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ABSTRACT (150 words) 35	

 36	

Dysregulation of mRNA alternative splicing (AS) has been implicated in development and progression 37	
of hematological malignancies. Here we describe the first comprehensive AS landscape in the 38	
spectrum of human prostate cancer (PCa) development, progression and therapy resistance. We find 39	
that the severity of splicing dysregulation correlates with disease progression and establish intron 40	
retention (IR) as a hallmark of PCa stemness and aggressiveness. Systematic interrogation of 274 41	
splicing-regulatory genes (SRGs) uncovers prevalent SRG mutations associated with, mainly, copy 42	
number variations leading to mis-expression of ~68% of SRGs during PCa evolution. Consequently, 43	
we identify many SRGs as prognostic markers associated with splicing disruption and patient 44	
outcome. Interestingly, androgen receptor (AR) controls a splicing program distinct from its 45	
transcriptional regulation. The spliceosome modulator, E7107, reverses cancer aggressiveness and 46	
abolishes the growth of castration-resistant PCa (CRPC) models. Altogether, we establish aberrant 47	
AS landscape caused by dysregulated SRGs as a novel therapeutic vulnerability for CRPC. 48	
 49	

 50	

Statement of significance (49 words) 51	

We present the first comprehensive AS landscape during PCa evolution and link genomic and 52	

transcriptional alterations in SRGs to global splicing dysregulation. AR regulates splicing in pri-PCa 53	

and CRPC distinct from its transcriptional regulation. Intron retention is a hallmark for and 54	

spliceosome represents a therapeutic vulnerability in aggressive PCa. 55	

 56	

  57	
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INTRODUCTION 58	

 59	

Prostate cancer (PCa) still causes a significant mortality among men world-wide (1). The prostate is 60	

an exocrine gland containing mainly androgen receptor negative (AR-) basal and AR+ luminal 61	

epithelial cells, together with rare neuroendocrine (NE) cells	 (2,3). PCa predominantly displays a 62	

luminal phenotype and histologically presents as adenocarcinomas (Ad) largely devoid of basal cells 63	

(4). Most primary PCa (pri-PCa) are diagnosed as low to intermediate grade (i.e., Gleason grade ≤7), 64	

relatively indolent, and treated by radical prostatectomy and/or radiation with a good prognosis. 65	

Locally advanced (Gleason grade 9/10) and metastatic PCa are generally treated with androgen 66	

deprivation therapy (ADT) using LHRH agonists/antagonists, which block testicular androgen 67	

synthesis. Tumors that have failed this first-line therapy are termed castration-resistant PCa (CRPC) 68	

and further treated with anti-androgens such as enzalutamide (Enza) that interfere with the functions 69	

of AR. Enza extends CRPC patients’ lives by ~5 months but tumors inevitably become refractory to 70	

Enza. While the majority of CRPC and Enza-resistant tumors histologically present as 71	

adenocarcinoma (i.e., CRPC-Ad), a significant fraction (up to 25%) of them evolve to an aggressive, 72	

AR-indifferent disease with NE features called CRPC-NE (5). In general, all CRPC are relatively 73	

undifferentiated and, molecularly, basal/stem-like (6,7), highlighting lineage plasticity in facilitating 74	

treatment resistance and progression (8). Most metastatic CRPC (mCRPC), including both CRPC-Ad 75	

and CRPC-NE subtypes, remains lethal mainly due to our incomplete understanding of mechanisms 76	

underpinning CRPC emergence, maintenance and progression. 77	

 78	

Dysregulation in pre-mRNA alternative splicing (AS) is emerging as a ‘hallmark’ of cancer (9,10). 79	

Nearly all multi-exon human genes undergo AS, a tightly regulated process that dramatically expands 80	

diversity of the transcriptome and proteome encoded by the genome (11). As an essential process for 81	

removing non-coding introns and ligating flanking exons to produce mature mRNA in eukaryotic cells, 82	

AS is performed by a dynamic and flexible macromolecular machine, the spliceosome. In addition to 83	
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the core subunits that constitute	 five small nuclear ribonucleoprotein particles (snRNPs: U1, U2, U4, 84	

U5 and U6), the spliceosome contains many other auxiliary splicing-regulatory proteins (SRPs) 85	

including families of the serine- and arginine-rich (SR) proteins and heterogeneous nuclear 86	

ribonucleoproteins (hnRNP), and many other proteins that do not belong to these two families but 87	

have a role in modulating splicing (12). In this study, we refer to the genes encoding core subunits 88	

and the SRPs, broadly, as splicing-regulatory genes (SRGs) (Supplementary Table 1). Aberrant AS is 89	

prevalent in human cancers (13) and many cancer-specific splicing events contribute to disease 90	

development and progression (9,12). Since the initial discovery, via DNA sequencing, of frequent 91	

point mutations in the core spliceosome subunits in myelodysplastic syndromes and, later, in 92	

hematological malignancies (9), splicing dysregulation has been appreciated as a major contributor to 93	

cancer phenotypes. In parallel, therapeutic targeting of mis-splicing by small molecules presents a 94	

new approach for treating hematological malignancies bearing core subunit mutations (10,12) and 95	

solid tumors driven by MYC (14). Nevertheless, despite increasing elucidation of the global and 96	

cancer-associated splicing features by recent RNA sequencing (RNA-seq) analyses of primary tumors 97	

and normal tissues (13), the underlying molecular mechanisms as well as functional and clinical 98	

relevance of splicing misregulation in cancer, especially in solid tumors, remain largely undefined. 99	

 100	

Importantly, many fewer recurrent mutations in the core spliceosome genes have been detected to 101	

date in solid tumors (15,16), suggesting a fundamental and mechanistic difference in splicing 102	

misregulation in hematological versus (vs.) solid cancers. Recently, global analyses of aberrant AS 103	

landscape across many human cancer types, including PCa, have been reported using RNA-seq data 104	

in TCGA (13,17-19), but these studies generally overlooked PCa and only analyzed pri-PCa, leaving 105	

behind life-threatening mCRPC. Furthermore, regarding the functional consequence of splicing 106	

dysregulation in PCa, previous studies have mainly focused on a few well-known genes typified by AR 107	

and CD44 (20), and the potential biological impact and clinical relevance of global splicing 108	

abnormalities in PCa remains unclear. Here, we specifically focus on PCa and provide, to our 109	
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knowledge, the first comprehensive characterization of the AS landscape during disease development 110	

and progression and upon treatment failure. We report that intron retention (IR) represents the most 111	

salient and consistent feature across the spectrum of PCa entities and positively correlates with PCa 112	

stemness and aggressiveness. We also systematically analyze the dysregulated SRGs and correlate 113	

altered SRGs with aberrant AS patterns in PCa, and examine the deregulated pathways affected by 114	

aberrant splicing events. Finally, we demonstrate that splicing misregulation can be explored 115	

therapeutically for treating CRPC. 116	

 117	

 118	

  119	
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RESULTS 120	

 121	

Increased AS Events Accompany PCa Development, Progression and Therapy Resistance  122	

To determine the global dysregulation of AS in PCa development and progression, we employed two 123	

