
Size and structure of the sequence space of repeat proteins

Jacopo Marchi,1 Ezequiel A. Galpern,2 Rocio Espada,3 Diego
U. Ferreiro,2 Aleksandra M. Walczak,1, 4 and Thierry Mora1, 4
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Abstract
The coding space of protein sequences is shaped by evolutionary constraints set by requirements of function and stability. We

show that the coding space of a given protein family —the total number of sequences in that family— can be estimated using
models of maximum entropy trained on multiple sequence alignments of naturally occuring amino acid sequences. We analyzed
and calculated the size of three abundant repeat proteins families, whose members are large proteins made of many repetitions
of conserved portions of ∼ 30 amino acids. While amino acid conservation at each position of the alignment explains most of
the reduction of diversity relative to completely random sequences, we found that correlations between amino acid usage at
different positions significantly impact that diversity. We quantified the impact of different types of correlations, functional
and evolutionary, on sequence diversity. Analysis of the detailed structure of the coding space of the families revealed a
rugged landscape, with many local energy minima of varying sizes with a hierarchical structure, reminiscent of fustrated energy
landscapes of spin glass in physics. This clustered structure indicates a multiplicity of subtypes within each family, and suggests
new strategies for protein design.

I. INTRODUCTION

Natural proteins contain a record of their evolution-
ary history, as selective pressure constrains their amino-
acid sequences to perform certain functions. However,
if we take all proteins found in nature, their sequence
appears to be random, without any apparent rules that
distinguish their sequences from arbitrary polypeptides.
Nonetheless, the volume of sequence space taken up by
existing proteins is very small compared to all possible
polypeptide strings of a given length [1]. Clearly, not all
variants are equally likely to survive [2, 3]. To better un-
derstand the structure of the space of natural proteins,
it is useful to group them into families of proteins with
similar fold, function, and sequence, believed to be under
a common selective pressure. Assuming that the ensem-
ble of protein families is equilibrated, there should ex-
ist a relationship between the conserved features of their
amino acid sequences and their function. This relation
can be extracted by examining statistics of amino-acid
composition, starting with single sites in multiple align-
ments (as provided by e.g. PFAM [4, 5]). More inter-
esting information can be extracted from covariation of
amino acid usages at pairs of positions [6–8] or using
machine-learning techniques [9]. Models of protein se-
quences based of pairwise covariations have been shown
to successfully predict pair-wise amino-acid contacts in
three dimensional structures [10–15], aid protein folding
algorithms [16, 17], and predict the effect of point muta-
tions [15, 18–20]. However, little is known on how these
identified amino-acid constraints affect the global size,

shape and structure of the sequence space. Accounting
for these questions is a first step towards drawing out
the possible and the realized evolutionary trajectories of
protein sequences [21, 22].

We use tools and concepts from the statistical mechan-
ics of disordered systems to study collective, protein-wide
effects and to understand how evolutionary constraints
shape the landscape of protein families. We go beyond
previous work which focused on local effects — pairwise
contacts between residues, effect of single amino-acid mu-
tations — to ask how amino-acid conservation and co-
variation restrict and shape the landscape of sequences
in a family. Specifically, we characterize the size of the
ensemble, defined as the effective number of sequences of
a familiy, as well as its detailed structure: is it made of
one block or divided into clusters of “basins”? These are
intrinsically collective properties that can not be assessed
locally.

Repeat proteins are excellent systems in which to quan-
tify these collective effects, as they combine both local
and global interactions. Repeat proteins are found as
domains or subdomains in a very large number of func-
tionally important proteins, in particular signaling pro-
teins (e.g. NF-κB, p16, Notch [23]). Usually they are
composed of tandem repetitions of ∼ 30 amino-acids
that fold into elongated architectures. Repeat proteins
have been divided into different families based on their
structural similarity. Here we consider three abundant
repeat protein families: ankyrin repeats (ANK), tetra-
tricopeptide repeats (TPR), leucine-rich repeat (LRR)
that fold into repetitive structures (see Fig. 1). In addi-
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FIG. 1. Repeat proteins fold into characteristic accordeon-like
folds. Example structures of three protein families are shown,
ankyrin repeats (ANK), tetratricopeptide repeats (TPR),
leucine-rich repeat (LRR), with the repeating unit highlighted
in magenta. All show regular folding patterns with defined
contacts in and between repeats.

tion to interactions between residues within one repeat,
repeat protein evolution is constrained by inter-repeat
interactions, which lead to the characteristic accordeon-
like folds. Through these separable types of constraints,
as well as the possibility of intra- and inter-familly com-
parisons, repeat proteins are perfect candidates to ask
questions about the origins and the effects of the con-
straints that globally shape the sequences.

A recent study [24] addressed the question of the total
number of sequences within a given protein family, focus-
ing on ten single-domain families. They took a similar
thermodynamic approach to the one followed here, but
had to estimate experimentally the free energy thresh-
old ∆G below which the sequences would fold prop-
erly. Here we overcome this limitation by forgoing this
threshold entirely. Instead we determine the sequence
entropy directly, which is argued to be equivalent to us-
ing a threshold free energy by virtue of the equivalence of
ensembles. We precisely quantify the sequence entropy
of three repeat-protein families for which detailed evolu-
tionary energetic fields are known [25]. We explore the
properties of the evolutionary landscape shaped by the
amino-acid frequency constraints and correlations. We
ask whether the energy landscape, defined in sequence
space of repeat proteins, is made of a single basin, or
rather of a multitude of basins connected by ridges and
passes, called “metastable states”, as would be expected
from spin-glass theory. Using the specific example of re-
peat proteins makes it possible to analyze the source of
the potential landscape ruggedness, and use it to identify
which repeat-protein families can be well separated into
subfamilies. The rich metastable state structure that we
find demonstrates the importance of interactions in shap-
ing the protein family ensemble.

II. RESULTS

A. Statistical models of repeat-protein families

We start by building statistical models for the three
repeat protein families presented in Fig. 1 (ANK, TPR,
LRR). These models give the probability P (σ) to find
in the family of interest a particular sequence σ =
(σ1, . . . , σ2L) for two consecutive repeats of size L. The
model is designed to be as random as possible, while
agreeing with key statistics of variation and co-variation
in a multiple sequence alignment of the protein family.
Specifically, P (σ) is obtained as the distribution of max-
imum entropy [26] which has the same amino-acid fre-
quencies at each position as in the alignment, as well as
the same joint frequencies of amino acid usage in each
pair of positions. Additionally, repeat proteins share
many amino acids between consecutive repeats, both due
to sharing a common ancestor and to evolutionary selec-
tion acting on the protein. To account for this special
property of repeat proteins, we require that the model re-

produces the distribution of overlaps ID =
∑L
i=1 δσi,σi+L

between consecutive repeats. Using the technique of La-
grange multipliers, the distribution can be shown to take
the form [15]:

P (σ) = (1/Z)e−E(σ), (1)

with

E(σ) = −
2L∑
i=1

hi(σi)−
2L∑
i,j=1

Jij(σi, σj) + λID , (2)

where hi(σ), Jij(σ, σ
′), and λID are adjustable Lagrange

multipliers that are fit to the data to reproduce the aver-
age observables (or to maximize the likelihood of the data
under the model, which is equivalent). We fit these pa-
rameters using a gradient ascent algorithm, as explained
in Sec. IV B. We tested the convergence of the model
learning by synthetically generating datasets and relearn-
ing the model (see Sec. IV E).

