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23

24 Abstract

25

26

27 INTRODUCTION: Epidemic forecasting and prediction tools have the potential to provide 

28 actionable information in the midst of emerging epidemics. While numerous predictive studies 

29 were published during the 2016-2017 Zika Virus (ZIKV) pandemic, it remains unknown how 

30 timely, reproducible and actionable the information produced by these studies was. METHODS: 

31 To improve the functional use of mathematical modeling in support of future infectious disease 

32 outbreaks, we conducted a systematic review of all ZIKV prediction studies published during the 

33 recent ZIKV pandemic using the PRISMA guidelines. Using MEDLINE, EMBASE and grey 

34 literature review, we identified studies that forecasted, predicted or simulated ecological or 

35 epidemiological phenomenon related to the Zika pandemic that were published as of March 01, 

36 2017. Eligible studies underwent evaluation of objectives, data sources, methods, timeliness, 

37 reproducibility, accessibility and clarity by independent reviewers. RESULTS: 2034 studies were 

38 identified, of which n = 73 met eligibility criteria. Spatial spread, R0 (basic reproductive number) 

39 and epidemic dynamics were most commonly predicted, with few studies predicting Guillain-

40 Barré Syndrome burden (4%), sexual transmission risk (4%) and intervention impact (4%). Most 

41 studies specifically examined populations in the Americas (52%), with few African- specific 

42 studies (4%). Case count (67%), vector (41%) and demographic data (37%) were the most 

43 common data sources. Real-time internet data and pathogen genomic information were used in 

44 7% and 0% of studies, respectively, and social science and behavioral data were typically absent 
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45 in modeling efforts. Deterministic models were favored over stochastic approaches. Forty 

46 percent of studies made model data entirely available, 29% provided all relevant model code, 

47 43% presented uncertainty in all predictions and 54% provided sufficient methodological detail 

48 allowing complete reproducibility. Fifty-one percent of predictions were published after the 

49 epidemic peak in the Americas. While the use of preprints improved the accessibility of ZIKV 

50 predictions by a median 119 days sooner than journal publication dates, they were used in only 

51 30% of studies. CONCLUSIONS: Many ZIKV predictions were published during the 2016-2017 

52 pandemic. The accessibility, reproducibility, timeliness, and incorporation of uncertainty in 

53 these published predictions varied and indicates that there is substantial room for 

54 improvement. To enhance the utility of analytical tools for outbreak response, it is essential to 

55 improve the sharing of model data, code, and preprints for future outbreaks, epidemics and 

56 pandemics.

57

58 Author summary: Researchers published many studies which sought to predict and forecast 

59 important features of Zika virus (ZIKV) infections and their spread during the 2016-2017 ZIKV 

60 pandemic. We conducted a comprehensive review of such ZIKV prediction studies and 

61 evaluated their aims, the data sources they used, which methods were used, how timely they 

62 were published, and whether they provided sufficient information to be used or reproduced by 

63 others.  Of the 73 studies evaluated, we found that the accessibility, reproducibility, timeliness, 

64 and incorporation of uncertainty in these published predictions varied and indicates that there 

65 is substantial room for improvement.  We identified that the release of study findings before 

66 formal journal publication (‘pre-prints’) increased the timeliness of Zika prediction studies, but 
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67 note they were infrequently used during this public health emergency. Addressing these areas 

68 can improve our understanding of Zika and other outbreaks and ensure that forecasts can 

69 inform preparedness and response to future outbreaks, epidemics and pandemics.

70

71 Introduction:

72

73 Zika virus (ZIKV) is a positive sense RNA flavivirus primarily transmitted through the Aedes 

74 aegypti mosquito (1-3). While the majority of ZIKV infections are asymptomatic or present as a 

75 self-limiting febrile illness, strong evidence links ZIKV infection with microcephaly and a range 

76 of other birth defects including limb deformity and retinopathy (4, 5).  ZIKV is also associated 

77 with Guillian-Barre syndrome, and a spectrum of other neurological disorders including 

78 meningoencephalitis and acute myelitis (6-9).  ZIKV was discovered in Uganda in a febrile non-

79 human primate in 1947 (10), and the first human case was detected in Nigeria in 1953 (11). 

