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ABSTRACT

Development of new computational methods and testing their performance has to be done on 

experimental data. Only in comparison to existing knowledge can method performance be 

assessed. For that purpose, benchmark datasets with known and verified outcome are needed. 

High-quality benchmark datasets are valuable and may be difficult, laborious and time 

consuming to generate. VariBench and VariSNP are the two existing databases for sharing 

variation benchmark datasets. They have been used for training and benchmarking predictors 

for various types of variations and their effects. There are 419 new datasets from 109 papers 

containing altogether 329003373 variants; however there is plenty of redundancy between the 

datasets. VariBench is freely available at http://structure.bmc.lu.se/VariBench/. The contents 

of the datasets vary depending on information in the original source. The available datasets 

have been categorized into 20 groups and subgroups. There are datasets for insertions and 

deletions, substitutions in coding and non-coding region, structure mapped, synonymous and 

benign variants. Effect-specific datasets include DNA regulatory elements, RNA splicing, and 

protein property predictions for aggregation, binding free energy, disorder and stability. Then 

there are several datasets for molecule-specific and disease-specific applications, as well as 

one dataset for variation phenotype effects.  Variants are often described at three molecular 

levels (DNA, RNA and protein) and sometimes also at the protein structural level including 

relevant cross references and variant descriptions. The updated VariBench facilitates 

development and testing of new methods and comparison of obtained performance to 

previously published methods. We compared the performance of the pathogenicity/tolerance 

predictor PON-P2 to several benchmark studies, and showed that such comparisons are 

feasible and useful, however, there may be limitations due to lack of provided details and 

shared data.
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AUTHOR SUMMARY

A prediction method performance can only be assessed in comparison to existing knowledge. 

For that purpose benchmark datasets with known and verified outcome are needed. High-

quality benchmark datasets are valuable and may be difficult, laborious and time consuming 

to generate.  We collected variation datasets from literature, website and databases. There are  

419 separate new datasets, which however contain plenty of redundancy. VariBench is freely 

available at http://structure.bmc.lu.se/VariBench/. There are datasets for insertions and 

deletions, substitutions in coding and non-coding region, structure mapped, synonymous and 

benign variants. Effect-specific datasets include DNA regulatory elements, RNA splicing, and 

protein property predictions for aggregation, binding free energy, disorder and stability. Then 

there are several datasets for molecule-specific and disease-specific applications, as well as 

one dataset for variation phenotype effects. The updated VariBench facilitates development 

and testing of new methods and comparison of obtained performance to previously published 

methods. We compared the performance of the pathogenicity/tolerance predictor PON-P2 to 

several benchmark studies and showed that such comparisons are possible and useful when 

the details of studies and the datasets are shared.
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INTRODUCTION

Development and testing of computational methods are dependent on experimental data. Only 

in comparison to existing knowledge can method performance be assessed. For that purpose, 

benchmark datasets with known and verified outcome are needed. During the last few years, 

such datasets have been collected for a number of applications in the field of variation 

interpretation. VariBench [1] and VariSNP [2] are the two existing databases for variation 

benchmark datasets. VariBench contains all kinds of datasets while VariSNP is a dedicated 

resource for variation sets from dbSNP database for short variations [3].

Benchmark datasets are used both for method training and testing. We can divide testing 

approaches into three categories (Figure 1). The most reliable are systematic benchmark 

studies. Quite often the initial method performance assessment is done on somewhat limited 

test data or not reporting all necessary measures. The third group includes studies for initial 

method and hypothesis testing typically with a limited amount of data. An example for this 

kind of testing is Critical Assessment of Genome Interpretation (CAGI, 

https://genomeinterpretation.org/), which has organized several challenges for method 

developers. These contests with blind data, when the participants do not know the true 

answer, have been important e.g. for testing new ideas and methods, as well for tackling novel 

application areas.

Figure 1. Types of method performance tests. The figure is adapted from [34].
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High-quality benchmark datasets are valuable and may be difficult, laborious and time 

consuming to generate. Already from the point of view of reasonable use of resources it is 

important to share such datasets. Secondly, comparison of method performance is reliable 

only when using the same test dataset. According to the FAIR principles [4], research data 

should be made findable, accessible, interoperable and re-usable. VariBench and VariSNP 

provide variation data according to these principles. 

It is still quite common that authors collect and use extensive datasets for their published 

papers, but do not share and make the datasets available. This prevents others from comparing 

additional tools to those used in the paper. Even when the data is made available, it may be in 

a format that makes re-use practically impossible. An example is the datasets used for testing 

the MutationTaster2 tolerance predictor [5]. They were published as figures and at barely 

legible resolution. Now, these datasets are available in VariBench.

CRITERIA FOR BENCHMARKS

We defined criteria for a benchmark when the VariBench database was first published [1]. 

These criteria were more extensive than previously used and have been found very useful and 

still form the basis for inclusion of data and for their representation in VariBench. The criteria 

are as follows.

