electrode	

array,	taking	a	range	of	values	between	0	and	1,	and	is	found	by	the	ratio	between	the	norm	of	the	

mean	 spatial	 gradient	 and	 the	 mean	 gradient	 norm	 across	 the	 array	 (Rubino	 et	 al.,	 2006).	 We	

assessed	 the	reliability	of	 the	propagating	waves	by	 finding	 the	mean	PGD	across	 trials	and	 trial-

time,	 and	 then	 comparing	 this	 value	 with	 a	 distribution	 of	 PGDs	 estimated	 from	 randomly	

permuted	electrode	locations	within	the	array.	Rayleigh	tests	of	uniformity	were	used	to	determine	

whether	the	traveling	sensorimotor	waves	moved	 in	a	consistent	direction	across	 trials	and	trial-

time	 (Fisher,	1995).	To	assess	 the	consistency	of	wave	propagation	direction	at	a	given	 time	and	

electrode,	we	computed	the	directional	consistency	(DC).	DC	measures	the	degree	of	consistency	in	

phase	 gradient	 direction,	 taking	 a	 range	 of	 values	 between	 0	 and	 1,	 and	 is	 found	 by	 the	 mean	

resultant	vector	length	across	trials	(Zhang	et	al.,	2018).	
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Data	and	code	availability	

Analysis	 code	 for	 spectral	 features	extraction	 from	 the	electrophysiological	data	are	published	as	

supplementary	data.	
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Supporting	Information	

	

	
Supplemental	Figure	1.	As	in	Figure	2A-C,	for	seven	individuals	with	sensorimotor	coverage.	Participant	S7	

lacked	a	rhythmic	power-spectral	component	in	the	alpha	frequency	range	(around	8	-	12	Hz;	see	bottom	left	

power-spectrum	in	A),	and	was	excluded	from	further	analysis.	
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Supplemental	 Figure	 2.	 Single-trial	

broadband/unfiltered	 cortical	 signals	

from	alpha-	and	beta-band	local	maxima	

(highlighted	 red	 and	 blue	 electrodes,	

respectively)	 in	 two	 representative	

individuals.	 It	 can	 be	 seen	 that	 the	

group-level	 power	 dynamics	 in	 Figure	

2E,	 showing	 attenuated	 beta	 rhythmic	

activity	 in	 contralateral	 somatomotor	

cortex	 and	 enhanced	 alpha	 rhythmic	

activity	 in	 ipsilateral	 somatosensory	

cortex	 during	 movement	 imagery,	 are	

preserved	 on	 the	 single-trial	 level	 of	

individuals.	 Further	 note	 that	 both	

rhythm	 types	 are	 sustained	 for	 many	

cycles.	

	

	

	

	

	
Supplemental	Figure	3.	As	 in	Figure	3A-C,	but	without	accounting	 for	shared	variance	 in	alpha-	and	beta-

band	 frequency	bands	originating	 from	 concurrent	1/f	modulations	 in	 the	power-spectrum.	 It	 can	be	 seen	

from	the	leftmost	bars	in	these	figures	that	without	the	separation	of	rhythmic	and	arrhythmic	activity	in	the	

power-spectrum,	alpha-	and	beta-band	rhythms	appear	temporally	and	spatially	correlated.	
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Supplemental	Figure	4.	As	in	Figure	3A-C,	but	with	high-frequency	activity	and	the	1/f	slope	index	based	on	

the	 rhythmic	 component	 rather	 than	on	 the	 arrhythmic	 component	 of	 the	power-spectrum.	 It	 can	be	 seen	

that	 interactions	 involving	 low-frequency	 phenomena	 (alpha-	 and	 beta-band	 rhythmic	 activity)	 and	 local	

excitability	 metrics	 (high-frequency	 activity	 and	 the	 1/f	 slope)	 are	 substantially	 weaker	 compared	 to	 the	

original	 correlations	 shown	 in	 Figure	 3,	 despite	 that	 all	 spectral	 features	 are	 based	 on	 the	 same	 rhythmic	

component	of	the	power-spectrum.	