AS mapping algorithms, rMATS (21) and SUPPA (22), to annotate RNA-seq datasets encompassing 124	

pri-PCa and normal (N) prostate tissues (23), CRPC-Ad (24,25), CRPC-NE (5,26), and advanced PCa 125	

treated with hormonal therapy (26,27) (Fig. 1; Supplementary Fig. S1A). We defined ‘progression’ 126	

generally as stages beyond pri-PCa and as disease entities that were more aggressive in a 127	

comparative manner. Five main AS patterns, including alternative 3’ splice sites (A3), alternative 5’ 128	

splice sites (A5), mutually exclusive exons (MX), exon skipping (SE) and IR, were examined 129	

(Supplementary Fig. S1B). Splicing events with a cutoff of DPSI>0.1 and FDR<0.1 (for rMATS) or 130	

p<0.05 (for SUPPA) were considered statistically significant (see Methods).  131	

Comparative analyses of either bulk or paired tumors and normal tissues indicated that pri-PCa 132	

possessed more AS events (~1.9 fold by rMATS; ~1.7 fold by SUPPA) with preferential increase in 133	

A3, A5 and IR (Fig. 1A and 1B; Supplementary Table S2). PCa post ADT (Fig. 1C) or subjected to 134	

neo-adjuvant hormone therapy (NHT; Fig. 1D) also displayed increased differentially spliced events 135	

(DSEs), suggesting a treatment-induced reshaping of global AS pattern that might have contributed to 136	

therapy resistance. Strikingly, mCRPC that had failed ADT and/or antiandrogens exhibited an 137	

exponential increase in DSEs, with noticeable increase in A3, A5, SE and IR (Fig. 1E and 1F). Within 138	

CRPC, CRPC-NE harbored a distinct splicing landscape relative to CRPC-Ad, although a notably 139	

smaller number of DSEs were observed than that in the CRPC-Ad vs. pri-PCa comparison (1712 vs. 140	

18318; Fig. 1G). Interestingly, when comparing pri-PCa vs. pri-PCa with NE differentiation post NHT 141	

(26), we identified 9364 DSEs (Fig. 1H). Mapping with SUPPA revealed overall similar dysregulated 142	

AS patterns and progressive increase in DSEs in the spectrum of PCa development, therapy 143	

resistance, and progression (Supplementary Fig. S1C and S1D) albeit SUPPA by nature tended to 144	

detect more splicing events (see Methods). These results, taken together, suggest that PCa 145	
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development is accompanied by increased AS events and that castration resistance and, in particular, 146	

metastasis, are characterized by further significant increases in AS events.    147	

Since lineage plasticity facilitates therapeutic resistance and tumor progression	 (6,28), we 148	

determined the human prostate epithelial lineage-specific AS patterns as basal cells represent the 149	

main pool of prostate stem cells (SCs) and molecularly resemble aggressive PCa subtypes (7). 150	

Results revealed distinct AS profiles for prostatic basal vs. luminal cells, with more IR found in basal 151	

cells (Fig. 1I; Supplementary Fig. S1C). To determine whether basal-specific splicing profile also 152	

resembles that in aggressive PCa, we performed comparative gene set enrichment analysis (GSEA) 153	

and found that PCa with aggressive phenotypes (mCRPC and CRPC-NE) generally possessed a 154	

global basal-like AS profile (Supplementary Fig. S1E). Experimentally, silencing of tumor suppressors 155	

(TS) TP53 and RB1 in LNCaP/AR cells enables a lineage switch from AR+ luminal cells to AR- basal-156	

like cells (28). Consistently, a large number of DSEs were observed in LNCaP/AR cells with 157	

RB1/TP53 knockdown (Fig. 1J; Supplementary Fig. S1C), suggesting that plasticity driven by loss of 158	

RB1/TP53 is accompanied by a global shift in the AS landscape. Remarkably, GSEA indicated that 159	

the AS signatures of LNCaP/AR cells deficient in RB1/TP53 were significantly enriched in mCRPC 160	

compared to pri-PCa (Supplementary Fig. S1F). These results suggest that inherent lineage 161	

differences in normal prostate epithelial cells and induced lineage plasticity in PCa cells are also 162	

accompanied by dysregulated AS patterns that correlate with increased aggressiveness.  163	

 164	

AS Dysregulation Impacts PCa Biology 165	

We explored the potential impact of AS dysregulation on PCa biology (Supplementary Fig. S2 and 166	

S3). By overlapping the splicing-affected genes (SAGs) and differentially expressed genes (DEGs), 167	

we observed only 9~20% of ‘overlapped’ genes (Supplementary Fig. S2A), suggesting that the 168	

majority of AS events minimally changes the bulk gene expression but may functionally tune 169	

transcriptomes (29). Gene ontology (GO) analysis (http://metascape.org) indicated that SAGs were 170	

enriched in many cancer-associated functional categories with both convergence (e.g., splicing, cell 171	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/634402doi: bioRxiv preprint 

https://doi.org/10.1101/634402


	 8	

cycle and proliferation, cytoskeleton) and specificity identified at each PCa stage (Supplementary Fig. 172	

S2B-D). For instance, GO terms linked to ‘muscle and ion transport’, ‘lipid metabolism’, and ‘cell 173	

polarity’ were pri-PCa specific (Supplementary Fig. S2B) whereas GO terms ‘DNA damage’, 174	

‘immunity’, and ‘nuclear pore’ were enriched in CRPC (Supplementary Fig. S2C), consistent with 175	

recent reports (30). Interestingly, and as expected, GO terms ‘SCs and development’ and ‘neuron and 176	

cell projection’ were greatly enriched in CRPC-NE (Supplementary Fig. S2D).  177	

We further evaluated the potential functional consequences of AS dysregulation on PCa 178	

transcriptome by identifying transcript-level expression profiles using an isoform-specific alignment 179	

algorithm (31). As shown in Supplementary Fig. S3A, PCa at different stages exhibited distinct splice 180	

isoform signatures. For instance, the widely studied ARv7 was slightly upregulated in pri-PCa and, 181	

together with several other AR variants, was dramatically overexpressed in CRPC-Ad but not in 182	

CRPC-NE (due to loss of AR expression in NE tumors) (Supplementary Fig. S3B). CD44, a cancer 183	

stem cell (CSC) marker, plays versatile roles in metastasis with CD44-standard (CD44s) suppressing 184	

and CD44 variants (CD44v) promoting cancer cell colonization (32). Consistently, we observed a shift 185	

from no change in pri-PCa to a specific dysregulation of CD44 isoforms in mCRPC, with CD44s being 186	

downregulated in both CRPC-Ad and CRPC-NE and CD44v upregulated in CRPC-Ad 187	

(Supplementary Fig. S3C). The splicing program driving CRPC-NE emergence is scantly explored. 188	

Recently, an SE event leading to unique upregulation of a MEAF6 isoform containing exon 6 (i.e., 189	

MEAF6-204), but not the bulk mRNA, was reported in CRPC-NE (33). We observed similar results 190	

(Supplementary Fig. S3D), thus validating our analytic approaches. These analyses indicate that 191	

splicing abnormalities impact PCa biology by regulating cancer-related pathways, at least partially, via 192	

switching the isoform expression of key relevant genes.  193	

 194	

Increased IR as a Consistent Hallmark of PCa Progression, Stemness and Aggressiveness 195	

Notably, we consistently observed increased IR across the spectrum of PCa development, 196	

progression and therapy resistance whereas the SE represented the most abundant splicing type 197	
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(Fig. 1A-1J; Supplementary Table S2). We focused our subsequent studies on IR for it is the least 198	

studied AS type (10,34). We observed a >18 fold increase in IR in pri-PCa relative to normal tissues 199	