Relevance. The dataset has to capture the characteristics of the investigated property.  Not all 

available data may be relevant for the phenomenon or may be only indirectly related to it. The 

collected cases have to be for the specific effect or mechanism under study.

Representativeness. The datasets should cover the event space as well as possible, thus 

preferably containing examples from all the regions relevant to the effect. The actual number 

of cases for achieving this coverage may vary widely depending on the effect. The dataset 

should be of sufficient size to allow statistical studies but may not need to include all known 

instances.
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Non-redundancy. This means excluding overlapping cases. 

Experimentally verified cases. Method performance comparisons have to be based on 

experimental data, not on predictions, otherwise the comparison will be about the congruence 

of methods, not about their true performance.

Positive and negative cases. Comprehensive assessment has to be based both on positive 

(showing the investigated feature) and negative (not having effect) cases.

Scalability. It should be possible to test systems of different sizes. 

Reusability. As datasets are expensive to generate they should be shared in such a way that 

they can be used for other investigations. This may mean similar applications or usage in new 

areas.

Most of the criteria are rather easy to fulfil, but some others are more difficult to take into 

account. We recently investigated the representativeness of 24 tolerance datasets from 

VariBench in the human protein universe by analysing the distribution and coverage of cases 

in chromosomes, protein structures, CATH domains and classes, Pfam families, Enzyme 

Commission (EC) categories and Gene Ontology annotations [6]. The outcome was that none 

of the datasets were well representative. When correlating the training data representativeness 

to the performance of predictors based on them, no clear correlation was found. However, it is 

apparent that representative training data would allow training of methods that have good 

performance for cases distributed throughout the event space. 

Benchmark studies in relation to variation predictions have been made for variants affecting 

protein stability [7, 8], protein substitution tolerance/pathogenicity [9-14], protein localization 

[15], protein disorder [16], protein solubility [17], benign variants [18], transmembrane 

proteins [19], alternative splicing [20, 21] and phenotypes of amino acid substitutions [22]. 

Many of the datasets used in these studies are available for verification and reuse, but 

unfortunately e.g. the last one, which is unique, is not accessible.
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To test relevance of the tolerance datasets, we investigated how many disease-causing 

variations could be found from neutral training data. A small number of such variants were 

found, 1.13 to 1.77 % [6]. These numbers are so small that they do not have a major impact 

on method performances. VariBench datasets are reusable and scalable, contain experimental 

cases, and are typically non-redundant. However, how redundancy should be defined may 

depend on the application. For example, when using domain features in variant predictors, 

variants even in related domain members would be redundant. 

DATASET QUALITY

The quality of benchmark datasets is of utmost significance. This is naturally dependent on 

the quality of the data sources. There are not many quality schemes in this field. For locus 

specific variation databases (LSDBs) there is a quality scheme that contains close to 50 

criteria in four main areas including database quality, technical quality, accessibility and 

timeliness [23]. However, these guidelines are not yet widely followed and similar criteria are 

missing for other types of variation data resources.

Systematics within datasets and databases can significantly improve their quality and 

usability. For variation data there are a number of systematics solutions available. These 

include systematic gene names available for human from the HUGO Gene Nomenclature 

Committee (HGNC) [24], Human Genome Variation Society (HGVS) variation nomenclature 

[25], Locus Reference Genomic (LRG) and [26] RefSeq reference sequences [27], and 

Variation Ontology (VariO) variation type, effect and mechanism annotations [28].

Quality relates to numerous aspects in the datasets, the correctness of variation and 

gene/protein and disease information, relevance of references, etc. We recently selected cases 

from ProTherm [29] to build an unbiased dataset for the protein variant stability predictor 

PON-tstab [30]. We were aware that the database had some problems, however, were 

surprised with the extent of problematic cases. While making the selection, we noticed 

numerous issues, such as cases of two-stage denaturation pathways where values for all the 
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steps and then the total value were provided; there were errors in sequences, variants, 

recorded measuring temperatures, ΔΔG values and their signs and units, and in indicated PDB 

structures; and so on. The uncorrected and wrong data have been used for development of 

tens of prediction methods. This is probably an extreme exception (ProTherm was taken away 

from the internet after our paper was published); however, this indicates that one has to be 

careful even when using popular data. VariBench has several quality controls, but lists also 

datasets that may contain problems e.g. numerous ProTherm sub-selections that have been 

published and sometimes used in several papers. They are included for comparative purposes.

HOW TO TEST PREDICTOR PERFORMANCE

The use of a benchmark dataset is just one of the requirements for systematic method 

performance assessment. Proper measures are needed to find out the qualities of performance. 

Most of the currently available prediction methods are binary, distributing cases into two 

categories. There are guidelines for how to test and report method performance [31-33]. There 

is also a checklist what to report when using such methods in publications. 

Results for binary methods are presented in a contingency (also called for confusion) table out 

of which different measures can be calculated. The most important ones are the following six, 

which according to the guidelines [32] have to be provided for comprehensive assessments. 