80 ZIKV outbreaks were detected in South East Asia and the Pacific Islands in the early 21st century 

81 (12-16) followed by wide spread epidemics in the Americas from late 2014 onward with a 

82 cumulative count of 583,144 suspected and 223,336 laboratory-confirmed Zika cases reported 

83 across 49 countries and territories by the end of 2017 (17, 18).

84

85 The Director-General of the World Health Organization declared the ZIKV pandemic a public 

86 health emergency of international concern (PHEIC) on February 1, 2016 (19). The urgency for 

87 immediate, coordinated global response was further accelerated by the Olympic and 

88 Paralympic games set to take place in Rio De Janeiro, Brazil during August 2016 (20). As public 
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89 health and medical research efforts for Zika increased across the Americas, scientists developed 

90 mathematical models to anticipate further outbreak spread, evaluate possible control 

91 measures, and gain insight into outbreak dynamics. These models used a range of data sources 

92 including case counts, vector abundance and distribution, population age structure, human 

93 mobility, climate information, viral sequence and serological data, and internet ‘big data’ 

94 streams. A range of statistical and mathematical models predicted the spread and other 

95 epidemic dynamics of ZIKV, as well as the burden of its complications (21-26). 

96

97 While the WHO PHEIC status was lifted in November 2016 and the neotropical Zika pandemic 

98 has waned, the forecasting activities during the pandemic have not been systematically 

99 examined, particularly whether the studies were published in a manner and time-frame that 

100 was actionable during the Zika pandemic (27). Such an exercise is critical, not only due to the 

101 ongoing risk of Zika globally (28), but also to inform modeling efforts for future major 

102 epidemics. We therefore undertook a systematic review to identify all published ZIKV 

103 prediction and forecasting studies during a time period which encompassed the PHEIC period 

104 and the peak and waning phase of the epidemic in the Americas. The first aim of this systematic 

105 review was to identify all published models that predicted, forecasted or simulated any 

106 ecological or epidemiological phenomenon about the Zika pandemic and describe the predicted 

107 phenomena, the range of data sources used and the modeling methods employed. This first 

108 aim sought to characterize the methods and data employed to answer key questions during the 

109 epidemic and to identify potentially underutilized data or methods. The second aim was to 

110 evaluate key scientific characteristics of these studies, including (i) accessibility and timeliness 
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111 of the publication, (ii) reproducibility of the methods and access to the statistical code and data, 

112 and (iii) clarity of the presentation of the prediction results, including uncertainty in prediction 

113 estimates. The third aim was to describe the funding structure and major contributing sectors, 

114 such as government, industry, non-governmental organizations, or academia, behind these 

115 publications.

116

117 Methods

118

119 The PRISMA and Cochrane systematic review guidelines were adopted (29). A panel of 12 

120 investigators developed the systematic review protocol including the eligibility criteria and the 

121 data abstraction tool.  No formal protocol was published for this systematic review. 

122

123 Literature search strategy:

124

125 We conducted a literature review using EMBASE and MEDLINE (PubMed) to identify all 

126 potentially eligible studies, which predicted or forecasted phenomenon of the ZIKV pandemic. 

127 In MEDLINE we performed a highly sensitive search solely using the term “Zika”. A 

128 complementary search in EMBASE used a more specific ontology: “Zika AND (forecasting OR 

129 prediction OR model OR modeling OR modelling OR risk OR estimating OR dynamics) NOT 

130 mouse”. Both database searches were limited to articles published as of March 1, 2017, and the 

131 MEDLINE searching was restricted to those publications released between February 1, 2016 and 

132 March 1, 2017. We complemented these database search results with ‘grey literature’, 
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133 including hand-searching of bibliographies of major Zika epidemiological review articles (17, 30, 

134 31) and contacting experts in the field of Zika modeling to identify any studies which we may 

135 have been missed by the above search strategies. 