(Fig. 1K, i), consistent with a previous report that IR is common across multiple primary cancers (34). 200	

PCa progression is tightly associated with ADT failure and subsequent cellular plasticity towards 201	

stemness (35-37). In six different contexts, we consistently observed a preferential upregulation of IR 202	

in association with therapy-resistant, aggressive, and metastatic PCa (Fig. 1K, ii). Similar IR 203	

upregulation was observed in prostate tumors and epithelial cells displaying low vs. high AR activity 204	

(Fig. 1K, iii; see below). Interestingly, increased IR was also found in CSC-enriched PSA-/lo cell 205	

population isolated from LAPC9 xenografts (38), basal-like LNCaP cells depleted of TP53 and RB1 206	

(28), and LNCaP-CRPC cells that survived long-term Enza treatment (>8 weeks (39) (Fig. 1K, iv). Of 207	

note, SUPPA produced similar results (data not shown). These analyses link the upregulated IR with 208	

PCa stemness. We reanalyzed 3 recently published datasets that examined differentiation of different 209	

SC systems and also observed a positive correlation between IR and normal stemness 210	

(Supplementary Fig. S4A-C). Hence, in genetically matched hESCs – fibroblasts – iPS – fibroblasts 211	

system (40), ESCs lost IR during fibroblast differentiation while fibroblasts regained IR when they 212	

were reprogrammed to iPS cells (Supplementary Fig. S4A), in line with the earlier report (41). During 213	

spermatogenesis, spermatocytes displayed higher levels of IR than differentiated spermatids 214	

(Supplementary Fig. S4B), and these IR events were enriched in genes associated with gamete 215	

function (42). Finally, IR was found to be prevalent in stem-like, resting CD4+ T cells vs. functionally 216	

activated (differentiated) counterparts (Supplementary Fig. S4C), as reported previously (43).  217	

We investigated the splicing ‘code’ of IR (44) in attempt to understand the molecular basis of 218	

preferential IR in aggressive PCa. Retained introns in normal tissues generally have weak 5’ and 3’ 219	

splice sites (44). Surprisingly, the splice site strength analysis did not reveal weak 5’ or 3’ sites in 220	

retained introns in pri-PCa, CRPC-Ad and CRPC-NE – in fact, CRPC-Ad showed stronger splice sites 221	

than pri-PCa (Supplementary Fig. S4D). Sequence feature analysis indicated that, compared with 222	

constitutive introns, IR in pri-PCa preferred introns with less GC content (GC%) and longer sequence 223	
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length whereas CRPC-Ad specifically retained introns that were generally shorter without difference in 224	

GC% (Supplementary Fig. S4E). No feature variation was observed in the retained introns in CRPC-225	

NE vs. CRPC-Ad (Supplementary Fig. S4E). Together, these results suggest that the prevalence of IR 226	

in PCa is not associated with weak 5’ and 3’ splice sites and may largely be trans-regulated.  227	

To determine the potential trans factors (i.e., SRGs) that may preferentially regulate IR, we 228	

performed motif search for 95 RNA binding proteins (RBP) with known consensus motifs (45-47) on 229	

differentially splicing introns compared with constitutive introns. Based on an RBP-binding score for 230	

each factor, we chose top 20 genes for further analysis. As shown in Fig. 1L, we identified a few 231	

genes that may preferentially regulate IR for each specific comparison. Nonetheless, the majority of 232	

RBPs were shared by introns regardless of the IR status, suggesting that the spliceosome functions 233	

as a group rather than that one particular factor preferentially regulates one AS type. In support, we 234	

decoded the AS events associated with gene expression abundance by fractionating a cohort into two 235	

extremes (Fig. 1M). As expected, although the expression of ELAVL1 in pri-PCa and RBM38 in 236	

CRPC-Ad cohorts, respectively, both dramatically impacted IR, other splicing types were affected as 237	

well (Fig. 1M). Interestingly, ELAVL1 was not dysregulated in pri-PCa vs. normal tissues (FC=1.1). 238	

The discrepancy between a potential IR-inhibiting function of ELAVL1 and a marked increase in IR 239	

implied an involvement of other SRGs in preferential (or balanced) regulation of IR in pri-PCa. On the 240	

other hand, an IR-inhibiting function of RBM38 was consistent with its downregulation (FC=2.3) and 241	

an increase in IR in CRPC-Ad vs. pri-PCa (Fig. 1M). A TS role has been reported for RBM38 (48).  242	

Subsequently, we interrogated potential biological impact of the upregulated IR on PCa biology. 243	

IR in normal conditions usually causes nonsense-mediated RNA decay (NMD) to downregulate gene 244	

expression (10,49). We compared the bulk RNA levels of IR-affected genes using two different 245	

mathematical methods and found that, surprisingly, these genes generally exhibited higher expression 246	

than their constitutively spliced counterparts (Fig. 1N; Supplementary Fig. S4F). To further strengthen 247	

our finding, we overlapped the IR-affected genes with a high-confidence set of human NMD targets 248	

(50) and found that only ~10% of genes in all groups were potentially targeted by NMD, although the 249	
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genes with upregulated IR in CRPC tended to have slightly higher percentage (χ2 test, Fig. 1O). 250	

These results indicate that IR in PCa minimally causes NMD-mediated downregulation and these IR-251	

bearing genes are thus likely functional. In support, GO analysis of IR-affected genes revealed that, in 252	

addition to commonly observed category of ‘splicing and RNA metabolism’, several distinct categories 253	

were enriched in aggressive PCa (Supplementary Fig. S4G-I). For example, GO terms ‘stress 254	

response’, ‘DNA repair’ and ‘cancer-related signaling’ (e.g., ERBB, NOTCH, WNT) were unique to 255	

CRPC-Ad (Supplementary Fig. S4H) whereas ‘hormone transport’ and ‘SC & development’ were 256	

strongly associated with androgen-insensitive and CSC-enriched CRPC-NE (Supplementary Fig. S4I).  257	

 258	

AR Regulates a Splicing Program Distinct from the AR-Regulated Transcriptome 259	

AR is obligatory for pri-PCa growth and continues to be expressed and functionally important in CRPC 260	

(51). ADT promotes a stem-like phenotype in PCa (52) and relapsed tumors often exhibit enhanced 261	

SC properties (8,38,53). We set out to determine whether AR may drive splicing dysregulation seen in 262	

PCa development and progression. We first established an AR activity score based on the Z-scores 263	

calculated from the expression of 20 experimentally validated AR targets (23). The TCGA cohort 264	

bearing ‘uninterrupted’ intrinsic AR heterogeneity (23) and CRPC-Ad cohort bearing ‘twisted’ AR 265	

activity by treatments (24) were then fractionated into high and low AR activity groups, followed by 266	

splicing analyses. Not surprisingly, primary tumors with low vs. high AR activities displayed a 267	

significant difference in AS landscape (Fig. 2A), and this difference was amplified in CRPC (Fig. 2B), 268	

implicating AR signaling in modulating global AS. Of note, we observed no association between AR 269	

genomic alterations and its potential splicing-modulating activity (Fig. 2C) since AR is rarely altered in 270	

pri-PCa but frequently amplified in mCRPC (24). To assess the impact of AR-associated splicing on 271	