Specificity, sensitivity, positive and negative predictive values (PPV and NPV) use half of the 

data in the matrix, while accuracy and Matthews correlation coefficient (MCC) use data from 

all the four data cells. Additional useful measures include area under curve (AUC) when 

presenting Receiver Operating Characteristic (ROC) curves, and Overall Performance 

Measure (OPM). Good methods display a balanced performance, their values for measures 

differ only slightly.

In case there is an imbalance in the number of cases in the classes, it has to be mitigated [31]. 

Several approaches are available for that. Cases used for testing method performance should 

not have been used for training them, otherwise there is circularity that overinflates 
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performance measures [14]. A scheme has been presented on how datasets should be split for 

training and testing as well as blind testing [34]. When there are more than two predicted 

classes additional measures are available [31, 32]. In addition to these measures, method 

assessment can contain other factors such as time required for predictions, as well as user 

friendliness and clarity of the service and results.

Datasets used for assessment have to be of sufficient size. There are a number of reasons for 

this requirement. Widely used machine learning methods are statistical by nature and require 

a relatively large number of cases for reliable testing. If we think the event space, in the case 

of proteins, there are 380 different amino acid substitution types, 150 of which are more likely 

due to happening because of a single nucleotide substitution within the coding region for a 

codon. These substitutions can appear in numerous different contexts, thus too small test 

datasets should be avoided. There are several performance assessments, especially for variants 

in a single protein or a small number of genes/proteins that do not have any statistical power. 

The smallest dataset we have seen contained just nine substitutions based on which a detailed 

analysis was performed to recommend the best performing tools! 

Variation interpretation is often done in relation to human diseases. It is important to note that 

diseases are not binary states (benign/disease) instead there is a continuum and certain disease 

state can appear due to numerous different combinations of disease components, see the 

pathogenicity model [35]. This aspect has not been taken into account in benchmark datasets 

apart from training data for PON-PS [36] and clinical data for cystic fibrosis [37].

VARIATION DATASETS

We have collected from literature, websites and databases datasets, which have been used for 

training and benchmarking various types of variations and their effects (Table 1). The new 

datasets come from 109 papers. There are 419 new separate datasets containing altogether 

329003373 variants. One paper can contain more than one dataset. The number of unique 

variants is smaller as many of the datasets are different subsets of commonly used datasets 
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such as ClinVar or ProTherm, or VariBench itself. The total number is dominated by 

VariSNP cases.

Table 1. New benchmark datasets added to VariBench

Origin of data First used for Number of variants Reference

Variation type datasets

Insertions and deletions (0/0)

HGMD, 1000 GP DDIG-In 659, 2008, 2479, 3861, 579, 

2008, 2413, 3861

[38]

ClinVar, 1000 GP, ESP6500

SIFT-Indel

ENTPRISE-X 6513,5023,82, 366, 3171, 

1604, 181, 1025

[39]

SwissProt, 100 GP, SM2PH KD4i 2734 [40]

Sequence alignments SIFT Indel 474, 9710 [41]

Substitutions, coding region (6/10)

Training datasets

Literature, patents PredictSNP 10581, 5871, 43882, 32776, 

3497, 11994

[11]

HGMD, SwissProt FATHMM, 

FATHMM-XF

69141, 94995, 69141 [42, 43]

ClinVar, HGMD MutationTaster 2600, 2199, 1100, 1100 [5]

HumDiv, UniProt, ClinVar VIPUR 1542, 382, 949, 4992, 6555 [44]

Humsavar BadMut 33483 [45]

HumVar, ExoVar, 

VariBenchSelected, 

SwissVarSelected

RAPSODY 21946 [46]

ClinVar, ESP DANN 16627775, 49407057 [47]

SwissProt NetSAP 5375, 1152 [48]
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VariBench PON-P2 10717, 13063, 1108, 1605, 

6144, 8661, 656, 1053

[10]

Humsavar, VariBench SuSPect 18633, 64163 [49]

CMG, DDD, ClinVar, 

ExoVar, 1000 GP, Hg19, 

Gencode, ESP6500

MAPPIN 64, 158, 3595, 15702, 

512370, 51599, 11763, 

1048544

[50]

Uniprot, 1000 GP, literature, 

VariBench, ARIC study

Ensemble 

predictor

36192, 238, 19520, 

7953, 33511, 26962

[51]

ClinVar PhD-SNPg 48534, 1408 [52]

Multiple gene panel MVP 1161 [53]

ADME genes

LoF only

ADME 

optimized

337, 180 [54]

CinVar, NHGRI GWAS 
catalog, COSMIC, VariSNP 

PredictSNP2 25480, 12050, 142722, 
16716, 71674

[55]

Test datasets

HumVar, ExoVar, 

VariBench, predictSNP, 

SwissVar

Circularity 40389, 8850, 10266, 16098, 

12729

[14]