	

Supplemental	Analyses.	Several	control	analyses	were	performed	to	 test	 for	alternative	 interpretations	of	

the	findings	obtained	with	the	IRASA	technique	and	the	1/f	slope	index.	First,	the	main	analysis	considering	

spectral	features	obtained	using	the	IRASA	technique	revealed	uncorrelated	alpha	and	beta	rhythmic	activity	

in	 sensorimotor	 cortex.	We	 performed	 an	 additional	 analysis	 testing	whether	 power	 in	 the	 two	 frequency	

bands	is	also	uncorrelated	when	broadband	1/f	components	of	the	signal	are	not	accounted	for,	i.e.	using	the	

original	 power-spectra.	 It	 can	 be	 seen	 from	 the	 leftmost	 bars	 in	 Figure	 S3	 that	 performing	 the	 same	

correlation	analysis	on	the	original	power-spectra	yielded	strong	temporal	and	spatial	correlations	between	

alpha-	and	beta-band	power.	This	observation	underscores	the	importance	of	accounting	for	shared	variance	

in	alpha	and	beta	power	envelopes	originating	 from	broadband	1/f	modulations.	Second,	 the	main	analysis	

investigating	the	influence	of	rhythmic	activity	on	local	excitability	found	that	the	slope	of	the	arrhythmic	1/f	

component	had	a	differential	relationship	with	alpha	and	beta	rhythmic	activity	during	movement	imagery.	It	

could	be	argued	that	 the	relation	between	beta	rhythmic	activity	and	the	1/f	 slope	was	artificially	stronger	

because	of	the	beta-band	being	closer	than	the	alpha-band	to	the	30-50	Hz	band	of	the	power-spectrum	on	

which	the	1/f	 slope	 index	 is	based.	Accordingly,	we	performed	an	additional	analysis	grounded	on	the	 idea	

that	a	spurious	interaction	between	beta-band	power	and	the	steepness	of	the	1/f	slope	should	be	amplified	

when	both	spectral	 features	are	directly	based	on	 the	same	(rhythmic)	component	of	 the	power-spectrum,	

resulting	in	stronger	correlations.	As	can	be	seen	from	Figure	S4,	correlations	between	beta-band	power	and	

the	steepness	of	the	1/f	slope	were	substantially	reduced	with	both	features	based	on	the	same	component,	

compared	 to	 the	 original	 correlations	 shown	 in	 Figure	 3.	 This	 observation	 indicates	 that	 the	 reciprocal	

changes	 between	 beta	 rhythmic	 activity	 and	 the	 slope	 of	 the	 arrhythmic	 1/f	 component	 cannot	 be	 readily	

explained	by	a	spurious	relationship	between	these	two	spectral	features.	
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Supplemental	Movie	1.	 Time-lapse	movie	 of	 concurrent	 traveling	 alpha	 and	beta	waves	 in	 participant	 S1	

during	movement	imagery.	Cortical	phase	maps	indicate	the	average	phase	at	each	cortical	site	relative	to	a	

central	sensorimotor	reference	electrode.	Small	cone-shaped	arrows	indicate	the	mean	propagation	direction	

at	each	stimulation-positive	electrode,	with	arrow	size	weighted	by	the	local	phase	gradient	magnitude.	Large	

arrows	indicate	the	mean	propagation	direction	across	sensorimotor	cortex,	with	arrow	size	weighted	by	the	

alignment	of	 sensorimotor	gradients	 (phase	gradient	directionality,	PGD).	Time	 is	 in	seconds	after	cylinder	

appearance.	

	

Supplemental	Movie	2.	As	in	Movie	1,	for	participant	S2.	

	

Supplemental	Data.	Analysis	code	for	the	extraction	of	spectral	features	from	the	electrophysiological	signal.	
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