AR-regulated gene expression, we compared the SAGs with DEGs identified in the AR-low vs. AR-272	

high comparisons. Surprisingly, only 2% of SAGs overlapped with the DEGs in pri-PCa, although this 273	

overlap was increased to 23.2% in CRPC-Ad (probably due to a much-enlarged repertoire of AR-274	

regulated molecular events in CRPC) (Fig. 2D). Thus, AR activity-associated AS events exerted a 275	
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limited impact on the AR transcriptional targets, leading us to hypothesize that AR regulates a splicing 276	

program distinct from its transcriptional regulation. In support, when we extended the comparison to 277	

three other well-defined AR-target gene sets ((54), and two in this study, see below), we observed 278	

generally <4% overlaps across all comparisons (Fig. 2E). 279	

To experimentally validate our hypothesis, we treated AR+ LNCaP cultures with various 280	

regimens to modulate AR activity (Fig. 2F). Cells cultured in regular fetal bovine serum (FBS)-281	

containing medium represent an androgen-dependent (AD, or androgen-sensitive) state. Cells grown 282	

for 4 days in medium containing charcoal/dextran stripped serum (CDSS) or treated with Enza (i.e., 283	

MDV3100, 10 μM) were considered androgen-independent (AI). We also utilized siRNA to genetically 284	

silence AR. Finally, cells primed with CDSS for 3 days were treated with 10 nM dihydrotestosterone 285	

(DHT) for 8 h to restore AR signaling. Deep RNA-seq was performed in biological duplicates on 286	

abovementioned LNCaP cultures (Fig. 2F; Supplementary Fig. S5A). Principal component analysis 287	

(PCA) indicated that samples were properly clustered (Fig. 2G) and AR signaling was effectively 288	

modulated as intended, evidenced by expression levels of AR and PSA and by GSEA of AR gene 289	

signature (Supplementary Fig. S5B) and by quantitative reverse transcription PCR (qRT-PCR) 290	

validation (Fig. 2H). Pairwise comparisons uncovered significant differences in DSEs in cells 291	

exhibiting high vs. low AR activities (Fig. 2I; Supplementary Fig. S5C). Also, reanalysis of a recent 292	

RNA-seq dataset (GSE71797) (55) confirmed that in response to R1881 (24~48 h), activated AR 293	

signaling reshaped the AS landscape in 3 AR+ PCa cell models (i.e., LNCaP, VCaP, 22Rv1) 294	

(Supplementary Fig. S5D). Similarly, by categorizing the DEGs identified in cells depleted of AR (siAR 295	

vs. siNC) or treated with DHT as AR-target sets, we found that, strikingly, these two sets, together 296	

with a previously reported AR signature (54), minimally overlapped with the SAGs (<5%) defined in all 297	

different contexts (Fig. 2J; Supplementary Fig. S5E). Collectively, we conclude that AR regulates a set 298	

of AS-bearing genes distinct from its transcriptional targets, with or without the presence of androgen. 299	

We also investigated whether AR might specifically regulate IR, as tumors and basal cells with 300	

low canonical AR activity were associated with increased level of IR (Fig. 1K). Surprisingly, our work 301	
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in LNCaP system revealed that a decrease in AR activity resulted in no increase, but a decrease, in 302	

IR while stimulation of AR-mediated transcription failed to appreciably repress IR (Supplementary Fig. 303	

S5F). To further test this experimentally, we utilized a quantitative reporter system (56) in which a 304	

132-nucleotide chimeric β-globin/immunoglobulin intron was inserted into the firefly luciferase gene 305	

(Supplementary Fig. S5G). Dual luciferase assays (Supplementary Fig. S5G) indicated that consistent 306	

with previous reports (56), splicing conferred an advantage to gene expression in that equal amounts 307	

of transfected plasmids generated higher signals from intron-containing than intronless luciferases 308	

(Supplementary Fig. S5H, left). However, luciferases with or without intron generated a similar pattern 309	

of signal changes across conditions with dampened or enhanced AR signaling (Supplementary Fig. 310	

S5H, right), suggesting that AR does not specifically regulate IR in AR+ PCa cells.  311	

 312	

Distinct Genomic Alterations in SRGs Impact AS and Associate with PCa Aggressiveness 313	

Recent genomic sequencing efforts have revealed the global mutational landscapes of PCa during 314	

development and progression (5,23,24,51,57-61), almost all of which focused their initial analysis on 315	

known PCa-related genes and pathways (e.g., AR, PTEN/PI3K, TP53, RB1, DNA repair, ETS fusion) 316	

whereas alterations in SRGs were overlooked due to a low mutation frequency at individual gene 317	

level. Moreover, point mutations in spliceosome core genes have been recognized as a key driver in 318	

hematological cancers (12). We explored the molecular mechanisms underpinning the AS 319	

dysregulation in PCa by compiling and curating a catalog of 274 SRGs (Supplementary Table S1) and 320	

systematically surveying their mutational landscape (Fig. 3; Supplementary Fig. S6-S8). We 321	

interrogated 11 available large-scale clinical datasets in cBioportal (62) and excluded 3 from further 322	

analysis due to limited information available (Supplementary Table S1). The remaining 8 were 323	

categorized as pri-PCa and CRPC datasets. Fig. 3A and 3B showed the mutational landscape of top 324	

15 altered SRGs in representative pri-PCa and CRPC datasets (also see Supplementary Fig. S6 and 325	

S7), respectively. Based on this global mutational landscape, several interesting patterns emerged. 326	

First, genomic deletions of SRGs in pri-PCa and amplifications of SRGs in CRPC represented the 327	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/634402doi: bioRxiv preprint 

https://doi.org/10.1101/634402


	 14	

most prevalent forms of alterations, among others (Fig. 3C and 3D). Second, the frequently deleted 328	

and amplified genes often co-occurred with the deletion of TS genes and amplification of oncogenes, 329	

respectively (also see Supplementary Fig. S8A). For example, ENOX1, WBP4, HNRNPA1L2 and RB1 330	

were co-localized and co-deleted on Chr13q (p=5.16E-42; Supplementary Table S1). On the other 331	

hand, KHDRBS3, PABPC1, ESRP1, PUF60 were co-amplified with MYC on 8q (p≤1.50E-15). Third, 332	

most of the SRGs mutated at low frequency, as only 20 (7.3%) and 29 (10.58%) of the 274 SRGs 333	

were mutated at a rate of ≥5% in TCGA-PCa and SU2C-CRPC cohorts, respectively. Consequently, 334	

the mutation burden in sum is predominantly contributed by the top 20 altered genes (Fig. 3E; 335	

Supplementary Table S1). Fourth, chromosomal distribution of mutated SRGs (≥5%) revealed that, 336	

except the top altered genes, the majority of SRGs were localized outside the previously reported 337	

hotspots (23,61) (Supplementary Fig. S8B), in line with their low mutation rates. In aggregate, our 338	

data indicate that, albeit a low alteration frequency at individual gene level, SRGs, collectively, 339	

represent a frequently mutated pathway in PCa, as ~31-68% and 87-94% of patients with pri-PCa and 340	

CRPC, respectively, harbor at least one mutation of one SRG (Supplementary Table S1).  341	

Evolutionarily, deletion and amplification of selective SRGs might represent early and late 342	

events, respectively, in PCa pathogenesis (Fig. 3C). In support, group analysis of top altered SRGs 343	

showed that deletion of SRGs did not, whereas amplification of SRGs did, associate with increased 344	