ClinVar, literature, 

PredictSNP

ACMG/AMP 

rules

14819, 1442, 4667, 6931, 

5379, 12496, 14819, 4192,

16064, 10308, 7766

[56]

ClinVar, TP53, PPARG Performance 

assessment

11995 [57]

UniProt Guideline 

discordant/PRDI

S 

28474, 336730 [58]

ESP6500, HGMD Compensated 1964 [59]
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pathogenic 

deviations

VariBench Representativen

ess

446013, 23671, 19335, 

19459, 14610, 17623, 17525, 

14647, 13096, 13069, 12584, 

1605, 1301, 8664, 7152, 

1053, 751, 16098, 10266, 

8850, 40389, 21151, 22196, 

75042

[6]

Structure mapped variants

PDB, UniProt PON-SC 349, 7795 [60]

3D 3D structure 

analysis

374 [61]

LSDBs, literature, ClinVar Membrane 

proteins

2058 [19]

Synonymous

ClinVar, GRASP, GWAS 

Catalog, GWASdb, 

PolymiRTS, PubMed, Web 

of Knowledge

dbDSM 2021 [62]

dbDSM, ClinVar, literature IDSV 600, 5331 [63]

Benign

dbSNP VariSNP 446013, 956958, 470473, 

3802, 9285, 3402, 5277, 

11339, 588, 318967, 

1804501, 610396, 25930776

[2]

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/634766doi: bioRxiv preprint 

https://doi.org/10.1101/634766
http://creativecommons.org/licenses/by/4.0/


13

ExAX Assessment of 

benign variants

63197 [18]

Effect-specific datasets

DNA regulatory elements

Ensembl Compara, 1000 GP Pathogenic 

regulatory 

variants

42, 142, 153, 43, 65, 3, 5 [64]

OMIM, ClinVar, VarDi, 

GWAS Catalog, HGMD, 

COSMIC, FANTOM5, 

ENCODE

Regulatory 

variants

27558, 20963, 43364 [65]

dbSNP, HGMP, HapMap, 

GWAS Catalog

Regulatory 

elements

225, 241910 [66]

ENCODE, NIH Roadmap 

Epigenomics

CAPE 7948, 4044, 2693, 51, 156, 

56497, 2029

[67]

Whole genome sequences, 

GiaB, HGMD, ClinVar

CDTS 15741, 427, 10979, 

67144812, 34687974, 

30634572, 31893124, 

61372584

[68]

Literature, OMIM, Epi4K TraP 402, 97, 103 [69]

HGMD, 1000GP, ClinVar ShapeGTP 4462, 1116 Malkowsk

a et al. 

submitted

ClinVar, literature NCBoost 655, 6550, 770 [70]

RNA splicing (1/1)

Literature, LSDBs, HGP DBASS3 and 307, 577 [71, 72]
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DBASS5

HGMD, SpliceDisease 

database,  DBASS, 1000 GP

dbscSNV 2959, 45, 2025 [21]

Experimental BRCA1 and 

BRCA2

13, 15, 33, 38, 35, 73 [73]

Ensembl, UCSC Genome 

Browser

HumanSplicing

Finder

424, 81, 15, 89 [74]

HGMD MutPred Splice 2354, 638 [75]

hg19, GenBank, dbSNP ASSEDA 41, 8, 12 [76]

Experimental RB1 3, 17, 13, 6 [77]

Experimental LDLR 18, 18 [78]

Experimental BRCA1 and 

BRCA2

6, 29, 6, 19 [79]

Experimental, LSDBs BRCA1 and 

BRCA2

53, 4, 4, 6, 5 [80]

Experimental BRCA1 and 

BRCA2

24, 22, 13, 10, 10, 5, 11 [81]

Experimental Exon 1st 

nucleotide

25, 5, 9, 5, 5, 9, 30, 9 [82]

ClinVar, 1000GP Splice site 

consensus 

region

222, 50 [83]

Protein aggregation (0/0)

WALTZ-DB, AmylHex, 

AmylFrag, AGGRESCAN, 

TANGO

AmyLoad 1400 [84]
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Experimental WALTZ-DB 1089 [85]

Binding free energy

Literature, ASEdb, PIN, 

ABbind, PROXiMATE, 

dbMPIKT

SKEMPI 2.0 7085 [86]

SKEMPI Flex ddG 1249 [87]

Protein disorder (0/0)

Literature PON-Diso 103 [16]

Protein solubility (0/0)

Literature PON-Sol 443 [17]

Protein stability (4/6)

Single variants

ProTherm PON-Tstab 1564 [30]

ProTherm I-Mutant2.0 2087, 1948 [88]

ProTherm Average 

assignment

1791, 1396, 2204 [89]

ProTherm iPTREE-STAB 1859 [90]

ProTherm SVM-WIN31 

and SVM-3D12

1681, 1634, 499 [91]

ProTherm PoPMuSiC-2.0 2648 [92]

ProTherm sMMGB 1109 [93]