By analogy with Boltmzan’s law, we call E(σ) a statis-
tical energy, which is in general distinct from any physical
energy. The particular form of the energy (2) resembles
that of a disordered Potts model. This mathematical
equivalence allows for the possibility to study effects that
are characteristic of disordered systems, such as frustra-
tion or the existence of an energy landscape with multiple
valleys, as we will discuss in the next sections.

Eq. 2 is the most constrained form of the model, which
we will denote by Efull(σ). One can explore the impact
of each constraint on the energy landscape by removing
them from the model. For instance, to study the role of
inter-repeat sequence similarity due to a common evolu-
tionary origin, one can fit the model without the con-
straint on repeat overlap ID, i.e. without the λID term
in Eq. 2. We call the corresponding energy function E2.
One can further remove constraints on pairwise positions
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that are not part of the same repeat, making the two
consecutive repeats statistically independent and impos-
ing hi = hi+33 (Eir), or only linked through phylogenic
conservation through λID (Eir,λ). Finally one can remove
all interaction constraints to make all positions indepen-
dent of each other (E1), or even remove all constraints
(Erand ≡ 0).

B. Statistical energy vs unfolding energy

The evolutionary information contained in multiple se-
quence alignments of protein families is summarized in
our model by the energy function E(σ). Since this in-
formation is often much easier to access than structural
or functional information, there is great interest in ex-
tracting functional or structural properties from multiple
sequence alignments, provided that there exists a clear
quantitative relationship between statistical energy and
physical energy.

Such a relationship was determined experimentally for
repeat proteins by using E(σ) to predict the effect of
point mutations on the folding stability measured by the
free energy difference between the folded and unfolded
states, ∆G, called the unfolding energy [15, 18]. Here, ex-
tending an argument already developed in previous work
[27–30], we show how this correspondance between sta-
tistical likelihood and folding stability arises in a simple
model of evolution.

Evolutionary theory predicts that the prevalence of a
particular genotype σ, i.e. the probability of finding it in
a population, is related to its fitness F (σ). In the limit
where mutations affecting the protein are rare compared
to the time it takes for mutations to spread through the
population, Kimura [31] showed that the probability of a
mutation giving a fitness advantage (or disadvantage de-
pending on the sign) ∆F over its ancestor will fix in the
population with probability 2∆F/(1 − e−2N∆F ), where
N is the effective population size. The dynamics of suc-
cessful substitution satisfies detailed balance [32], with
the steady state probability

P (σ) = (1/Z)e2NF (σ). (3)

Again, one may recognize a formal analogy with Boltz-
mann’s distribution, where F plays the role of a negative
energy, and N an inverse temperature. If we now assume
that fitness is determined by the unfolding free energy
∆G, F (σ) = f(∆G(σ)), then the distribution of geno-
types we expect to observe in a population is

P (σ) = (1/Z)e2Nf(∆G(σ)). (4)

Note that a similar relation should hold even if we re-
lax the hypotheses of the evolutionary model. While in
more general contexts (e.g. high mutation rate, recombi-
nation), the relation between lnP (σ) and F (σ) may not
be linear, such nonlinearities could be subsumed into the
function f .

Identifying terms in the two expressions (1) and (3),
we obtain a relation between the statistical energy E,
and the unfolding free energy ∆G:

E(σ) = −2Nf(∆G(σ)). (5)

For instance, if we assume a linear relation between fit-
ness and ∆G, f(∆G) = A + B∆G, then we get a linear
relationship between the statistical energy and ∆G, as
was found empirically for repeat proteins [15].

Strikingly, the relationship f does not have to be linear
or even smooth for this correspondance to work. Imag-
ine a more stringent selection model, where f(∆G) is
a threshold function, f(∆G) = 0 for ∆G > ∆Gsel and
−∞ otherwise (lethal). In that case the probability dis-
tribution is P (σ) = (1/Z)Θ(∆G − ∆Gsel), where Θ(x)
is Heaviside’s function. Using a saddle-point approxi-
mation, one can show that tn the thermodynamic limit
(long proteins, or large L) the distribution concentrates
at the border ∆Gsel, and is equivalent to a “canonical”
description [27, 28, 30]:

Psel(σ) = (1/Z)e∆G(σ)/Tsel , (6)

where the “temperature” Tsel is set to match the mean
∆G between the two descriptions:

〈∆G〉Tsel
= ∆Gsel. (7)

This correspondance is mathematically similar to the
equivalence between the micro-canonical and canonical
ensembles in statistical mechanics.

Statistical energy and unfolding free energy are linearly
related by equating (Eq. 1) and (Eq. 6):

E(σ) = E0 −∆G(σ)/Tsel, (8)

despite f being nonlinear. Eq. 8 is in fact very general
and should hold for any f in the thermodynamic limit.

C. Equivalence between two definitions of en-
tropies

There are several ways to define the diversity of a pro-
tein family. The most intuitive one, followed by [24], is
to count the total number of amino acid sequences that
have an unfolding free energy ∆Gsel above a threshold
∆Gsel [33]. This number naturally defines a Boltzmann
entropy,

S = lnN (σ : ∆G(σ) > ∆Gsel). (9)

Alternatively, starting from a statistical model P (σ), one
can calculate its Shannon entropy, defined as

S = −
∑
σ
P (σ) lnP (σ), (10)

as was done in Ref. [25]. What is the relation between
these two definitions?
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family 2L Srand S1 S2 Sfull Sir Sir,λ

ANK 66 290 181 ± 0.05 169.7 ± 0.6 167.2 ± 0.3 176.7 ± 0.1 172 ± 0.4

LRR 48 211 130 ± 0.05 114 ± 0.4 113.2 ± 0.3 123.1 ± 0.1 118.8 ± 0.1

TPR 68 299 169 ± 0.1 145.4 ± 0.7 141.4 ± 0.3 157.6 ± 0.1 146.9 ± 0.4

TABLE I. Entropies (in bits, i.e. units of ln(2)) of sequences made of two consecutive repeats, for the three protein families
shown in Fig. 1. Entropies are calculated for models of different complexity: model of random amino acids (Srand = 2L ln(21),
divided by ln(2) when expressed in bits); independent-site model (S1), pairwise interaction model (S2); pairwise interaction
model with constraints due to repeat similarity λID (Sfull); pairwise interaction model of two non-interacting repeats learned
without (Sir) and with (Sir,λ) constraints on repeat similarity. Fig. 2 shows graphically some of the information contained in
this table.