136

137 Screening and eligibility determination: 

138

139 Using a two-reviewer system (with consensus for disagreements and conferral with a 3rd party 

140 adjudicator if a consensus was unable to be reached), all articles identified through the above 

141 literature search were screened by reviewing the title and abstract to remove all articles that 

142 clearly did not meet the eligibility criteria (below). The full text of the remaining articles was 

143 reviewed by two reviewers, with a third reviewer if a consensus was not reached by the first 

144 two reviewers. Eligibility was based on the following inclusion and exclusion criteria:  

145

146 Inclusion criteria:  

147 Forecasted, predicted or simulated any epidemiological or ecological phenomenon about the 

148 Zika pandemic (including studies regarding previous outbreaks and epidemics, and regions 

149 outside the Americas), including but not limited to spatial spread risk, host and ecological 

150 range, disease and complication burden, economic impact transmission and other epidemic 

151 dynamics. We didn’t require studies to explicitly present a future phenomenon risk, and we 

152 included time agnostic estimations of key epidemic parameters and other phenomena.

153

154 Exclusion criteria:
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155  Did not include original analyses (e.g. review articles, perspective pieces, editorials, 

156 recommendations, and guidelines)

157  Duplicated studies

158  Animal and mosquito in-vivo pre-clinical models (e.g mouse, non-human primates)

159  In vitro studies

160  Descriptive epidemiological publications (e.g. describing case

161 positive proportions, total case numbers, descriptive mapping of

162 incidence by geographic information systems)

163  Models which only examined causality of ZIKV in Guillain-Barré Syndrome (GBS) or 

164 microcephaly (rather than estimating risk or burden, for example)

165  Studies which only modeled non-ZIKV arboviruses, unless the central aim of the study 

166 was to explicitly forecast or predict ZIKV phenomenon based on the known dynamics of 

167 other arboviruses

168

169 Data abstraction, collation and analysis:

170

171 Data were abstracted from the full texts by 12 reviewers (single-reviewer abstraction) across 

172 the domains of (i) objectives and study population, (ii) methodology and reproducibility, (iii) 

173 accessibility, timeliness and other bibliometrics of eligible studies, and (iv) author affiliation and 

174 funding sources (Table S1). In addition, the availability of preprint manuscripts was assessed 

175 using the pre-print search webtool search.bioPreprint (32), a server which identifies preprints 

176 from arXiv, bioRxiv, F1000Research, PeerJ Preprints, and Wellcome Open Research. 
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177 Additionally, we manually searched arXiv and bioRxiv archives to confirm pre-print availability.  

178 These pre-print repositories are distinct from the advanced electronic publications made 

179 available by most journals after acceptance and peer review. Such ‘grey literature’ review 

180 extended beyond the cut-off date for the main literature database searches. A two-reviewer 

181 approach was used to ascertain whether eligible studies were made available as pre-print.  

182 From the abstracted data, descriptive analyses (medians, IQR, ranges and proportions) and 

183 limited hypothesis testing were performed using Stata version 13.0 (StataCorp, College Station, 

184 TX, USA).

185

186 Results: 

187

188 Of 2034 studies identified, 73 articles published predominantly from 2016 to 2017 met the 

189 inclusion criteria (Fig 1) (20-26, 28, 33-97). The most commonly predicted phenomena were 

190 spatial spread (34%), followed by R0 (basic reproductive number) or RE  (effective reproductive 

191 number) (29%), epidemic dynamics (peak size/timing, final size and trajectory) (28%), 

192 microcephaly burden (15%), and vector competence and ecology (12%) (Table 1). Most of the 

193 geographically resolved predictions were concentrated in the Americas (42%) and Asia-Pacific 

194 (21%), while few studies were from Africa (4%). Across 73 studies, the most commonly used 

195 data were infection case counts, vector data, and demographic data, followed by climate, 

196 meteorological, earth science and transport data (Table 2).  Genomic data was not used in any 

197 of the studies and few studies used novel real-time internet data streams such as those 

198 harnessing open access social media and internet-search engine platforms. 
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199

200 Only 40% of studies made all relevant source data entirely accessible, while more than 20% of 

201 the eligible studies did not make any source data available either directly (e.g. an associated 

202 data repository) or indirectly (e.g. a citation or web-link) (Table 2). The visual display of model 

203 output was at least partly clear and accurate in 95% of the studies. Over a third of the studies 

204 did not present estimates of prediction uncertainty. Approximately half of the studies did not 

205 entirely present methods with a level of detail to allow reproducibility. Over 60% of the studies 

206 did not provide any computational code used for the analyses. We classified more models as 

207 deterministic (76%) as opposed to stochastic. It should be emphasized we only ultimately 

208 evaluated whether a model was deterministic versus stochastic. 