ProTherm M8 and M47 2760, 1810 [94]

ProTherm EASE-MM 238, 1676, 543 [95]

ProTherm HoTMuSiC 1626 [96]

SAAFEC 1262, 983 [97]

ProTherm STRUM 3421, 306 [98]
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ProTherm Metapredictor 605 [99]

ProTherm Automute 1962, 1925, 1749 [100]

TP53 TP53 42 [101]

ProTherm Ssym 684 [102]

ProTherm, experimental data,

ASEdb

Alanine 

scanning for 

binding energy

2971, 1005, 2154, 1210, 768, 

380

[103]

ProTherm Rosetta 1210 [104]

Double variants

ProTherm WET-STAB 180 [105]

Molecule-specific datasets (1/2)

InSiGHT PON-MMR2 178, 45 [106]

Literature PON-mt-tRNA 145 [107]

BTKbase PON-BTK 152 [108]

Kin-Driver, ClinVar, 

Ensembl

Kinact 384, 258 [109]

Literature KinMutBase 1414 [110]

COSMIC Kin-Driver 783, 648 [111]

OMIM, KinMutBase, 

HGMD

Protein kinases 1463, 999, 302 [112, 113]

UniProt, KinMutBase, 

SAAPdb, COSMIC

wKin-Mut 865, 2627 [114]

dbSNP, HGMD, COSMIC, 

literature

PTENpred 676 [115]

UniProt, Humsavar Protein specific 

predictors

1872222 in 82 files [12]
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Literature SAVER 187 [116]

Literature, experimental, 

dbSNP, ExAC, ESP

DPYD-Varifier 69, 295 [117]

Experimental BRCA1/2 201, 68 [118]

Experimental CFTR 20,11 [37]

CHAMP, literature HApredictor 1138 [119]

Humsavar MutaCYP 29, 285, 328 [120]

UniProt, HGMD, MutDB, 

dbSNP, literature

KvSNP 1259, 176 [121]

Disease-specific datasets (0/0)

Literature, TP53 database, 

ClinVar, DoCM

Pan-cancer 

analysis

659, 65, 387 [122]

Literature, IARC TP53 

Database, UMD BRCA1 and 

BRCA2

Cancer 3706 [123]

ICGC, TCGA, Pediatric 

Cancer Genome Project, 

dbSNP

Cancer 4690 [124]

Literature, LOVD, Inherited 

Arrhythmia Database

Long QT 

syndrome

90, 82, 8, 81, 113, 99, 14, 58, 

55, 52, 28, 24, 109, 101, 8, 

312

[125]

Experimental PolyPhen-HCM 74, 78983 [126]

Functional assays FASMIC 1049, 95, 40, 785, 21, 14, 35, 

65, 22

[127]

Literature dbCPM 941 [128]

cBioPortal, COSMIC, MSK- OncoKB 4472 [129]
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IMPACT cohort

TCGA DoCM 1364 [130]

Phenotype dataset (0/0)

Literature, LSDBs PON-PS 2527, 401 [36]

VariBench datasets are freely available at http://structure.bmc.lu.se/VariBench/ and can be 

downloaded separately. The website contains basic information about the datasets, their origin 

and for what purpose they were initially used for. Datasets are categorized similar to Table 1 

for easy access. The contents of the datasets vary depending on information in the original 

source. We have enriched many of them e.g. by mapping to reference sequence or PDB 

structures, and some contain VariO annotations.

The available datasets have been categorized into 20 groups and subgroups as indicated in 

Figure 2. The figure shows also the relationships of the datasets in different categories. 

Variants are often described at three molecular levels (DNA, RNA and protein) and 

sometimes also at protein structural level, including relevant cross references and variant 

descriptions. VariBench utilizes and follows a number of standards and systematics including 

HGVS variation nomenclature, HGNC gene names (not in all databases due to mapping 

problems), and VariO annotations in some datasets.

 

Figure 2. Types of benchmark datasets and their relations in VariBench.
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Links are available to data in some external databases, including AmyLoad [84] and WALTZ-

DB [85] for protein aggregation, DBASS3 and DBASS5 [71, 72] for splicing variants, 

SKEMPI [86], cancer datasets in KinMutBase [110], Kin-Driver [111], dbCPM [128], DoCM 

[130],  and OncoKB [129], and tolerance predictor training set in DANN [47]. The latter has a 

link due to its huge size, the others since they are databases and as such easy to use directly 

and updated by third parties. We excluded datasets used in CAGI experiments, since they are 

available for registered participants only. LSDBs were excluded because data from these 

sources usually have to be manually selected before using as benchmark. Most of the time, 

there is no clear information for variant relevance to disease(s). Datasets for structural 

genomic variants were excluded, because they usually lack information about exact variation 

positions. 

Unfortunately, many papers, even those reporting on benchmarking, do not contain and share 

the data, which does not allow others to extend the analyses and reuse the datasets.

