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Abstract: Apicomplexans are a diverse group of globally important parasites, that include 
pathogens like Plasmodium, the causative agent of malaria. Despite their current obligate parasitic 
nature, apicomplexans evolved from photosynthetic algae and retain a remnant plastid 
(chloroplast). Such a complex evolutionary transition was unexpected, but here we show that it 
occurred at least three times independently. Using single-cell genomics and transcriptomics from 25 
diverse uncultivated parasites, we find that two genera previously classified within the 
Apicomplexa, Piridium and Platyproteum, form separately branching lineages in phylogenomic 
analyses. Both retain cryptic plastids with genomic and metabolic features convergent with 
apicomplexans. These findings suggest a predilection in this lineage for both the loss of 
photosynthesis and the transition to a morphologically similar parasitic lifestyle, resulting in 30 
multiple lineages of highly convergent animal parasites. 
 
Main Text: The apicomplexans are a group of obligate animal pathogens that include Plasmodium 
(malaria), Toxoplasma (toxoplasmosis) and Cryptosporidium (cryptosporidiosis)(1). They are 
united by a complex and distinctive suite of cytoskeletal and secretory structures related to 35 
infection called the apical complex, which are used to recognize and gain entry into animal host 
cells. Apicomplexans are known to have evolved from free-living photosynthetic ancestors and 
retain a relict plastid (the apicoplast), which is non-photosynthetic, but houses a number of other 
essential metabolic pathways(2). The closest relatives of apicomplexans includes a mix of both 
photosynthetic algae (chromerids) as well as non-photosynthetic microbial predators 40 
(colpodellids)(3), and genomic analyses of these free-living relatives have revealed a great deal 
about how such a dramatic transition may have taken place, as well as how parasitism originates 
more generally(4). 
 
 45 
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Fig. 1: Phylogenomic tree of the Apicomplexa and relatives. Light micrographs of single-cell trophozoites are of 
A) H. caprellae (B) L. tuzatae (C) M. agilis (D) P. schizosoma and (E) Platyproteum sp. (scale bar = 50µm) (F) Light 
micrograph of a single-cell gamont of P.sociabile (scale bar = 15µm).(G) Maximum likelihood tree generated from 
an alignment comprising 198 genes and 58,116 sites under the C40+LG+G4+F substitution model with both non-
parametric bootstraps (n = 500) and posterior probabilities (PP) shown. Black circles represent 100% bootstrap support 50 
and 1.0 Bayesian PP, and all other support values are indicated beside the node. New transcriptomes are shown in 
bold lettering. The percentage of genes present in the phylogeny for each taxon are shown on the left and are shaded 
in black for newly sequenced transcriptomes. On the right are characters corresponding to each taxa. 
 

To gain a deeper understanding of the origin of parasitism in apicomplexans, we used 55 
single-cell sequencing to characterize the genomes and transcriptomes from a number of 
uncultivated parasites representing poorly-studied lineages of apicomplexans. Specifically, we 
generated transcriptome data from individual trophozoite cells of the gregarine apicomplexans 
Monocystis agilis, Lecudina tuzetae, Pterospora schizosoma, Heliospora capraellae, and 
Platyproteum sp., using single cells documented microscopically and manually isolated directly 60 
from their animal hosts (Fig. 1A-E). In addition, we generated both genomic and transcriptomic 
data from gamogonic stages of Piridium sociabile, an apicomplexan isolated from the foot tissue 
cells of the common whelk, Buccinum undatum, which inhabits marine waters (Fig. 1F). These 
gregarines represent subgroups of both marine (Pterospora, Heliospora, Lecudina and 
Platyproteum) and terrestrial (Monocystis) parasites, and the limited available molecular data 65 
(from small subunit (SSU) rRNA) are divergent but generally show them to be diverse, early-
branching apicomplexans (5–8). Platyproteum was the most recently described by detailed 
microscopy and molecular phylogenetic analyses using SSU rDNA sequences; these data suggest 
that it is a particularly deep-branching apicomplexan(9,10). Piridium sociabile is even more 
poorly-studied; found in 1932 as an intracellular infection and was morphologically classified as 70 
a schizogregarine (11).  