209

210 The large majority of published manuscripts were freely accessible (e.g. without a paywall), 

211 although 4% were published with paid access only (Table 3). Less than one third of manuscripts 

212 were posted on rapid preprint servers (e.g. bioRxiv (98), prior to publication in a peer-reviewed 

213 journal. The median time from journal submission to e-journal publication time was 93.5 days, 

214 with the maximum time greater than 1 year. This included delays after manuscript acceptance, 

215 25% of the studies had delays of more than 24 days between acceptance and publication (Table 

216 3). Most of the prediction studies were published late in the epidemic, well after the peaks in 

217 reported Zika cases (Fig 2, Fig 3). Submitting manuscripts to preprint servers made results 

218 available earlier by a median of 119 days (maximum 331 days, IQR 30 – 177 days) (Table 3). This 

219 shift led to more results being available close the time of the 2016 South America and Central 

220 America epidemic peaks and prior to the epidemic peak in the Caribbean and the 2017 peak in 
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221 Central America (Fig 2, Fig 3). Comparing the impact factor of journals accepting studies which 

222 were posted as preprints (versus the impact factor of those journals accepting studies which 

223 were not posted as pre-prints), there was no significant difference (median impact factor 4.37 

224 vs. 4.45 respectively; p = 0.84 by Mann-Whitney U test). 

225  

226 Over 90% of the studies included authors with academic affiliations (Table 4). Government 

227 affiliated authors participated in a minority of studies, although this may simply reflect “in-

228 house” operational models not being published through journals. Among studies with 

229 identifiable funding sources, funding was divided among several sources, though the most 

230 common was the United States government, which funded or partially funded 50% of the 

231 studies (Table 4). However, many of those studies and other had a variety of funding sources, 

232 85% had at least one non-U.S. government source. Non-governmental organizations were the 

233 second most common source, being included in 35% of the studies.

234

235 Discussion:

236

237 Public health agencies, policy-makers, and other stakeholders are carefully examining the 

238 response to Zika. Such ‘lessons-learned’ exercises have been fruitful for prior pandemics and 

239 outbreaks, including Ebola, SARS, MERS-CoV, pH1N1, and chikungunya viruses. These exercises 

240 have included introspection, analysis, and recommended action with respect to research, public 

241 health and policy agendas (99-104). To date, public health ‘lessons-learned’ activities related to 

242 the Zika PHEIC have focused on improved ethics preparedness for rapid research during public 
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243 health emergencies (105), identification of other high-epidemic-risk pathogens with relatively 

244 inadequate countermeasure investment (106), expedited approaches to vaccine and other 

245 medical countermeasure development (107), rapid data-sharing and material transfer (108-

246 110), and enhancing the role of media communication during epidemics (111). 

247

248 In contrast to existing reviews on models developed during the ZIKV pandemic, which described 

249 specific contributions of modeling (112) or validated analytical assessment of results (113), this 

250 systematic review focused on capturing lessons that could improve the functional use of 

251 mathematical modeling in support of future infectious disease outbreaks.  Extending an 

252 approach used by Chretien et al. in their evaluation of Ebola models, we focused on aspects of 

253 the studies that likely are particularly relevant to their usefulness during an outbreak (103). This 

254 included modeling methods and input data, timeliness and accessibility of the publications, 

255 reproducibility (e.g. provision of data and code), and the communication of uncertainty.

256

257 Our systematic review identified a large number of Zika models that predicted a wide range of 

258 epidemiological and ecological phenomena. The most commonly predicted phenomena were 

259 spatial spread, R0, epidemic dynamics, microcephaly burden, and vector competence. Notably 

260 few of the studies modeled the impact or cost-effectiveness of interventions, sexual 

261 transmission risk, or GBS burden.  Not surprisingly, the majority of the studies were set in the 

262 Americas where most of the cases were reported during the pandemic. Notably one of the 

263 global gaps for understanding ZIKV dynamics is Africa, where ZIKV was discovered, is endemic, 

264 and poses a risk of future epidemics (114-116).
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265

266 The leading data types for the examined studies were conventional case counts, vector, 

267 demographic, climate and transport data.  This finding reflects not only the availability but also 

268 the importance of such data. Case count data in particular are often hard to access but critical 

269 to many modeling approaches. Rapid sharing of case count data during international public 

270 health emergencies, as well as open, curated, rapidly accessible baseline demographic, human 

271 mobility, climate, and environmental datasets are essential to quickly leverage modeling and 

272 forecasting efforts (109). Our review also identified several relatively underused data streams. 