Variation type datasets

Variation types include insertions and deletions, coding and non-coding region substitutions, 

which are divided into training and test datasets, structure mapped variants, as well as 

synonymous, and benign variants. There are now data from four amino acid insertion effect 

predictors, mainly for short alterations. Only datasets added after the release of the first 

version of VariBench are discussed here. In Table 1 it is shown how many datasets and 

publications in each category appeared in the first edition.

Training datasets have mainly been used for development of machine learning predictors, 

there are 17 new datasets. They typically also contain test sets. Six test datasets have been 

specifically designed for method assessments. These include a set for addressing circularity 

[14] and pathogenicity/tolerance method performance assessment [57]. The American College 

of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology 

(AMP) has published guidelines for variant interpretation [131]. These include instructions 
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for use of prediction methods. A dataset was obtained for addressing concordance of 

prediction methods [56]. Another study addressed discordant cases [58]. Protein sequences of 

even closely related organisms contain differences and some of these are compensated 

variants where a disease-related variant in human is normal in another organism due to 

additional alteration(s) at other site(s). A dataset has been collected for such variants [59]. 

Unfortunately only the benign variants were made available. Analysis of the dataset 

representativeness, how well the datasets represent the variation space, was investigated for 

24 datasets in VariBench and VariSNP [6]. These cases were mapped to reference sequence 

and are now available in the database.

Variations are mapped into protein three-dimensional structures in several datasets. Dedicated 

datasets contain those used for developing a method for predicting side chain clashes due to 

residue substitutions [60], analysis of effects on structures and functions of substitutions [61], 

and investigation of variations in membrane proteins [19].

There are two datasets for synonymous variants as well as two for benign ones.

Effect-specific datasets

These datasets are for various types of effects. On DNA level there are 8 sets for DNA 

regulatory elements, and on RNA level 13 datasets for splicing. Most of the splicing datasets 

are very small, but there are a few with substantially larger numbers. In the first version of 

VariBench, there were only protein stability datasets in this category, totally 6 datasets from 4 

studies. Thus the growth has been substantial.

Many more sets are available for effects on protein level. Protein aggregation (2 datasets), 

binding free energy (2), disorder (1), solubility (1), and stability are the currently available 

categories. Among protein stability datasets, there are 18 new datasets for single variants, 

almost all originating from ProTherm, and one dataset for double variants. 

Molecule-specific datasets
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Thera are in VariBench 17 specific datasets for certain molecules. There is a set of variants 

used to train PON-mt-tRNA for substitutions affecting mitochondrial tRNA molecules [107]. 

This is of special interest as there are 22 unique mitochondrial tRNAs, which are implicated 

in a number of diseases.

The other datasets are protein specific. Kinact [109], Kin-Driver [111], KinMutBase [110],  

Kin-Mut [114] and the protein kinase dataset [112] contain variation information for protein 

kinases. The PON-BTK dataset was used to train a predictor for kinase domain variants in 

Bruton tyrosine kinase (BTK) [108]. There is a set for mismatch repair (MMR) proteins 

MLH1, MSH2, MSH6 and PMS2 and used to train PON-MMR2 [106]. 

Single amino acid substitutions were collected in 82 proteins to test whether there is a 

difference in performance for protein specific and generic predictors [12]. All the datasets 

contain at least ~100 variants. The results indicated vast differences in performances, the best 

generic predictors outperforming the specific predictors in most but not all cases.

The remaining datasets in this category are for variants in individual genes/proteins.

Disease-specific datasets

This category contains totally 9 datasets, six of which are for cancer, one for long QT 

syndrome [125] and another for hypertrophic cardiomyopathy [126].

Although there are numerous studies of cancer variations, the functional verification of the 

relevance of those variants for the disease is usually missing. VariBench contains three 

datasets for variants in cancer, which have been experimentally tested [122-124], and links to 

three other sources, namely dbCPM [128], DoCM [130],  and OncoKB [129]. In addition, 

there is the FASMIC dataset for variants which are largely cancer related [127].

Phenotype dataset
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One dataset contains information for disease phenotype, whether there is mild/moderate or 

severe disease due to substitutions. This dataset was used to train disease severity predictor 

called PON-PS [36].

BENCHMARK USE CASE

VariBench datasets have mainly been used for prediction method development and testing. As 

the benchmark studies typically have not contained all the best performing tools, we 

compared the performance of the variant tolerance/pathogenicity predictor PON-P2, since this 

tool has been the best or among the best performing methods in a number of previous 

investigations [10, 12, 18, 19, 58]. The setup was similar in all these studies: to test the 

outcome of a spectrum of methods. We extended the published benchmark studies by 

repeating the original analyses with PON-P2. To avoid circularity, we first excluded from the 

datasets all cases that had been used for training PON-P2. The results are shown in Table 2 

and are reported according to the published guidelines [32] and including some additional 

measures. 

The exercise indicated that reproducibility and reusability could not be achieved in a number 

of cases due to problems in reporting. We had to exclude some published benchmark studies. 