By the same saddle-point approximation as in the pre-
vious section, the two are identical in the thermodyamic
limit (large N), provided that the condition (Eq. 7) is
satisfied. We can thus reconcile the two definitions of
the entropy in that limit.

To calculate the Boltzmann entropy (Eq. 9), one needs
to first evaluate the threshold Esel in terms of statistical
energy. This threshold is given by Esel = E0−∆Gsel/Tsel,
where E0 and Tsel can be obtained directly by fitting
(Eq. 8) to single-mutant experiments. Esel can also be ob-
tained as a discrimination threshold separating sequences
that are known to fold properly versus sequences that do
not [24]. In that case, assuming that the linear rela-
tionship (Eq. 8) was evaluated empirically using single
mutants, this relationship can be inverted to get ∆Gsel

in physical units.
Calculating the Shannon entropy Eq. (10), on the other

hand, does not require to define any threshold. However,
the threshold in the equivalent Boltzmann entropy can
be obtained using Eqs. 7 and 8, i.e. Esel = 〈E〉, where
the average is performed using the distribution defined
in Eqs. 1-2.

D. Entropy of repeat protein families

To compare how the different elements of the energy
function affect diversity, we calculate the entropy of en-
sembles built of two consecutive repeats from a given pro-
tein family for the different kinds of models described ear-
lier, from the least constrained to the most constrained:
Erand, E1, Eir, Eir,λ, E2, Efull. In the case of models with
interactions, calculating the entropy directly from the
definition Eq. (10) is impossible due to the large sums.
A previous study of entropies of protein families used
an approximate mean-field algorithm, called the Adap-
tive Cluster Expansion [25], for both parameter fitting
and entropy estimation. Here we estimated the entropies
using thermodynamic integration of Monte-Carlo simula-
tions, as detailed in Sec. IV D. This method is expected
to be asymptotically unbiased and accurate in the limit
of large Monte-Carlo samples.

The resulting entropies and their differences are re-
ported in Table I and Fig. 2. All three considered
families (ankyrins (ANK), leucine-rich repeats (LRR),
and tetratricopeptides (TPR)) show a large reduction

in entropy (∼ 40 − 50%) compared to random polypep-
tide string models of the same length 2L (of entropy
Srand = 2L ln(21)). Interactions and phylogenic simi-
larity between repeats generally have a noticeable effect
on family diversity, although the magnitude of this effect
depends on the family: (S1 − Sfull)/Sfull = 7% for ANK,
versus, 13% for LRR, and 16% for TPR. Thus, although
interactions are essential in correctly predicting the fold-
ing properties, they seem to only have a modest effect on
constraining the space of accessible proteins compared
to that of single amino-acid frequencies. However, when
converted to numbers of sequences, this reduction is sub-
stantial, from eS1 ∼ 3 · 1054 to eSfull ∼ 2 · 1050 for ANK,
from 1039 to 1034 for LRR, and from 7 · 1050 to 4 · 1042

for TPR.

By considering models with more and more con-
straints, and thus with lower and lower entropy, we can
examine more finely the contribution of each type of
correlation to the entropy reduction, going from E1 to
Eir to Eir,λ to Efull. This division allows us to quan-
tify the relative importance of phylogenic similarity be-
tween consecutive repeats (λID) relative to the impact
of functional interactions (Jij), as well as the relative
weights of repeat-repeat versus within-repeat interac-
tions (Fig. 2). We find that phylogenic similarity con-
tributes substantially to the entropy reduction, as mea-
sured by Sir−Sir,λ = 4.5 bits for ANK, 4.3 bits for LRR,
and 10.7 bits for TPR. The contribution of repeat-repeat
interactions (Sir,λ−Sfull ∼ 5 bits for all three families) is
comparable or of the same order of magnitude as that of
within-repeat interactions (S1 − Sir = 4.3 bits for ANK,
6.9 bits for LRR, and 11.4 bits for TPR). This result em-
phasizes the importance of physical interactions between
neighboring repeats in the whole protein.

On a technical note, we also find that pairwise interac-
tions encode constraints that are largely redundant with
the constraint of phylogenic similarity between consecu-
tive repeats, as can be measured by the double difference
Sir − Sir,λ − S2 + Sfull > 0 (Fig. 2, orange bars). This
redundancy motivates the need to correct for this phylo-
genic bias before estimating repeat-repeat interactions.

Comparing the three families, ANK has little phylo-
genic bias between consecutive repeats, and relatively
weak interactions. By contrast, TPR has a strong phy-
logenic bias and strong within-repeat interactions.
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FIG. 2. Contributions of within-repeat interactions (S1 − Sir

green), repeat-repeat interactions (Sir,λ − Sfull, purple), and
phylogenic bias between consecutive repeats (Sir−Sir,λ, blue),
to the entropy reduction from an independent-site model. All
three contributions are comparable, but with a larger effect
of within-repeat interactions and phylogenic bias in TPR.
The fourth bar (orange) quantifies the redundancy between
two constraints with overlapping scopes: the constraint on
consecutive-repeat similary, and the constraint on repeat-
repeat correlations. This redundancy is naturally measured
within information theory by the difference of impact (i.e. en-
tropy reduction) of a constraint depending on whether or not
the other constraint is already enforced.

E. Effect of interaction range

We wondered whether interactions constraining the
space of accessible proteins had a characteristic length-
scale. To answer this question, for each protein family in
Fig. 1, we learn a sequence of models of the form Eq. 2,
in which Jij was allowed to be non-zero only within a
certain interaction range d(i, j) ≤W , where the distance
d(i, j) between sites i and j can be defined in two dif-
ferent ways: either the linear distance |i − j| expressed
in number of amino-acid sites, or the three-dimensional
distance between the respective Cα carbons in the refer-
ence structure of the residues. Details about the learning
procedure and error estimation are given in the Methods;
see also Fig. S1 for an alternative error estimate.