273 First, socioeconomic and behavioral data were conspicuously absent. The lack of behavioral 

274 components in these models is concerning given the importance of these factors on disease 

275 dynamics. Second, real-time internet-based data-streams, such social-media and internet 

276 search-engine data, were used in a minority of ZIKV prediction studies identified in this 

277 systematic review. The limited use of internet ‘big data’ in the models suggests that either 

278 these data are of lower value for epidemic forecasting or that methods have yet to be 

279 developed to efficiently extract important information from them. Such data streams may be 

280 more commonly used in forecasting in the future as their strengths and weakness become 

281 clearer (117).  

282

283 Genomic data were absent from these published models. During the pandemic, sequencing 

284 platforms were employed to generate data critical to diagnostic and countermeasure 

285 development (118), but our systematic review revealed that these data were not incorporated 

286 into prediction frameworks during the first year of ZIKV pandemic. This may reflect that early 
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287 molecular epidemiology studies aimed to reconstruct the invasion and evolution of ZIKV rather 

288 than forecasting future changes (119, 120). Some phylodynamic studies were published after 

289 the time period of the systematic review, with interesting results highlighting the possibility for 

290 phylogenetic data to provide unique insight into epidemic dynamics and possibly forecasting 

291 (120-122). The relative delay of these studies (relative to other to those using other data 

292 sources) echoes a similar time lag of phylogenetic studies during the 2015 Ebola epidemic (103). 

293 The lack of phylogenomic studies captured by this review also suggests that substantial 

294 bottlenecks still exist in using these data sources in epidemic response, despite advances in 

295 mobile near “real-time” sequencing technologies (118). In the future, as new methods are 

296 developed, and genomic data become more readily available, the use of these data will likely 

297 become more common in prospective forecasting frameworks. 

298

299 Our systematic review did not delve deeply into modeling approaches, but did identify a 

300 preponderance of deterministic as opposed to stochastic models. Both categories of models 

301 have pros and cons and their use is often informed by the specific question being addressed, in 

302 addition to data availability (123). Deterministic models may generally be easier to produce, but 

303 they do have limitations for intrinsically stochastic processes like epidemics, such as 

304 underestimating uncertainty (124). Uncertainty is particularly important in this context where 

305 uncertainties are generated by the epidemic itself, data collection, and analytical approaches. 

306 Moreover, forecasts are ideally used to inform the mobilization of resources to save lives, a 

307 context in which clearly characterizing uncertainties is paramount. This is also a clear area for 

308 improvement in model output reporting; only 43% of studies completely reporting uncertainty.
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309

310 Our review also provided a unique evaluation of the more functional aspects of published 

311 predictions and forecasts. We determined that the visual clarity of model output was high but 

312 indicate room for improvement in publishing datasets used for model fitting and validation, 

313 sharing computational code for others to potentially rapidly implement the model, presenting 

314 estimates of prediction uncertainty, and methodological detail to allow the study to be 

315 reproduced. The variable quality in sharing model code and methodological detail shown here 

316 does suggest that epidemic model reporting consensus guidelines, which establish a minimum 

317 standard for the reporting of epidemic modeling, may be valuable. A recent review of the 

318 modeling efforts for the Ebola epidemic also called for standardization of modeling practice 

319 (103). Many other fields of biomedical research have established reporting guidelines to 

320 improve research quality and implementation (125-128).While reporting guidelines have been 

321 proposed for population health model on a broader scale (129), none have been established for 

322 epidemics.  

323

324 This review also indicated that a majority of studies (60%) did not completely disclose the data 

325 they used. To the extent permissible with ethical and privacy constraints, publishing the 

326 aggregated data used to fit and validate models is critical. Not only would sharing data support 

327 full reproducibility, but sharing would also enable other researchers to use data in their own 

328 complementary modeling efforts. Modelers could therefore help answer calls for increased 

329 data sharing during public health emergencies (103, 109, 130). Exploring how data can be 
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330 shared more openly and quickly during a public health emergency would be useful, as this 

331 remains a challenge.