Gleason grade (not shown), highlighting a potential survival advantage of clones harboring SRG 345	

amplifications over deletions during PCa progression. This notion is further supported by a recent 346	

study showing that focal genomic amplifications represent a rapid adaptation to selection pressure 347	

and a driving force in metastatic CRPC (63). We also observed an overall increase (e.g., 8% to 14% 348	

for KHDRBS3, 7% to 17% for ESRP1) and decrease (e,g., 18% to 7% for ENOX1, 16% to 6% for 349	

WBP4) in the frequencies of amplified and deleted genes, respectively, in CRPC vs. pri-PCa (Fig. 3A 350	

and 3B). Interestingly, SRG deletions and amplifications seemed to be mutually exclusive (Fig. 3F).  351	

We reasoned that copy number variation (CNVs) in SRGs might lead to their differential mRNA 352	

expression, which in turn might be tied to splicing misregulation in PCa. Indeed, gene expression 353	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/634402doi: bioRxiv preprint 

https://doi.org/10.1101/634402


	 15	

analysis for top altered SRGs in both pri-PCa and CRPC indicated that deletion and amplification 354	

generally correlated with loss and gain of mRNA expression, respectively (Supplementary Fig. S9A-355	

B). Oncomine Concept analysis revealed 72 and 74 dysregulated SRGs (p<0.05) in pri-PCa and 356	

CRPC, respectively (Supplementary Fig. S9C). In RNA-seq datasets, 33, 89 and 45 SRGs were 357	

significantly deregulated in pri-PCa (vs. normal tissues), CRPC-Ad (vs. pri-PCa) and CRPC-NEPC 358	

(vs. CRPC-Ad), respectively (Supplementary Fig. S9D). Furthermore, an RNA-seq examining the 359	

response of advanced PCa to ADT (27) revealed 19 DEGs, and, of interest, an exclusive 360	

overexpression of 7 genes was identified in basal vs. luminal cells (Supplementary Fig. S9D). Notably, 361	

many of the top amplified and deleted SRGs were also found to be, correspondingly, overexpressed 362	

or downregulated in PCa at the population level (Supplementary Fig. S9E). An integrated summary 363	

(Fig. 4; Supplementary Table S3) revealed that, in total, 186 out of 274 (67.9%) SRGs were mis-364	

expressed at different stages of PCa, with more dysregulated SRGs found in CRPC, implicating a 365	

potential dependency of aggressive PCa on spliceosome activity. 366	

To further explore the clinical relevance of SRGs, we assessed the prognostic values of 367	

dysregulated SRGs in patient’s outcome. We systematically surveyed the 186 misregulated SRGs in 368	

7 Oncomine datasets containing patient survival information and identified two types of ‘prognostic’ 369	

SRGs: unfavorable genes whose higher expression correlated with poor patient survival and favorable 370	

genes whose higher expression correlated with better patient survival (Fig. 5A; Supplementary Table 371	

S4). In general, we observed a consistency between overexpressed SRGs and unfavorable 372	

prognostic genes, but not for down-regulated genes and favorable prognostic genes (Supplementary 373	

Table S4). Interestingly, although different datasets revealed varying numbers of prognostic genes 374	

(Supplementary Table S4), we identified more SRG genes classified as unfavorable genes (Fig. 5B). 375	

Together with the mutational landscape (Fig. 3) and deregulated expression patterns of SRGs (Fig. 4) 376	

that cooperatively indicated a potential dependency of CRPC on spliceosome activity, this would 377	

strongly suggest that SRGs, mostly, play oncogenic roles in PCa progression. Importantly, most of the 378	

identified prognostic genes have not previously been linked to PCa patient survival. Towards a better 379	
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use of these prognostic SRGs in heterogeneous PCa, we established two gene signatures based on 380	

the consistency of the survival results seen in the 7 datasets, corresponding to unfavorable signature 381	

(13 genes, SRSF1, KHDRBS3, ESRP1, HNRNPH1, U2SURP, LSM5, TIA1, CHERP, HNRNPR, 382	

HNRNPH2, HNRNPH3, HNRNPAB and KHDRBS1, with each showing consistent unfavorable 383	

prognosis in ≥3 datasets) and favorable signature (13 genes, MFAP1, SF3A2, GPATCH1, XAB2, 384	

CELF2, SF3A1, SAP18, SRP54, PPIL2, SF1, MATR3, ELAVL4 and CDK10 with each showing 385	

consistent favorable prognosis in ≥2 datasets). We found that patients whose cancer gene expression 386	

enriched for the unfavorable or favorable signatures had a worse or a better survival outcome, 387	

respectively (Fig. 5C), suggesting a utility of SRGs as prognostic biomarkers. To further study 388	

underlying link between prognostic SRGs and splicing dysregulation, we investigated impact of 389	

unfavorable signature on disease aggressiveness and splicing in TCGA cohort. As expected, the 390	

unfavorable signature score positively and negatively associated with the tumor grade and disease 391	

recurrence, respectively (Fig. 5D and 5E). Importantly, primary tumors expressing highly or lowly the 392	

unfavorable signature exhibited distinct splicing landscapes, with total DSEs (1.73 fold) and IR (18.91 393	

fold) being specifically upregulated in the high group (Fig. 5F). 394	

 395	

CPPC Cells Are Sensitive to Pharmacological Spliceosome Inhibition In vitro 396	

Based on the observations that mCRPC possess frequent amplifications in (Fig. 3) and deregulation 397	

of SRGs (Fig. 4), that higher expression of SRGs predicts worse outcome (Fig. 5), and that 398	

modulation of AR activity reshapes PCa-associated AS landscape (Fig. 2), we hypothesized that 399	

spliceosome may represent a preferential CRPC dependency, thus offering a therapeutic opportunity. 400	

To test this, we first analyzed the mutational profiles of SRGs in 7 PCa cell lines with increasing 401	

aggressiveness and found that the AR+ and relatively indolent PCa cells tended to have more SRG 402	

deletions whereas AR- and aggressive PCa cells showed more SRG amplifications (Supplementary 403	

Fig. S10A). In particular, LNCaP and PC3 cells resembled pri-PCa and CRPC, respectively, with 404	

respect to SRG mutation profiles (Supplementary Fig. S10A). We retrieved two large-scale RNAi 405	
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screening data (Novartis Project Drive (64) and Broad Project Achilles	 (65)) and performed GSEA on 406	

ranked lists of essential genes. We observed that aggressive AR- PCa cell lines exhibited a 407	

preferential enrichment on two splicing pathway signatures (Supplementary Fig. S10B). By contrast, 408	

AR signaling and MYC signatures were enriched in AR+ LNCaP and 22RV1 vs. AR- DU145 cells, 409	

respectively (Supplementary Fig. S10C). These analyses support the postulate that AR-, androgen-410	

independent PCa cells may be particularly dependent on the spliceosome activity. 411	

We subsequently tested this postulate using spliceosome inhibitors. Several microbial products, 412	

including Pladienolide B and its derivative E7107 have been shown to bind and inhibit the SF3B1 413	

complex and manifest anti-cancer activities (12,20). The E7107 compound represented the first-in-414	

class spliceosome inhibitor that underwent phase I clinical trial (66). We found that PCa cells exhibited 415	

preferential sensitivity to E7107 relative to non-tumorigenic prostate epithelial cells RWPE1, with PC3 416	

being more sensitive than LNCaP cells (Fig. 6A; Supplementary Fig. S10D). Experiments with 417	

Pladienolide B confirmed PC3 as the most sensitive line (Fig. 6B). While a long-term E7107 treatment 418	