The entropy of all families decreases with interaction
range W , both in linear and three-dimensional distance,
as more constraints are added to reduce diversity (Fig. 3
for ANK, and Fig. S2 for LRR and TPR). The initial drop
as a function of linear distance (Fig. 3A) is explained by
the many local interactions between nearby residues in
the sequence. The entropy then plateaus until interac-
tions between same-position residues in consecutive re-
peats are included in the W range, which leads to a sharp
entropy drop at W = L. This suggests that long rate in-
teractions along the sequence generally do not constrain
the protein ensemble diversity, except for interactions at
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FIG. 3. Entropy reduction as a function of the range of inter-
actions between residue sites. A) Entropy of two consecutive
ANK repeats, as a function of the maximum allowed inter-
action distance W along the linear sequence. The entropy
of the model decreases as more interactions are added and
they constrain the space of possible sequences. After a sharp
initial decrease at short ranges, the entropy plateaus until
interactions between complementary sites in neighbouring re-
peats lead to a secondary sharp decrease at W = L− 1 = 32
(dashed line), due to structural interactions between consec-
utive repeats. B) Entropy of two consecutive ANK repeats
as a function of the maximum allowed three-dimensional in-
teraction range. The entropy decreases rapidly until ∼ 10
Angstrom, after which decay becomes slower. In both pan-
els entropies are averaged over 10 realizations of fitting the
model; see section IV C and for details of the learning and
entropy estimation procedure. Error bars are estimated from
fitting errors between the data and the model; see Sec. IV E
and Fig. S1 for error bars calculated as standard deviations
over 10 realizations of model fitting.

exactly the scale of the repeat. This result suggests that
the repeat structure is an important constraint limiting
protein sequence exploration. These observations hold
for all three repeat protein families. By contrast, the en-
tropy decay as a function of physical distance (Fig. 3B
for ANK) lacks a characteristic distance at which the en-
tropy drops.

F. Multi-basin structure of the energy landscape

The energy function of Eq. (2) takes the same math-
ematical form as a disordered Potts model. These mod-
els, in particular in cases where σi can only take two
values, have been extensively studied in the context of
spin glasses [34]. In these systems, the interaction terms
−Jij(σi, σj) imply contradictory energy requirements,
meaning that not all of these terms can be minimized at
the same time — a phenomenon called frustration. Be-
cause of frustration, natural dynamics aimed at minimiz-
ing the energy are expected to get stuck into local, non-
global energy minima (Fig. 4), significantly slowing down
thermalization. This phenomenon is similar to what hap-
pens in structural glasses in physics, where the energy
landscape is “rugged” with many local minima that hin-
der the dynamics. Incidentally, concepts from glasses and
spin glasses have been very important for understanding
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local minima

global minimum

basins

FIG. 4. A rugged energy landscape is characterized by the
presence of local minima, where proteins sequences can get
stuck during the evolutionary process. The set of sequences
that evolve to a given local minimum defines the basin of
attraction of that mimimum.

protein folding dynamics [35].

We asked whether the energy landscape of Eq. (2)
was rugged with multiple minima, and investigated its
structure. To find local minima, we performed a lo-
cal energy minimization of Efull (learned with all con-
straints including on P (ID), but taken with λID = 0
to focus on functional energy terms). By analogy with
glasses, such a minimization is sometimes called a zero-
temperature Monte-Carlo simulation or a “quench”. The
minimization procedure was started from many initial
conditions corresponding to sequences of naturally oc-
curing sequences of consecutive repeat pairs. At each
step of the minimization, a random beneficial (energy
decreasing) single mutation is picked; double mutations
are allowed if they correspond to twice the same single
mutation on each of the two repeats. Minimization stops
when there are no more beneficial mutations. This stop-
ping condition defines a local energy minimum, for which
any mutation increases the energy. The set of sequences
which, when chosen as initial conditions, lead to a given
local minimum defines the basin of attraction of that en-
ergy mimimum (Fig. 4). The size of a basin corresponds
to the number of natural proteins belonging to that basin.

Performing this procedure on consecutive repeat se-
quences from all three families yielded a large number
of local minima. When ranked from largest to small-
est, the distribution of basin sizes follows a power law
(Fig. 5A for ANK and Fig. S3A and Fig. S4A for LRR
and TPR). The energy of the minimum of each basin
generally increases with the rank, meaning that largest
basins are also often the lowest. The partition of se-
quences into basins allows for the definition of a new

kind of entropy Sconf = −
∑
b P (b) lnP (b) called configu-

rational entropy, based on the distribution of basin sizes,
P (b) =

∑
σ∈b P (σ), where σ ∈ b means that energy

minimization starting with sequence σ leads to basin b.
This configurational entropy measures the effective diver-
sity of basins, and is thus much lower than the sequence
entropy Sfull, while the difference Sfull − Sconf measures
the average diversity of sequences within each basin. We
find Sconf =5.1 bits for ANK, 6.0 bits for LRR, and 10.4
bits for TPR. As each basin corresponds to a distinct sub-
family within each family [29], this entropy quantifies the
effective number of these subgroups.

While basins are very numerous, they are also not inde-
pendent of each other. An analysis of pairwise distances
(measured as the Hamming distance between the local
minima) between the largest basins reveals that they can
be organised into clusters (panels B of Figs. 5, S3, and
S4), suggesting a hierarchical structure of basins, as is
common in spin glasses [34].

The impact of repeat-repeat interactions on the multi-
basin structure can be assessed by repeating the analysis
on the model of non-interacting repeats, Eir. In that
model the two repeats are independent, so it suffices to
study local energy minima of single repeats — local min-
ima of pairs of repeats follow simply from the combinato-
rial pairing of local minima in each repeat. The analyses
of basin size distributions, energy minima, and pairwise
distances in single repeats are shown in panels C and D
of Figs. 5, S3, and S4. We still find a substantial num-
ber of unrelated energy minima, suggesting again several
distinct subfamilies even at the single-repeat level. For
comparison, the configurational entropy of pairs of inde-
pendent repeats is 6.9 bits for ANK, 6.7 for LRR, and
7.6 for TPR. While for ANK and LRR repeat-repeat in-
teractions decrease the configurational entropy, as they
do for the conventional entropy, they in fact increase en-
tropy for TPR, making the energy landscape even more
fustrated and rugged.

In summary, the analysis of the energy landscape re-
veals a rich structure, with many local minima ranging
many different scales, and with a hierarchical structure
between them.

G. Distance between repeat families

Lastly, we compared the statistical energy landscapes
of different repeat families. Specifically, we calculated
the Kullback-Leibler divergence between the probabilitiy
distributions P (σ) (given by Eqs. 1-2) of two different
families, after aligning them together in a single multiple
sequence alignment (see Sec. IV G).