The relationships of these six taxa to the Apicomplexa were examined by phylogenomics 
using a concatenated alignment of 39 taxa and 189 nucleus-encoded proteins that have been 
previously used in in both eukaryote-wide and phylum-level phylogenies (12, 13). Their positions 
in the  75 
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Fig. 2: Plastid dependency in Piridium and Platyproteum has evolved convergently to apicomplexans. (A) 
Complete annotated plastid genome of P. sociabile. (B) Presence of plastid biosynthetic pathways across the tree of 
apicomplexans and chrompodellids. Portions of the circles represent the proteins found in each pathway found (key 80 
shown on right). Black circles indicate the presence of complete N-terminal bipartite plastid targeting peptides (only 
shown for newly added transcriptomes) (C) Plastid gene content of apicomplexans and Vitrella (free-living, 
photosynthetic) compared to Piridium.  
 
resulting tree are strongly and consistently resolved by both maximum likelihood (C40+LG+G4+F         85 
model) and Bayesian (CAT-GTR) analyses (Fig. 1G). Surprisingly, the phylogeny shows that 
neither Piridium or Platyproteum branch within the Apicomplexa. Instead, Piridium branches 
within the sister group to the Apicomplexa, the ‘chrompodellids’ (chromerids + colpodellids), with 
complete support as sister to the photosynthetic alga Vitrella brassicaformis. Platyproteum forms 
a new lineage, also with complete support, sister to the clade consisting of apicomplexans and 90 
chrompodellids collectively. The four more canonical gregarines (Monocystis, Lecudina, 
Pterospora and Heliospora) formed a monophyletic group of deep-branching apicomplexans that 
interestingly excludes Cryptosporidium. This robust phylogeny not only confirms that 
photosynthesis was lost multiple times independently around the origin of the Apicomplexa, but 
more surprisingly shows that the highly-derived mode of animal parasitism that is characteristic 95 
of the apicomplexa also arose multiple times independently. 

To further investigate the convergent evolution of parasitic lifestyles in Piridium and 
Platyproteum, we examined plastid retention and function, a well-studied trait of the Apicomplexa 
(2, 3). With both genomic and transcriptomic data from Piridium, we first assembled its complete 
plastid genome (Fig. 2A), which is strikingly similar in size, architecture, and gene content to 100 
apicoplast genomes (Fig. 2B). The Piridium plastid genome is a highly reduced compact circle 
(~34kb) with all remaining genes in perfectly synteny with homologues in its closest relative, the 
photosynthetic Vitrella. Similar to the apicoplast, it is extremely AT-rich (21% G+C content), and 
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uses a non-canonical genetic code where UGA encodes tryptophan (as seen in Chromera, 
Toxoplasma and Corallicola, but not in the more closely related Vitrella) (14, 15). It retains similar 105 
ribosomal genes as well as the same bacterial RNA polymerases (rpoB, rpoC1, rpoC2) and other 
protein-coding genes (sufA, clpC, tufA) as apicoplasts. It has also convergently lost all genes 
relating to photosynthesis, as well as rps18, rpl13, rpl27, secA and secY (Fig 2C). Reflecting its 
origin from a chrompodellid ancestor, the Piridium plastid also encodes a handful of genes that 
are present in Vitrella but absent from apicoplasts: rps14, rpl3, and rpoA. Curiously, only a partial 110 
rRNA inverted repeat remains in Piridium; this repeat is ancestral to all apicomplexans and 
chrompodellids, but has also similarly been lost in the piroplasm apicomplexans, Babesia and 
Theileria(16, 17). 