(6~7 days) induced massive cell death (Fig. 6A; Supplementary Fig. S10D), shorter (<3 days) 419	

treatments generally elicited limited apoptosis but instead arrested PCa cells at the G2/M phase of the 420	

cell cycle (Fig. 6C). Treatment of PCa cells with E7107 for 20~48 h also inhibited cell migration and 421	

invasion, as measured by both Boyden chamber (Fig. 6D; Supplementary Fig. S10E) and scratch-422	

wound (Supplementary Fig. S10F) assays. Importantly, treatment of PCa cells with 5 nM E7107 for 6 423	

h dramatically reshaped the splicing pattern of the selected genes (Supplementary Fig. S10G; also 424	

see below), suggesting an on-target effect of the drug. 425	

 426	

E7107 Molecularly ‘Reverses’ PCa Cell Aggressiveness by Inhibiting Spliceosome Activity 427	

To uncover the mechanisms of action of E7107 in PCa, we treated LNCaP and PC3 cells with the 428	

drug for 6 h followed by deep RNA-seq (Fig. 6E). No gross defects were observed in cell growth 429	

(Supplementary Fig. S11A), but, as expected, E7107 dramatically inhibited the AS globally in both cell 430	

types (Fig. 6E) with SE being the major splicing type affected (Fig. 6F). Sashimi plot visualization of 431	
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the sequencing data and RT-PCR analysis validated splicing analysis (Fig. 6G; Supplementary Fig. 432	

S11B). We performed GO analysis on genes showing down-regulated splicing events. Analysis of the 433	

top 1000 genes with significant SE events inhibited by E7107 in PC3 cells revealed that many GO 434	

terms associated with cancer-promoting functions, e.g., cell cycle and proliferation, DNA repair, 435	

splicing, and cancer pathways, were markedly enriched (Supplementary Fig. S11C; Supplementary 436	

Table S5), suggesting that E7107 inhibits splicing of a subset of PCa-associated genes important for 437	

survival. At the gene expression level, E7107 reshaped the transcriptomes and exhibited a slightly 438	

suppressive effect, especially in LNCaP cells, on transcription (Fig. 6E; Supplementary Table S6). 439	

qRT-PCR analysis validated DEGs identified in RNA-seq (Supplementary Fig. S11D).  440	

We also performed GO analysis of DEGs upregulated after E7107 treatment. In AR+p53+ LNCaP 441	

cells, four main categories of related GO terms were identified (Supplementary Fig. S11E) with 442	

‘Splicing’ being the most significant one, consistent with a recent report (67). AR and its target 443	

expression and AR signaling were not significantly affected by E7107 in LNCaP cells (Supplementary 444	

Fig. S11F). Interestingly, p53 was activated, along with several other TS genes including RBM4 (68) 445	

and MIR34A (69) (Supplementary Fig. S11E and S11G). Consistently, GO terms ‘cell cycle arrest’ 446	

and ‘differentiation’ were enriched (Supplementary Fig. S11E). We have previously shown that the 447	

LNCaP gene expression profile resembles that in pri-PCa (7). GSEA of gene signatures specific to 448	

normal prostate tissues vs. pri-PCa revealed that the ‘normal’, but not the ‘tumor’, gene signature, was 449	

significantly enriched in E7107-treated LNCaP cells (Supplementary Fig. S11H), suggesting a 450	

reversion of LNCaP transcriptome from PCa-like to normal-like. Similarly, pathway analysis in AR-p53- 451	

PC3 cells identified both convergent (e.g., splicing, differentiation, cell cycle arrest and proliferation 452	

inhibition) and unique (i.e., steroid hormone and muscle development) GO categories, when 453	

compared to the analysis in LNCaP cells (Fig. 6H). Enrichment of ‘differentiation’ and ‘steroid 454	

hormone’ categories in PC3 cells prompted us to examine the androgen/AR signaling. Strikingly, 455	

transcript levels of AR itself and many typical AR targets were upregulated in PC3 cells treated with 456	

E7107, leading to a dramatic enrichment of AR pathway (Fig. 6I). Furthermore, a LNCaP gene 457	
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signature was highly enriched in E7107-treated PC3 cells (Fig. 6J). Experimentally, E7107 treatment 458	

increased cell size in both PC3 and DU145 cells (Fig. 6K), indicating morphological differentiation. 459	

Moreover, although p53 was not activated in PC3 cells due to its genetic loss, several other TS genes 460	

(e.g., ALOX15, NKX3-1, RBM4, MIR34A) were upregulated (Fig. 6L). These data, together, suggest a 461	

reversal, molecularly and phenotypically, of aggressive PCa cells (PC3) to a more indolent, “LNCaP-462	

like” cell state upon spliceosome inhibition by E7107.  463	

 464	

Therapeutic Targeting of CRPC in vivo via Inhibition of Spliceosome Activity 465	

To evaluate the activity of E7107 against CRPC in vivo, we treated 3 distinct castration-resistant (AI) 466	

PCa xenograft models, i.e., the AR+/hi LNCaP-AI (36), AR-/lo LAPC9-AI (36) and AR- PC3, with E7107 467	

or vehicle (Fig. 7A). The LNCaP-AI and LAPC9-AI models were established by serially passaging the 468	

corresponding parent AD tumor cells in castrated immunodeficient mice (36). The LNCaP-AI was 469	

initially responsive to Enza but quickly became Enza-resistant whereas LAPC9-AI was refractory to 470	

Enza de novo (36). Treatment of Enza-refractory LAPC9-AI tumors with either one cycle (i.e., tail vein 471	

injection for 5 consecutive days) or two cycles (with 1 week of ‘drug holiday’ between the 2 cycles) 472	

effectively inhibited tumor growth (Fig. 7B and 7C; Supplementary Fig. S12A and S12B, left). Similarly, 473	

treatment of mice bearing LNCaP-AI with two cycles of E7107 (Fig. 7D; Supplementary Fig. S12C, left) 474	

and PC3 xenografts with one cycle of E7107 (Fig. 7E; Supplementary Fig. S12D, left) also inhibited 475	

tumor growth. Although a certain degree of toxicity of E7107 was observed, treated mice returned to 476	

the range of normal body weight within a week after cessation of treatment (Supplementary Fig. 477	

S12A-S12D, right). The endpoint tumors frequently displayed a more ‘differentiated’ morphology 478	

manifested by an enrichment of enlarged and polynucleated cells (Supplementary Fig. S12E).  479	

To determine whether the tumor-inhibitory effects of E7107 are associated with spliceosome 480	

inhibition, we performed RNA-seq analysis in LAPC9-AI and PC3 tumors 4 h after the fifth injection of 481	

E7107 (Fig. 7F; see Methods). Consistent with the in vitro data (Fig. 6E), E7107 suppressed the AS 482	

globally in both AR-/lo CRPC models (Fig. 7G), evidenced by decreases in A3, A5, and SE (Fig. 7H). 483	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/634402doi: bioRxiv preprint 

https://doi.org/10.1101/634402


	 20	

Sashimi plot visualization and RT-PCR were performed to validate our splicing analysis (Fig. 7I; 484	

Supplementary Fig. S12F). GO analysis of the top 1000 genes bearing down-regulated SE events in 485	