We find essentially no similarity between ANK
and TPR, despite them having similar lengths:
DKL(ANK||TPR) = 227.6 bits, and DKL(TPR||ANK) =
214.1 bits. These values are larger than the Kullback-
Leibler divergence between the full models for these fam-
ilies and a random polypetide, DKL(ANK||rand) = 122.8
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FIG. 5. Interactions within and between repeats sculpt a
rugged energy landscape with many local minima. Local min-
ima were obtained by performing a zero-temperature Monte-
Carlo simulation with the energy function in Eq. (2), start-
ing from initial conditions corresponding to naturally occur-
ing sequences of pairs of consecutive ANK repeats. A, bot-
tom) Rank-frequency plot of basin sizes, where basins are
defined by the set of sequences falling into a particular min-
imum. A, top) energy of local minima vs the size-rank of
their basin, showing that larger basins often also have low-
est energy. Gray line indicates the energy of the consensus
sequence, for comparison. B) Pairwise distance between the
minima with the largest basins (comprising 90% of natural se-
quences), organised by hierarchical clustering. A clear block
structure emerges, separating different groups of basins with
distinct sequences. C-D) Same as A) and B) but for single
repeats. Since single repeats are shorter than pairs (length
L instead of 2L), they have fewer local energy minima, yet
still show a rich multi-basin structure. Equivalent analyses
for LRR and TPR are shown in Figs. S3 and S4.

bits, and DKL(TPR||rand) = 157.6 bits. LRR is not
comparable to ANK or TPR as it is much shorter, and
a common alignment is impractical. These large diver-
gences between families of repeat proteins show that dif-
ferent families impose quantifiably different constraints,
which have forced them to diverge into different troughs
of non-overlapping energy landscapes. This lack of over-
lap makes it impossible to find intermediates between the
two families that could evolve into proteins belonging to
both families.

III. DISCUSSION

Our analysis of repeat protein families shows that the
constraints between amino acids in the sequences allows
for an estimation of the size of the accessible sequence
space. The obtained numbers (ranging from 141 bits to
167 bits, corresponding to 1036 to 1050 sequences) are of
course huge compared to the number of sequences in our
initial samples (∼ 20, 500 for ANK, ∼ 18, 800 for LRR,
and ∼ 10, 000 for TPR), but comparable to the total
number of proteins having been explored over the whole
span of evolution, estimated to be 1043 in Ref. [1].

In particular, we have quantified the reduction of
the accessible sequence space with respect to random
polypeptides. While most of this reduction is at-
tributable to conservation of residues at each site, inter-
actions between amino acids, both within and between
consecutive repeats, significantly constrain the diversity
of all repeat families. The break-up of entropy reduc-
tion between the three different sources of constraints —
within-repeat interactions, between-repeat interactions,
and evolutionary conservation between consecutive re-
peats — is fairly balanced, although TPR stands out as
having more within-repeat interactions and more conser-
vation between neighbours, suggesting that it may have
had less time to equilibrate.

All studied repeat families have rugged energy land-
scapes with multiple local energy minima. Note that
the emergence of this multi-valley landscape is a conse-
quence of the interactions between amino acids: models
of independent positions (E1) only admit a single energy
minimum corresponding to the consensus sequence. This
multiplicity of minima allow us to collapse multiple se-
quences to a small number of coarse-grained attractor
basins. These basins suggest that mutations between se-
quences within one coarse-grained basin are much more
likely than mutating into sequences in other basins. In
general, our results paint a picture of further subdivi-
sions within a family, and define sub-families due to the
fine grained interaction structure. This overall picture of
the sequence energy landscape is reminiscent of the hi-
erarchical picture of the structural energy landscape of
globular proteins, an overall funneled shape with tiers
within tiers [36]. The form of the energy landscape
forcibly shapes the accessible evolutionary paths between
sequences. The rugged and further subdivided structure
shows that the uncovered constraints are global, and not
just pairwise between specific residues. Therefore even
changing two residues together, as is often done in lab-
oratory experiments, is not enough to recover the evolu-
tionary trajectories.

Interestingly, the sequences that correspond to the en-
ergy minima of the landscapes are not found in the nat-
ural dataset. This observation can be either due to sam-
pling bias (we have not yet observed the sequence with
the minimal energy, although it exists), or this sequence
may not have been sampled by nature. Alternatively,
there may be additional functional constraint that are
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not included in our model to avoid these low energy se-
quences (e.g. a too stable protein may be difficult to
degrade).

Even more intriguingly, sequences with minimal energy
do not correspond to the consensus sequence of the align-
ment (whose energy is marked by a gray line in panel A
of Figs. 5, S3, and S4), suggesting that the consensus se-
quence can be improved upon. All three repeat protein
families studied here have been shown to be amenable
to simple consensus-guided design of synthetic proteins.
Synthetic proteins based on the consensus sequences of
multiple alignments [37] were found to be foldable and
very stable against chemical and thermal denaturation.
Mutations towards consensus amino acids in the ANK
family members have been experimentally shown to both
stabilize the whole repeat-array and they may tune the
folding paths towards nucleating folding in the consensus
sites [38, 39] . Our results suggest that interactions may
play an additional role in stabilizing the sequences, and
propose alternative solutions to the consensus sequences
in the design of synthetic proteins.

IV. METHODS

A. Data curation

We use a previously curated alignment of pairs of re-
peats for each family [15]: ANK (PFAM id PF00023
with a final alignment of 20513 sequences of L = 66
residues each), LRR (PFAM id PF13516 with a final
alignment of 18839 sequences of L = 48 residues each)
and TPR (PFAM id PF00515 with a final alignment of
10020 sequences of L = 68 residues each). Those mul-
tiple sequence alignments of repeats were obtained from
PFAM 27.0 [4, 5]. In order to improve the data obtained
from the PFAM database, we used original full protein
sequences available in UniProt database [40] to add avail-
able information using the headers of the original aligne-
ment. Firstly, to decrease the number of gaps positions,
misdetected initial and final amino acids in repeats were
completed with residues from full sequences. Secondly,
individual repeats which appeared consecutively in nat-
ural proteins were joined into pairs. Finally, positions
with more than 80% of gaps along the alignment were
removed, eliminating in this way insertions.

From the multiple sequence alignement of each fam-
ily, they were calculated the observables that we use to
constrain our statistical model. Particularly, we calcu-
lated the marginal frequency fi(σi) of an amino acid σi
at position i and the joint frequency fij(σi, σj) of two
amino acids σi and σj at two different positions i and
j. These quantities were calculated using only sequences
selected by clustering at 90% of identity computed with
CD-HIT [41] and then normalizing by the amount of se-
quences. In this way, the occurrences of residues in ev-
ery position are not biased by overrepresentation of pro-

teins in the database. Furthermore, to take into account
the repeated nature of the protein families that we are
considering, an additional observable was calculated, the
distribution of sequence overlap between two consecutive

repeats, P (ID), with ID =
∑L
i=1 δσi,σi+L .