The dataset for pharmacogenetics variants [54] was too small for reliable estimation. The 

paper for compensated variants [59] did not share the disease-related variants, and thus could 

not be evaluated. Of the dataset used by [53] only 36 cases were not included to the PON-P2 

training set, and therefore had to be excluded.

We were able to perform the analysis for six studies and we analysed altogether 17 datasets. 

Full comparison was not possible in all cases as some details were not available. Therefore we 

discuss and compare the performances based on the information in the original papers, but list 

all the details from our study in Table 2.
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TABLE 2. Performance of PON-P2 on test datasets

Dataset TP FP TN FN Coverage PPV   NPV Sens Spec Acca MCC OPM
MutationTaster2, ClinVar  [5] 544 9 959 32 0.685 0.99 0.947 0.944 0.991 0.968 0.936 0.910
MutationTaster2 [5] 407 10 803 63 0.635 0.986 0.881 0.866 0.988 0.927 0.860 0.810
Circularity, PredictSNPSelected [14] 5116 341 3173 590 0.623 0.940 0.770 0.900 0.860 0.880 0.730 0.606
Circularity, SwissVarSelected [14] 1551 818 3194 773 0.557 0.650 0.810 0.670 0.800 0.750 0.460 0.325
ACMG/AMP, MetaSVM  [56] 2588 364 2457 192 0.503 0.878 0.927 0.931 0.871 0.901 0.803 0.733
ACMG/AMP, ClinVar_balanced [56] 841 136 608 69 0.455 0.835 0.915 0.924 0.817 0.871 0.746 0.666
ACMG/AMP, VaribenchSelected_Tolerance 
[56]

1727 171 2996 57 0.513 0.947 0.967 0.968 0.946 0.957 0.914 0.875

ACMG/AMP, predictSNPdsel [56] 3752 317 3071 427 0.539 0.906 0.899 0.898 0.906 0.902 0.804 0.734
ACMG/AMP, ClinVar_Sep2016 [56] 1050 215 1726 102 0.514 0.892 0.909 0.911 0.889 0.900 0.801 0.729
ACMG/AMP, Dominant_Recessive_Genes 
[56]

1284 98 619 52 0.506 0.875 0.957 0.961 0.863 0.912 0.828 0.769

ACMG/AMP, Oncogenes_TSG [56] 535 59 74 3 0.497 0.692 0.99 0.994 0.556 0.908  
0.775(AN)

0.613 0.559

Variants in 3D structures  [46] 5077 300 1060 266 0.337 0.812 0.94 0.95 0.779 0.865 0.741 0.676
ClinVar dataset [57] 1040 157 1200 169 0.541 0.881 0.864 0.86 0.884 0.872 0.745 0.664
TP53 dataset [57] 430 130 13 3 0.509 0.522 0.929 0.993 0.091 0.769  

0.542(AN)
0.195 0.269

PPARG dataset [57] 131 1376 7 0 0.598 0.501 1.000 1.000 0.005 0.503 0.000 0.111
Cancer, functionally  tested [123] 561 18 16 3 0.605 0.653 0.989 0.995 0.471 0.965                    

0.733(AN)
0.546 0.523

Cancer, non-COSMIC functionally tested  
[123]

108 10 14 3 0.455 0.700 0.956 0.973 0.583 0.904  
0.778(AN)

0.604 0.549

aAN, after normalization.
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For MutationTaster2 the published test data has not been previously available due to an 

inappropriate distribution format. MutationTaster 2 was originally compared to five tools and 

versions (MutationTaster1, PolyPhen humdiv and humvar, PROVEAN and SIFT) [5].  The 

accuracy and specificity are better for PON-P2 than the scores for the six tested tools and 

sensitivity is the second best. Only the measures given in the original article are discussed in 

here.

The study of circularity problems in variant testing was conducted on predictSNPSelected and 

SwissVarSelected datasets [14]. The performance of PON-P2 is superior compared to the 

eight tested predictors (MutationTaster2, PolyPhen, MutationAssessor, CADD, SIFT, LRT, 

FatHMM-U, FatHMM-W, Gerp++, and phyloP). In the test for predictSNPSelected dataset, 

NPV, PPV, sensitivity, accuracy and MCC are the best for PON-P2. Only for specificity it is 

the second best predictor, with a margin of 1%. In the data for SwissVarSelected, PON-P2 has 

the best score for PPV, accuracy and MCC. It is the second best for NPV and specificity, by 

1-2% margin to the best, and for sensitivity. On both datasets, PON-P2 showed the most 

balanced performance.