LAPC9-AI model upon E7107 treatment revealed an enrichment of several cancer-promoting 486	

functional categories including ‘cell cycle and proliferation’, ‘DNA repair’, ‘splicing’, and ‘cancer 487	

pathways’ (Supplementary Fig. S12G). Analysis of the gene expression changes after E7107 488	

treatment revealed 3299 and 2289 DEGs, respectively, in LAPC9-AI and PC3 systems without 489	

obvious bias on transcription (Fig. 7G). qRT-PCR analysis in tumor samples confirmed the differential 490	

expression of selected genes (Supplementary Fig. S13A).  491	

GO analysis of the genes upregulated in E7107-treated LAPC9-AI revealed a broad spectrum of 492	

functional categories linked to inhibition of cell proliferation and promotion of normal (prostate) 493	

developmental, differentiation, inflammation, and TS pathways, among others (Supplementary Fig. 494	

S13B). Since the LAPC9-AI has the AR-/lo phenotype (36), transcription of AR signaling, as expected, 495	

remained unaltered (Supplementary Fig. S13C). Notably, gene signatures specific to pri-PCa and 496	

CRPC were significantly enriched in E7107- vs. vehicle-treated LAPC9-AI tumors, respectively 497	

(Supplementary Fig. S13D), again suggesting that spliceosome inhibition by E7107 reverses the gene 498	

expression pattern of LAPC9-AI from CRPC-Ad-like (more aggressive) to pri-PCa-like (less 499	

aggressive). We have recently shown that LAPC9-AI molecularly resembles CRPC-Ad (36). In the 500	

PC3 model, we observed an increase in the expression of genes involved in muscle development, 501	

inflammation, immune cell infiltration, and androgen response, among others, after E7107 treatment 502	

(Supplementary Fig. S13E). Interestingly, despite the upregulated category of ‘androgen response’, 503	

AR signaling and many targets remained inactivated (Supplementary Fig. S13F). Compared with in 504	

vitro data showing that E7107 strongly boosted the AR signaling (Fig. 6I), this discrepancy could be 505	

explained by an in vivo environment lacking androgen in castrated hosts such that the ‘E7107 506	

reprogramed’ AR+ PC3 cells may not survive. Endpoint PC3 tumors tended to be less aggressive in 507	

terms of molecular signatures (Supplementary Fig. S13G-I). For instance, E7107 treatment 508	

significantly inhibited pathways associated with cancer metastasis and stemness (Supplementary Fig. 509	
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S13G), decreased the expression of a PC3-cell signature (Supplementary Fig. S13H), and reverted 510	

the gene expression pattern from CRPC-NE like to CRPC-Ad like (Supplementary Fig. S13I). We 511	

have previously demonstrated that PC3 cells molecularly resemble the CRPC-NE (7,36).  512	

  513	
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DISCUSSION  514	

 515	

Studies of AR variants, ARv7 in particular, have implicated splicing dysregulation in PCa resistance to 516	

ADT/Enza (20). Recently, splicing factor HNRNPL was identified as a dependency for LNCaP cells 517	

(70) and SFPQ (i.e., PSF) was reported to promote AR splicing and CRPC cell survival (71). An 518	

examination of race-specific AS changes in PCa in African American (AA) vs. European American 519	

(EA) men discovered an AA-enriched PIK3CD isoform that promotes tumor aggressiveness and drug 520	

resistance (72). Globally, splicing dysregulation in pri-PCa vs. normal tissues has been observed 521	

(13,19). While these studies implicate splicing dysregulation in PCa pathogenesis, the global AS 522	

landscape unraveling the dynamic evolution of PCa has not been reported and the impact of aberrant 523	

AS alterations on PCa progression, therapy resistance, and patient outcome remains unclear.  524	

Here, we provide the first comprehensively annotated splicing map in PCa using clinical and 525	

experimental RNA-seq data covering the entire spectrum of PCa development and progression. 526	

Aberrantly spliced genes specific to different PCa stages are both convergently and uniquely enriched 527	

in diverse GO terms and pathways linked to many key cellular processes important for cell survival, 528	

which establishes aberrant splicing as a distinct mechanism (vs. gene expression regulation) driving 529	

PCa progression and therapy resistance. In particular, we observe increasing severity of AS 530	

dysregulation and identify IR as a hallmark of stemness and aggressiveness during PCa progression 531	

and therapy resistance. Recently, widespread IR, associated with somatic single-nucleotide variations 532	

in six cancer types (excluding PCa), has been observed to be more enriched in TS genes leading to 533	

their loss of expression (73). Surprisingly, we did not observe a similar trend in PCa. Rather, our data 534	

reveals that IR generally enhances gene expression and thus likely functions in PCa biology, 535	

suggesting different roles of IR in distinct cancer types. Particularly, we find that IR in PCa impacts 536	

genes involved in stemness and cancer-promoting functions (Supplementary Fig. S4G-I), and that AR 537	

regulates a splicing program, but not IR specifically, distinct to its transcriptional regulation, 538	

suggesting IR as a PCa-regulating mechanism independent of AR axis. In fact, we have observed a 539	
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general negative association of AR activity with IR level in multiple clinical datasets. Together, our 540	

results may establish IR as a common mechanism of cellular stemness, as supported by studies in 541	

mouse ESCs (49). The IR prevalent in PCa is not associated strongly with cis-genomic features, but 542	

seems to be regulated by trans-regulatory mechanisms involving the combinatorial effects of multiple 543	

SRGs (Fig. 1G and 1H). In support, candidate RBPs modulate not only the IR but also other splicing 544	

types as well (Fig. 1H). Alternatively, besides altered spliceosome activity, IR might also be modulated 545	

by other molecular alterations. For example, loss-of-function mutations in SETD2 (a H3K36 546	

methyltransferase) and subsequent loss of H3K36 trimethylation at target exons are associated with 547	

increased IR in renal cancers (74). Our work expands the view of molecular complexity underlying 548	

and justifies further exploration on the role of IR in PCa etiology and progression. 549	

There are many ways by which RNA splicing can be dysregulated in cancer relative to normal 550	

cells. Previously, recurrent point mutations in core spliceosome genes (e.g., SF3B1, U2AF1, SRSF2, 551	

ZRSR2) have been identified as the driving mechanism underpinning splicing dysregulation in 552	

hematological cancers (12). Our genomic analyses of SRGs reveal copy-number variations (CNVs) as 553	

the main driver of AS alterations in PCa, which generally alter the expression of affected SRGs and 554	

illustrate cancer type-specific differences in mechanisms of splicing dysregulation. Remarkably, the 555	

majority of the top altered SRGs are located in regions containing either TS genes or oncogenes 556	

(Supplementary Fig. S8A), all of which have not been highlighted in previous large-scale DNA 557	

sequencing studies. This raises an interesting question of whether these alterations are just 558	

passenger mutations or they causally contribute to PCa pathogenesis. While direct functional 559	

evidence implicating them in PCa biology awaits experimental validation, the involvement of these 560	

genes in other types of cancer has been reported (9,10,20). Particularly, splicing dysregulation has 561	

been recently proposed as a ‘driver’ of transformation independently of oncogenic processes (17). 562	

Intriguingly, CNVs of SRGs exerts, comparatively, a dramatic impact on global splicing landscape in 563	