B. Model fitting

In order to obtain a model that reproduces the ex-
perimentally observed site-dependent amino-acid fre-
quencies, fi(σi), correlations between two positions,
fij(σi, σj), and the distribution of Hamming distances
between consecutive repeats, P (ID), we apply a likeli-
hood gradient ascent procedure, starting from an initial
guess of the hi(σi), Jij(σi, σj) and λID parameters.

At each step, we generate 80000 sequences of length
2L through a Metropolis-Hastings Monte-Carlo sampling
procedure. We start from a random amino-acid sequence
and we produce many point mutations in any position,
one at a time. If a mutation decreases the energy (2) we
accept it. If not, we accept the mutation with probability
e−∆E , where ∆E is the difference of energy between the
original and the mutated sequence. We add one sequence
to our final ensemble every 1000 steps. Once we gener-
ated the sequence ensemble, we measure its marginals
fmodel
i (σi) and fmodel

ij (σi, σj), as well as Pmodel(ID), and
update the parameters of Eq. 2 following the gradient of
the likelihood. The local field and λID are updated along
the gradient of the per-sequence log-likelihood, equal to
the difference between model and data averages:

hi(σi)
t+1 ← hi(σi)

t + εm[fi(σi)− fmodel
i (σi)], (11)

λt+1
ID ← λtID − εID[PID − Pmodel

ID ]. (12)

As the number of parameters for the interaction terms Jij
is large (= 212L2), we force to 0 those that are not con-
tributing significantly to the model frequencies through a
L1 regularisation γ

∑
ij,σ,τ |Jij(σ, τ)| added to the likeli-

hood. This leads to the following rules of maximization:
If Jij(σi, σj)

t = 0 and |fij(σi, σj)− fmodel
ij (σi, σj)| < γ

Jij(σi, σj)
t+1 ← 0. (13)

If Jij(σi, σj)
t = 0 and |fij(σi, σj)− fmodel

ij (σi, σj)| > γ

Jij(σi, σj)
t+1 ← εj [fij(σi, σj)− fmodel

ij (σi, σj)−
γsign(fij(σi, σj)− fmodel

ij (σi, σj))].

(14)

If
[
Jij(σi, σj)

t + εj [fij(σi, σj) − fmodel
ij (σi, σj) −

γsign(Jij(σi, σj)
t)]
]
Jij(σi, σj)

t ≥ 0

Jij(σi, σj)
t+1 ← Jij(σi, σj)

t + εj [fij(σi, σj)− fmodel
ij (σi, σj)−

γsign(Jij(σi, σj)
t)].

(15)

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2019. ; https://doi.org/10.1101/635581doi: bioRxiv preprint 

https://doi.org/10.1101/635581


0 10 20 30 40 50 60
interaction range (sites)

166

168

170

172

174

176

178

180
en

tro
py

 (b
its

)
ANK

 learning from 
 independent sites 
 seeded learning 
 increasing interactions

FIG. S1. Entropy as a function of the maximum linear inter-
action range W along the sequence. Green curve: entropy of
the ANK family with error bars calculated as standard devi-
ations over 10 model learning realizations, where models are
learned by incrementally adding more interaction terms as
W is increased, taking the model learned at W − 1 as initial
condition. This plot is the same as in Fig. 3A but with the
different error bar estimates, showing that our results are ro-
bust to the details of error estimation. Red curve: entropy
obtained after de novo learning for each W , starting from a
non-interacting model as initial condition. With those initial
conditions the learning gets stuck, leading to systematically
overestimating the entropy and missing the second entropy
drop at W = L− 1. See section IV C for details of the learn-
ing and entropy estimation procedure.

If
[
Jij(σi, σj)

t + εj [fij(σi, σj) − fmodel
ij (σi, σj) −

γsign(Jij(σi, σj)
t)]
]
Jij(σi, σj)

t < 0

Jij(σi, σj)
t+1 ← 0. (16)

The optimization parameters were set to: εm = 0.1,
εj = 0.05, εID = 10, and γ = 0.001.

To estimate the model error, we compute fi(σi) −
fmodel
i (σi) and fij(σi, σj) − fmodel

ij (σi, σj), as well We
also calculate the difference of generated and natural re-
peat similarity distribution for all the possible repeats
Hamming distances, penalized by a factor 5 to bet-
ter learn the parameter λID: 5(PID − Pmodel

ID ). We re-
peat the procedure above until the maximum of all er-
rors, |fi(σi)−fmodel

i (σi)|, |fij(σi, σj)−fmodel
ij (σi, σj)| and

5|PID − Pmodel
ID |, goes below 0.02, as in Ref. [15].

C. Models with different sets of constraints

Using this procedure we can calculate the model de-
fined in Eq. 2 with different interaction ranges used in
the entropy estimation in Fig. 3 A. We start from the in-
dependent model hi(σi) = log fi(σi). We first learn the
model in Eq. 2 with J = 0. We then re-learn models with
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FIG. S2. Entropy of the LRR (A) and TPR (B) family as
a function of the maximum interaction distance W along the
sequence. The entropy of the model decreases as a more in-
teractions are added and they constrain the space of possible
sequences. As with ANK, the entropy first drops, plateaus,
then drops again at the distance corresponding to homolo-
gous positions along the two repeats (W = L − 1 = 23 for
LRR, and 33 for TPR, dashed line). This second drop in-
dicates that there is a typical distance along the sequence,
corresponding to the repeat length, where interactions due to
structural properties constrain the sequence ensemble. The
error bars are estimated approximately from errors in learning
(see Section IV E). Entropies are averaged over 5 realizations
of the learning and entropy estimation procedure.

interactions between sites i, j along the linear sequence
such that |i− j| ≤W , in a seeded way starting from the
previous model. The first and last point of Fig. 3 cor-
respond to the independent site model with λID and the
full model in Eq. 2

The entropy in Fig. 3B is calculated in the same way
as in Fig. 3, but now interactions are turned on progres-
sively according to physical distance in the 3D structure
rather than the linear sequence distance. In order to ob-
tain the physical distance between residues we use as a
reference structure the first two repeats of a consensus de-
signed ankyrin protein 1n0r [42, 43], which have exactly
66 amino-acids. We define the 3D separation between
two residues as the distance between the respective Cα
carbons in the reference structure.

To learn the Potts model without λID (E2) we remove
λID from Eq. 2 and re-learn the Potts field using the full
model parameters as initial contition.