332

333 Many studies identified in this review were published on a time-scale that was relevant to the 

334 Zika response. However, a large number of predictions were published well after the epidemic 

335 peaks, limiting their ability to inform the response. Nonetheless, those studies may well be used 

336 to inform other preparedness activities and contributed to the general knowledge of the 

337 biology, epidemiology and/or ecology of ZIKV. Further, results may have been informally shared 

338 with public health officials or other relevant decision makers prior to publication. Similar delays 

339 to publication have also been noted in an analysis of modeling efforts during the 2015 Ebola 

340 epidemic, which noted a median publication lag of around three months [103]. 

341

342 We identified two modifiable bottlenecks in the dissemination of results. First, delays from 

343 acceptance to journal publication were generally minimal (median 15 days), but a quarter of 

344 the evaluated studies had greater than 24 days delay from journal acceptance to publication. 

345 Immediate posting of accepted papers, as practiced by many journals, could cut this time down 

346 substantially. Second, we found that only 30% of studies were made available as preprints prior 

347 to peer review despite endorsements of preprints by major public agencies, funders, and 

348 journals. Those posted were available a median of 119 days prior to peer-reviewed publication. 

349 An analysis of preprints for all Zika publications over a similar time period found similar 

350 publication delays but much lower overall preprint use compared to the studies analyzed here 

351 (3.4% versus 30%) (131). This greater adoption may indicate a changing preprint culture which 
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352 was also reflected by our finding that preprint posting did not have a demonstrable effect on 

353 the impact factor of the journal in which the study was published, and we suggest that pre-

354 prints be more frequently used in future public health emergencies, echoing other similar 

355 recent arguments (131). 

356

357 Our review also provided a unique analysis of the funding sources and author affiliations of the 

358 published ZIKV prediction and forecast efforts across the ZIKV pandemic. These results 

359 indicated a range of stakeholders. We note that while academia contributed to the greatest 

360 volume of published studies, our search strategy would not have captured in-house models 

361 developed by US federal agencies or other unpublished models which may have provided direct 

362 operational support.

363

364 This systematic review has three important weaknesses. First, due to scale, a completely 

365 independent two-reviewer system was not used for abstracting most of the data and for 

366 evaluation of aspects such as reproducibility. Second, we did not formally search for preprint 

367 manuscripts as part of the literature searching phase of the systematic review, only assessing 

368 whether eligible manuscripts had corresponding preprints. We may have therefore missed 

369 important research that had been posted but not yet peer-reviewed. Lastly, we had to restrict 

370 the time frame for publications to consider in the review. This restriction again led to missing 

371 studies, some of which may have already been published but not yet posted in EMBASE or 

372 MEDLINE.  

373
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374 Overall, the review identified several areas of improvement such as providing data and code, 

375 developing reporting standards, posting preprints, and communicating uncertainty. Addressing 

376 these areas can improve our understanding of Zika and other outbreaks and ensure that 

377 forecasts can inform preparedness and response to future outbreaks, epidemics and 

378 pandemics. 

379
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735 Supporting Information Legends:

736 Table S1. Data abstraction and study evaluation tool used by reviewers

737

738
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740 Tables:

741

Table 1. Objectives and study population of eligible studies   

 n %a

Total number of studies 73 100

Zika-related phenomenon forecasted or predictedb

Predicted microcephaly burdens 11 15

Gullain-Barre syndrome burden                                                                                         3 4

Epidemic peak size  4 5

Epidemic peak timing 4 5

Epidemic curve trajectory 8 11

Epidemic final size 5 7 

Spatial spread 25 34
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742

743

Table 2. Data sources, methodology and reproducibility of eligible studies   

Force of infection 7 10

Cost-effectiveness 2 3

Intervention impact 3 4

Case fatality ratio 0 0

Ro or Reff 21 29

Sexual transmission risk 3 4

Vector competence / ecology 9 12

Otherc 2 3

Geographic region in which predictions maded

Africa 3 4

Americas (excluding Continental USA) 31 42

Asia – Pacific 15 21

Continental USA 7 10

Europe 4 5

Global 18 24

aDenominator excludes those studies where unable or no basis to judge 

bSome studies predicted more than one phenomenon

cEcological determinants of vector minimum abundance rate (n=1); epidemic size and number of 

infectious at time of first microcephaly case detected (n=1) 

dSome studies included >1 geographic category
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 N %a