25 tools were tested according to ACMG/AMP guidelines using several datasets [56]. The 

compared methods were REVEL, VEST3, MetaSVM, MetaLR, hEAt, Condel, MutPred, 

Mcap, Eigen, CADD, PolyPhen2, PROVEAN, SIFT, EA, MutationAssessor, MutationTaster, 

phyloP100way, FATHMM, DANN, LRT, SiPhy, phastConst100way, GenoCanyon, GERP, 

and Integrated_fitCons. Unfortunately, the results were not comprehensively reported. The 

paper contains data for AUC scores but they are presented as figures. The exact values were 

difficult to estimate, especially when results for 18 datasets were combined into single figures. 

In the end, we performed the test for 8 of these datasets. In the ClinVar balanced data the 

AUC of PON-P2 is either shared first or second, and in VariBenchselected data it has the best 

performance. Comparison for the six other datasets is not as reliable, but we can summarize 
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that the PON-P2 performance is among the best if not best for all of these. It is really a pity 

that exact numbers were not provided by the authors.

The performances of 23 methods (FATHMM, fitCons, LRT, MutationAssessor, 

MutationTaster, PlyPhen humdiv and humvar versions, PROVEAN, SIFT, VEST3, GERP++, 

phastCons, phyloP, SiPhy, CADD, DANN, Eigen, FATHMM-MKL, GenoCanyon, M-CAP, 

MetaLR, MetaSVM, REVEL) were tested on three datasets: ClinVar and two protein specific 

sets for TP53 and PPARG [57]. They had also a fourth set for autism spectrum diseases, but 

since there is no experimental evidence for the relation of these variations to the disease that 

set was excluded. Although the study was well performed and described, it seems that the 

authors have not corrected for class imbalance. For the methods to be comparable the 

measures should be calculated based on the same data and have equal numbers of positive and 

negative cases. If that is not the case, the imbalance has to be mitigated with one of the 

available solutions. Some of the other benchmark studies may suffer from the same problem, 

but we are not sure due to incomplete descriptions of the studies. None of the tools can predict 

all possible variations and thus they have predictions for different numbers. Therefore we 

present the results both for non-normalized and normalized data. We believe that the former 

was used by the authors. In the case of ClinVar data, PON-P2 has better PPV, accuracy and 

MCC than the other methods tested in the paper. 

In the case of TP53 data, the PON-P2 accuracy is second best when the data are not 

normalized, on other measures PON-P2 is ranked the fourth or worse. All cancer variants, 

such as those in TP53, were excluded from the PON-P2 training data. This was done because 

the effects of variations in cancers usually have not been experimentally verified. A variant in 

TP53 is not “pathogenic” alone, several variants in different proteins are needed for cancer. 

All the predictors are known to have variable performance depending on the tested protein, 

see the study of protein-specific predictors [12]. That study showed that PON-P2 had better 

performance for 85% of proteins, being the best of the five tested tools (PolyPhen-2, SIFT, 
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PON-P2, MutationTaster2, CADD). PPARG seems to be another example for which PON-P2 

has poor performance [57]. An additional reason for poor performance may be that the 

PPARG data is not for pathogenicity, instead it is a “function score” that is based on the 

distribution of FACS sorted cells [132]. The same applies to the TP53 test data which is based 

on the protein function, not pathogenicity. Depending on a protein, the threshold for 

phenotype can be anything between 1 and 85% of the wild type activity (Vihinen, in 

preparation). We have previously tested PON-P2 in protein function prediction but with poor 

[133] or mixed (Kasak et al., submitted) outcome. This is because the method has not been 

trained and intended for this task. These results indicate the importance of applying 

computational tools to their intended purpose or at least testing the performance carefully 

before applied to new tasks.

Another study tested the performance of 14 tools (SEQ+DYN, SEQ, DYN, MutationTaster2, 

PolyPhen2, MutationAssessor, CADD, SIFT, LRT, FATHMM-U, Gerp++, phyloP, Condel, 

Logit) in relation to structural dynamics, which was used as a proxy for functional 

significance of amino acid substitutions [46]. PON-P2 has the best sensitivity, specificity, 

NPV and MMC, it is the second best for accuracy but only 13th for PPV. The explanation for 

the latter observation is that many of the tested tools are severely biased, having very high 

PPV but very low NPV, whereas the performance of PON-P2 was again balanced over all the 

measures.

The exercise indicated that it is possible to compare predictors to published results based on 

exactly the same datasets. The new performance results for PON-P2 are in line with several 

previously published studies that have indicated the methods to be a top performer on 

different benchmarks [10, 12, 18, 19, 58]. When choosing a method(s), one should look at 

consistent performance over several benchmarks.

Full comparisons were not always possible because of incomplete performance assessments. 

Therefore, authors should meticulously describe all details and procedures in the data analysis 
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as well as share the datasets used. Even if the data is taken from public sources, it is not 

possible for others to obtain exactly the same dataset as used in the papers even when 

applying the same selection criteria, as some important aspects seem always to be missing. In 

summary, it was possible to compare performances for methods not included into original 

studies. This is important in many ways, and contributes towards increased reproducibility 

and comparability. Good datasets are difficult to obtain, therefore VariBench will serve as a 

hub for sharing these important data.
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