To learn the single repeat models with and without λ
(Eir and Eir,λ, we take as initial condition the model with
interactions below the length of a repeat (W = L − 1,
dashed vertical line in Fig. 3), and then learn a model
removing all the Jij terms between different repeats. We
also impose that the hi fields and intra-repeats Jij terms
are the same in each repeat, and the experimental amino-
acid frequencies to be reproduced by the model are the
average over the two repeats of the 1- and 2-points intra-
repeats frequencies fi(σi) and fij(σi, σj), such that

f ′i(σi) = f ′i+L(σi) =
1

2

(
fi(σi) + fi+L(σi)

)
, (17)
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FIG. S3. Analysis of local energy minima for pairs of con-
secutive repeats of LRR. Energy minima were obtained by
zero-temperature dynamics. Sequences falling into a given
minimum with these dynamics define its basin of attraction.
A, bottom) rank-frequency plot of the sizes of the basins of
attraction. A, top) energy minimum of each basin. Gray
line shows the energy of the consensus sequence B) Pairwise
Hamming distances between energy minima, organised by hi-
erarchical clustering. C and D) Same analysis as A) and B),
but for single LRR repeats.

and

f ′ij(σi, σj) = f ′i+L,j+L(σi, σj) = (18)

=
1

2
(fij(σi, σj) + fi+L,j+L(σi, σj)),

if i and j represent sites within the same repeat. In
this way we obtain a model for a single repeat that can
be extended to both the repeats in the original set of
sequences of our dataset.

D. Entropy estimation

In practice to calculate the entropy S of the protein
families we relate it to the internal energy E = − log p(σ)
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FIG. S4. Analysis of local energy minima for pairs of con-
secutive repeats of TPR. Energy minima were obtained by
zero-temperature dynamics. Sequences falling into a given
minimum with these dynamics define its basin of attraction.
A, bottom) rank-frequency plot of the sizes of the basins of
attraction. A, top) energy minimum of each basin. Gray
line shows the energy of the consensus sequence B) Pairwise
Hamming distances between energy minima, organised by hi-
erarchical clustering. C and D) Same analysis as A) and B),
but for single TPR repeats.

and the free energy F = − logZ:

S = 〈E〉 − F

=
∑
σ
p(σ)E(p(σ)) + logZ (19)

= −
∑
σ
p(σ) log p(σ) ,

We generate sequences according to the energy function
in Eq. 2 and use them to numerically compute 〈E〉. To
calculate the free energy we use the auxilliary energy
function:

Eα(σ) = −
∑
i

hi(σi)+α
[
−
∑
ij

Jij(σi, σj)+λID

]
, (20)

where the interaction strength across different sites can
be tuned through a parameter α that is changed from
0 to 1. We generate protein sequence ensembles with
different values of α and use them to calculate F as a
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function of α, F (1) = F (0) +
∫ 1

0
dαdF

dα :

F (1) = F (0)+

∫ 1

0

dα

〈
−
∑
ij

Jij(σi, σj) + λID

〉
α

, (21)

where the average over α is taken over the sequences
generated with a certain value of α, characterized by the
ensemble with probability pα(σ) = (1/Zα)e−Eα(σ). F (0)
is the free energy for an independent sites model:

F (0) = −
∑
i

log
∑
σi

ehi(σi) , (22)

where the first sum is taken over protein sites and the sec-
ond over all possible amino-acids at a given site. Eq. 22
and Eq. 19 result in the thermodynamic sampling ap-
proximation for calculating the entropy [44]:

S = 〈E〉+
∑
i

log
∑
σi

ehi(σi)−
∫ 1

0

dα

〈
−
∑
ij

Jij(σi, σj) + λID

〉
α

.

(23)
We generate 80000 sequences using Monte Carlo sam-
pling for the energy in Eq. 20 with 50 different α values,
equally spaced between 0 and 1 at a distance of 0.02, and
then numerically compute the integral in Eq. 23 using the
Simpson rule.

E. Entropy error

The entropy estimate is subject to three sources of un-
certainty: the finite-size of the dataset, convergence of
parameter learning, and the noise in the thermodynamic
integration. We estimate the contribution of each of these
errors using the independent sites model. In the inde-
pendent sites model each site i is simply described by a
multinomial distribution with weights given by the ob-
served amino-acid frequencies in the datasets. The vari-
ance in the estimation of the frequencies from a finite size
sample is Var(fi(σi)) = (pi(σi)(1− pi(σi)))/Ns and the
covariance between the frequencies of different amino-
acids σ and σ′ at the same site i is Cov(fi(σi), fi(σ

′
i)) =

−(pi(σi)pi(σ
′
i))/Ns where Ns is the sample size and

pi(σi) are the weights of the true multinomial distribution
sampled. Through error propagation from these quanti-
ties we calculate the variance in the entropy of the inde-
pendent sites model, to first order in 1/Ns:

Var(Sindep) =
1

Ns

[∑
i

∑
σi

pi(σi) log pi(σi)
2 − S2

indep

]
+O(

1

N2
s

) .

(24)

Evaluating this equation using the empirical frequencies
p = f assuming they are sampled from an underlying
multinomial distribution, gives an estimate of the stan-
dard deviation of 0.05. We assume that the interaction

terms do not change the order of magnitude of this esti-
mation. Also the standard deviation in the averages in
Eq. (23) scales as 1/

√
Ns with Ns = 80000.

The parameter inference is affected not only by noise,
but also by a systematic bias depending on the parame-
ters of the gradient ascent described in Section IV B and
the initial condition that we chose to start learning from.
Fig. S1 shows the average entropy of 10 realizations of
the learning and thermodynamic integration procedure
for the ANK family and its standard deviation as error
bars. If we learn the models with an increasing W win-
dow progressively we get a different profile than learn-
ing each point starting from the independent model, and
above L these two profiles are more distant than the mag-
nitude of the standard deviation, signalling a systematic
bias. Fig. S1 also shows that progressively learning the
model results in a better parameters convergence to val-
ues that give lower entropy values.

In order to estimate how this bias is reflected in the
entropy estimation we take the single-site amino-acid fre-
quencies produced by the inferred energy function in the
last Monte-Carlo phase of the learning procedure and
calculate the corresponding entropy for this independent-
sites model. We compute the absolute value of the dif-
ference between this estimate of the entropy and the
independent-sites entropy calculated from the dataset.
Again in doing this we assume that neglecting the in-
teraction terms does not change the order of magnitude
of this error. These procedure results in the errorbars
shown in Fig. 3,Fig. 2, Table I, Fig. S2.