Data types usedb   

Case count 49 67

Demographic 27 37

Genomic sequence data 0 0

Climate, meteorological and earth science 21 29

Transport 14 19

Economic 7 10

Vector 30 41

Internet search engine,  social media  or news-wire scraping data 5 7

Otherc 9 12

Relevant data made available 
 

Entirely 29 40

Partially 27 37

Not at all 16 22

Model type(s) used in analysisd

Stochastic 21 29

Deterministic 56 76

Availability of statistical modeling computational code (e.g. R script provided)

Entirely 21 29

Partly 7 10

Not at all 45 62

Clear and accurate visual display of the model output 

Entirely 49 67

Partly 20 27
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Not at all 4 5

Estimates of prediction uncertainty provided (e.g. confidence intervals) 

provided

Entirely 31 43

Partly 13 18

Not at all 28 39

Methods presented with  a level of detail that allowed the study to be 

reproduced 

Entirely 37 54

Partially 28 41

Not at all 4 6

aDenominator excludes those studies where unable or no basis to judge 

bSome studies used multiple data types

cViremia duration and dynamics (n=3); sexual contact network (n=2); semen viral 

persistence (n=2), non-human primate demographics (n=1), mammalian diversity (n=1)

dSome studies used both stochastic and deterministic models

744

745

746

747
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748

Table 3. Accessibility, timeliness and other bibliometrics of eligible studies   

 n %d

Open accessa 68 96

Pre-print accessb 22 30

 median IQR (range)

Journal impact factor 4.37 2.65 - 7.62 (1.48 – 79.26) 

Submission to acceptance time, days 83 44 - 112    (0 - 256)

Acceptance to publication time, daysc 15 7 - 24    (-255 - 279)e

Submission to publication time, days 93.5 47 - 141 (1 - 389)

aIncludes non-journal open access websites. Open access defined as able to be viewed without any payment or institutional journal license

bBiorxiv n = 19, ResearchGate n=1, Bull WHO rapid journal pre-acceptance pre-print n = 2 

cNegative values exist as Bull WHO articles published upon receipt (within 24 hrs) and then accepted later

dDenominator may vary in cases where these metrics were unable to be determined

ePublication time based on electronic journal version where available
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750

Table 4. Author affiliation and funding source of eligible studies   

Affiliation of authorsa n  % 

Academia 68 93

Govt (US) 14 19

Govt (non-US) 19 26

Industryb 4 5

NGO 14 19

Other type of organizationc 4 5

Funding sourced n  %e

USG

CDC 1 2

DHS 2 4

DoD 3 6

LANL 1 2

NASA 1 2

NIH 21 39

NSA 2 4

NSF 12 22

USAID 1 2

USDA 3 6

Other USGf 1 2

Any USG 27 50

Any Non-US Govt 46 85

Any Industry 3 6
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Any NGO 19 35

Any international normative body 6 11

Otherg 6 11

aMultiple affiliations associated with some studies

bScientific contracting/consulting (n = 3), spatial epidemiology software (n 

=1)

cWorld Health Organization (n=2), European Centers for Disease Control 

(n=1), HealthMap (n=1)

dMultiple funding streams associated with some studies

eUnable to be determined or unfunded in a number studies, denominator = 54

fState Dept of Health (TX)

gAcademic intramural funding (n = 5)

751

752

753

754

755 Figure 1. PRISMA flow-chart indicating the number of studies identified, screened and 

756 confirmed for eligibility into this systematic review

757

758 Figure 2. Comparative trends of reported Zika cases in Latin American and publication times of 

759 Zika prediction studies. Zika case counts were obtained from https://andersen-lab.com/ with 

760 permission

761
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762 Figure 3. Comparative trends in publication times of ZIKV prediction studies with and without 

763 the use of preprints. 

764

765
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