Apicomplexans depend on apicoplasts for essential biosynthesis of four compounds: 
isoprenoids (the MEP/DOXP pathway), heme, iron-sulfur (Fe-S) clusters, and fatty acids (the 115 
FASII pathway) (2). All apicomplexans rely on these pathways except piroplasms, which have lost 
the FASII pathway and use cytosolic FASI instead, and Cryptosporidium, which can salvage the 
metabolites from its host and has lost its plastid entirely (18, 19). We identified all enzymes from 
these pathways, and all enzymes for analogous and homologous cytosolic pathways using profile 
hidden Markov models (HMMs) and analyzed the resulting genes for evidence of distinctive N-120 
terminal bipartite plastid targeting peptides (Fig. 2B). It is impossible to conclude that any single 
gene is absent based on transcriptomic data alone, so only the absence of all genes for entire 
biochemical pathways is considered here. The dependency on plastid metabolism in Piridium is 
identical to most apicomplexans, with the retention of all four pathways but no photosystems or 
other known plastid functions. Platyproteum is similar, but has also lost the FASII pathway, and 125 
so more resembles the piroplasms (17,18). 

Interestingly, the same analysis on the clade of gregarines revealed a greater degree of 
variation from other apicomplexans than seen in the cryptic plastids that evolved in parallel. Like  
Cryptosporidium, the terrestrial gregarines Monocystis and Gregarina have completely lost all 
plastid metabolism and likely also lost the organelle (which also suggests that the phylogenetic 130 
relationship between Cryptosporidium terrestrial gregarines remains uncertain)(19,20). In 
contrast,  however, the marine gregarines Lecudina and Pterospora retain the complete FASII 
pathway, but no other identifiable plastid metabolism. This is the first evidence of a plastid in any 
gregarine and is also functionally curious since it is isoprenoid biosynthesis that has been proposed 
to be the main barrier to plastid loss(3). The gregarines suggest that plastid dependency is highly 135 
context-dependent. 

Looking beyond the plastid, metabolic reconstructions based on KEGG identifiers across 
the whole genome confirm an overall convergence of functional reduction, but also some 
divergence (Fig. 3). Both Piridium and Platyproteum have, as expected, substantially reduced their 
metabolic functions compared with free-living chrompodellids. However, neither is as reduced as 140 
apicomplexan parasites. In both cases a few core pathways such as the glyoxylate cycle and 
pyrimidine catabolism have been retained. Of the two, Piridium contains the greatest breadth of 
biosynthetic functions that were mostly lost in all other parasitic groups, such as de novo amino 
acid biosynthesis (isoleucine and arginine) and purine biosynthesis (inosine) and degradation. 
Surprisingly, however, the gregarine Monocystis agilis has also retained a greater metabolic 145 
capacity than other apicomplexans, revising the baseline metabolic complexity of the group as a 
whole. 

The origin of apicomplexan parasites from free-living photosynthetic alga represents a 
major evolutionary transition between two very different modes of living, so different in this case 
that the idea was originally met with considerable skepticism. The current data show that, however 150 
dramatic this transition may seem, it was not unique, but rather repeated at least three times in 
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related lineages of photosynthetic algae. The convergent forms of parasitism in Piridium,  
Platyproteum, and apicomplexans, suggest that the ancestors of these lineages maintained high 
levels of redundancy in metabolic pathways between compartments that persisted over long 
periods of evolutionary time, and apparently shared some predilection to animal parasitism. The 155 
underlying reason for this is not clear, since the evolution of apicomplexan parasitism is not linked 
to the acquisition of any novel feature or machinery, but is instead marked by loss and tinkering 
of the existing genomic repertoire.  
 
 160 

 
   Fig. 3: The distribution of cellular metabolic pathways across the tree of apicomplexans and chrompodellids. 
The list of metabolic pathways are shown on the right. Yellow represents presence and shades of blue indicate absence 
based on genomic data (dark blue), or absence based on transcriptomic data (lighter blue). Our newly sequenced 
transcriptomes are shown in bold lettering. Estimated gains and losses of genes (orthogroups) are shown on nodes and 165 
on the branches leading to each species. The pie charts show the percentage of genome or transcriptome completeness 
based on BUSCO scores. 
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