We repeat 10 realizations of both the parameter infer-
ence procedure and the entropy estimation, and in Fig. 3
we show the average entropy of these 10 numerical experi-
ments for the ANK family where error bars are estimated
as explained above to sketch the order of magnitude of
the error coming from systematic bias in the parameters
learning. Fig. S1 shows the mean entropy of ANK as in
Fig. 3 A with the standard deviations of the realizations
entropy as error bars, to give an idea of the combined
noise in the thermodynamic integration and in the gra-
dient descent, starting from the same initial conditions
and with the same update parameters (see Section IV B).
The combined noise is smaller than the entropy decrease
at 33 residues, showing the decrease is real.

To further check the robustness of the entropy estima-
tion procedure, we generate two synthetic ANK datasets,
one with an independent sites model, the other with
a model of two non-interacting repeats obtained as ex-
plained in the Section IV B, and relearn the model from
the synthetic datasets. Repeating the learning and en-
tropy estimation procedure on each on the synthetic pro-
tein families gives results that are consistent with the
model used for the dataset generation. The entropy of
the model learned taking an independent sites dataset
does not decrease with the interaction range W and the
entropy of the model learned taking a non-interacting re-
peats dataset does not show any drop around the repeat
length.
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We repeat the procedure described for the LRR and
TPR repeat-proteins families such as LRR and TPR
reaching similar conclusions (Fig. S2).

F. Calculating the basins of attraction of the en-
ergy landscape

In order to characterize the ruggedness of the inferred
energy landscapes and the sequence identity of the local
minima, we start from all the sequences in the natural
dataset as initial conditions and for each of them we per-
form a T = 0 quenched Monte-Carlo procedure.

We perform this energy landscape exploration learn-
ing the parameters of the Hamiltonian in Eq. 2 (refer to
Section IV B for the learning procedure), and then set
λID = 0 in the energy function because we want to inves-
tigate the shape of the energy landscape due to selection
rather than the phylogenic dependence.

We scan all the possible mutations that decrease the
sequence energy and then draw one of them from a uni-
form random distribution. The possible mutations are all
single point mutations. If the same amino-acid is present
in the same relative position in the two repeats we allow
for double mutations that mutate those two positions to
a new amino-acid, that is identical in both repeats, at
the same time. We do this so that the phylogenetic bi-
ases that are still partially present in the parameters of
the model do not result in spurious local minima biasing
the quenching results. The Monte-Carlo procedure ends
when every proposed move results in a sequence with an
increased energy, and the identified sequence is a local
minimum of the energy landscape.

In order to assess what is the role of the inter-repeat
interactions we repeat this T = 0 quenched Monte-Carlo
procedure on single repeats, with all the unique repeats
in the natural dataset as initial condition. The learning
procedure of the Hamiltonian for a single repeat is ex-
plained in Section IV B. In this single repeat case the
possible mutations are just the single point mutations.

Once we have the local minima of the energy land-

scape, we obtain the coarse-grained minima using the
Python Scipy hierarchical clustering algorithm. In this
hierarchical clustering the distance between two clusters
is calculated as the average Hamming distance between
all the possible pairs of sequences belonging each to one
cluster. As a result we plot the clustered distance matrix,
the clustering dendogram and the basin size correspond-
ing to the distance matrix entries.

In the end we can repeat the quenching procedure de-
scribed above for LRR and TPR families. The result
are sketched in Fig. S3 and Fig. S4 and lead to similar
conclusions as for the ANK family.

G. DKL

The Kullback-Leibler divergence between two
families A and B is defined as DKL(A||B) =∑

σ pA(σ) log2 pB(σ)/pA(σ). We can substitute
the sequence ensembles for ANK and TPR in the
definition of the probabilities obtaining:

DKL(ANK||TPR) = 〈ETPR−EANK〉ANK+FANK−FTPR ,
(25)

DKL(TPR||ANK) = 〈EANK−ETPR〉TPR+FTPR−FANK ,
(26)

where the notation 〈〉ANK means that the average is
calculated over sequences drawn from the ANK en-
semble: P (σ)ANK = (1/ZANK)e−E(σ)ANK . Therefore
〈ETPR〉ANK is the average TPR energy function evalu-
ated, via the structural alignment between the two fami-
lies, on 80000 sequences generated through a Monte Carlo
sampling of the ANK model (2) (and analogously for
〈EANK〉TPR). The terms FANK and FTPR are calculated
in the same way as when estimating the entropy through
Eqs. (21),(22), as explained in Section IV D.

For the control against a random polypeptide of length
L we use DKL(FAM||rand) = log Λ − S(FAM), where
Λ = 21L is the total number of possible sequences of
length L.
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[32] Berg J, Willmann S, Lässig M (2004) Adaptive evolution
of transcription factor binding sites. BMC evolutionary
biology 4:42.

[33] Shakhnovich EI (1998) Protein design: A perspective
from simple tractable models. Fold. Des. 3:45–58.

[34] Mezard M, Parisi G, Virasoro M (1986) Spin Glass The-
ory and Beyond (WORLD SCIENTIFIC).

[35] Bryngelson JD, Wolynes PG (1987) Spin glasses and the
statistical mechanics of protein folding. Proceedings of
the National Academy of Sciences 84:7524–7528.

[36] Frauenfelder H, Sligar SG, Wolynes PG (1991) Proteins.
Science 254:1598–1603.

[37] Boersma YL, Plu A (2011) DARPins and other repeat
protein scaffolds : advances in engineering and applica-
tions. Current opinion in biotechnology 22:849–857.

[38] Tripp KW, Barrick D (2008) Rerouting the Folding Path-
way of the Notch Ankyrin Domain by Reshaping the En-
ergy Landscape. Journal of the American Chemical So-
ciety pp 5681–5688.

[39] Barrick D, Ferreiro DU, Komives EA (2008) Folding
landscapes of ankyrin repeat proteins : experiments meet
theory. Current Opinion in structural biology 18:27–43.

[40] Consortium U, et al. (2017) Uniprot: the universal pro-
tein knowledgebase. Nucleic acids research 45:D158–
D169.

[41] Li W, Jaroszewski L, Godzik A (2002) Tolerating some
redundancy significantly speeds up clustering of large
protein databases. Bioinformatics 18:77–82.

[42] Mosavi LK, Minor DL, Peng Zy (2002) Consensus-
derived structural determinants of the ankyrin repeat
motif. Proceedings of the National Academy of Sciences
99:16029–16034.

[43] Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun
A (2003) Designing repeat proteins: well-expressed, sol-
uble and stable proteins from combinatorial libraries of
consensus ankyrin repeat proteins. Journal of molecular
biology 332:489–503.

[44] Frankel D, Smit B (2007) Understanding Molecular Sim-
ulation: From Algorithms to Applications (Academic
Press).

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2019. ; https://doi.org/10.1101/635581doi: bioRxiv preprint 

https://doi.org/10.1101/635581