CRPC (data not shown), suggesting an enhanced dependency of CRPC on aberrant spliceosome 564	

activity. Therefore, these mutated SRGs may bear some of the ‘driver’ properties, and it would be 565	
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interesting to dissect, in future studies, whether deletion or amplification of CNV-associated SRGs 566	

with or without collateral alterations in RB1 or MYC loci, or vice versa, could change cancer 567	

phenotypes. Another potential mechanism that may cause splicing abnormality is the mutations in 568	

splice sites (12). However, mutations in splice sites constitute the minority of all somatic mutations (as 569	

low as ~0.6%) in PCa (75); consequently, we reason that deregulation of SRGs is the main 570	

mechanism underpinning splicing abnormalities. In support, the majority of SRGs are mis-expressed 571	

in various stages of PCa, consistent with studies showing that altered expression of SRGs, even in 572	

the absence of mutations, promotes oncogenesis (10). Of clinical significance, our study has identified 573	

many SRGs that can be linked, individually or in combination, to clinical features of advanced PCa, 574	

indicating a ‘biomarker’ value. Almost all of these identified prognostic SRGs and DSEs have not 575	

previously been implicated in PCa, thus warranting further investigation. Notably, the unfavorable 576	

SRG signature that we developed herein predicts PCa progression and correlates with poor patient 577	

survival, associates with much ‘twisted’ splicing landscape, and establishes splicing misregulation as 578	

a promoter of PCa aggressiveness. 579	

Multiple lines of evidence reveal a preferential dependency of CRPC on aberrant spliceosome 580	

activity. First, the number of DSEs increases exponentially along the spectrum of cancer progression 581	

(Supplementary Fig. S1D), linking the severity of splicing dysregulation to PCa aggressiveness. 582	

Second, amplifications of SRGs are predominantly observed, and CNVs of SRGs mainly impact 583	

global splicing in CRPC. Third, more SRGs are dysregulated in CRPC, highlighting a potentially 584	

critical role of SRG misexpression in driving CRPC evolution. Fourth, the majority of altered SRGs are 585	

predictive of worse patient outcome and the unfavorable SRG signature associates with high tumor 586	

grade and more prominent disruption in the splicing landscape. Fifth, chemical castration and Enza, 587	

both of which target AR signaling, reshape the splicing landscape in PCa cells, and the distorted 588	

splicing landscape likely contributes to subsequent treatment failure and disease progression (Fig. 2), 589	

as documented in other cancer types (12). Finally, E7107, the spliceosome modulator, effectively 590	

inhibits the growth of multiple experimental CRPC models in vivo (Fig. 6 and 7) regardless of the AR 591	
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status. In this study, we did not explore the combination of E7107 and Enza because all CRPC 592	

models we utilized are already Enza-resistant. A phase-I study of E7107 in patients with advanced 593	

solid tumors (PCa excluded) was terminated due to side effects (66) and we also observed certain 594	

toxicities of E7101 in animals (this study), suggesting the need to define intricate treatment window 595	

and doses for E7101. Our results may point to a new strategy of administering E7107, or other 596	

splicing inhibitors, as we show that, interestingly, E7107 promotes PCa cell differentiation and 597	

reprograms PCa cells from an ‘androgen-insensitive’ to an ‘androgen-sensitive’ state. We thus 598	

envision a potential treatment regimen in which CRPC is first subject to a short-term splicing inhibition 599	

(to avoid toxicity and also to reprogram aggressive PCa cells) followed by Enza treatment. Ongoing 600	

studies are exploring the value of this sequential treatment protocol. Overall, our findings suggest that 601	

there may be a therapeutic window for spliceosome modulators in the treatment of CRPC. Future 602	

studies that aim to determine the origins and consequences of aberrant splicing in aggressive PCa 603	

could enhance our understanding of disease pathogenesis and aid novel drug development. 604	
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Figure Legend 628	

Figure 1. Splicing landscape identifies IR as a hallmark of PCa stemness and progression. 629	
(A-J) The landscape of AS during PCa development and progression. Two related datasets are 630	

interrogated for each PCa stage. Shown are splicing patterns and the number of DSEs decoded 631	
by rMATS.  632	

(K) Changes of IR and SE across the 14 comparisons detected by rMATS. “Baseline” refers to 1 as 633	
data presented as fold change in a comparative manner. 634	

(L) RBP motif analysis of retained introns specific to the PCa stages indicated. A total of 95 RBPs are 635	
examined and shown are the top 20 genes ranked by a binding score that takes into account 636	
both binding frequency and binding strength for each RBP.  637	

(M) DSEs associated with high or low expression level of ELAVL1 and RBM38 in pri-PCa and CRPC-638	
Ad, respectively.  639	

(N) Pairwise comparison of expression of the genes showing significant IR events during PCa 640	
progression. Expression variability is quantified for each gene as a Z-score relative to the mean 641	
expression in normal prostate samples. Genes exhibiting both up- and down-regulated IR events 642	
are removed, and the resultant gene number is indicated. Significance was calculated by a paired 643	
Student’s t-test.  644	

(O) Overlap of significant IR-bearing genes with a high-confidence set of 1000 human NMD targets. 645	
Significance was calculated by a χ2 test.  646	

DSEs, differentially spliced events; RBP, RNA binding protein; NMD, nonsense-mediated mRNA 647	
decay. 648	

 649	
 650	
Figure 2. AR activity impacts AS landscape distinctively from its regulation of transcription. 651	
(A-B) DSEs associated with high and low AR activity (cutoff, Z-score >7 or <-7) in pri-PCa (A) and 652	

CRPC-Ad (B), respectively. AR activity (see Methods) was used to fractionate patients cohorts 653	
followed by splicing analysis by rMATS. 654	

(C) Genomic alterations do not contribute to the diversity of AR activities across PCa populations. 655	
Shown are frequency and AR mutation types observed in TCGA and CRPC cohorts. AR activities 656	
of samples grouped as in A were displayed.  657	

(D-E) Overlap between SAGs and DEGs (D) and between SAGs and three sets of AR-regulated 658	
genes (E) in indicated contexts. The number in parentheses denotes a percentage of overlapped 659	
genes proportioned to all SAGs. Circles are not drawn to scale.  660	

(F-H) Experimental design (F), principal component analysis (PCA) showing proper clustering of 661	
samples (G), and qPCR validation of intended modulations of AR signaling in LNCaP cells (H).  662	

(I) The AR-regulated AS program in PCa cells. Shown are the DSEs associated with high (up arrow) 663	
or low (down arrow) AR activity in LNCaP cells detected by rMATS.  664	

(J) Overlap between SAGs and three sets of AR-regulated genes in indicated contexts. The number 665	
in parentheses denotes a percentage of overlapped genes proportioned to all SAGs. Circles are 666	
not drawn to scale.  667	

DSEs, differentially spliced events; DEGs, differentially expressed genes; SAGs, splicing-affected 668	
genes. 669	

 670	
 671	
Figure 3. The mutational landscape of SRGs in human PCa. 672	
(A-C) A comprehensive survey for genomic alterations in 274 SRGs in available clinical cohorts in 673	

cBioportal. The top 15 mutated SRGs are shown in the representative pri-PCa (A) and metastatic 674	
CRPC-Ad (B) cohorts. Frequently deleted RB1 and PTEN (colored in blue) and amplified MYC 675	
and AR (colored in red) are included as reference genes. Each bar represents the alteration 676	
status of an individual gene for a single patient and the percentage of alterations for each gene in 677	
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the indicated cohort is provided. Shown in C are bar graphs summarizing the cumulative genomic 678	
alterations of SRGs in the largest and representative pri-PCa (TCGA) and CRPC (SU2C) 679	
cohorts. 680	

(D-E) Bar plots illustrating the cumulative aberration frequencies of all 274 SRGs combined (D) and 681	
the top 20 mutated SRGs (10 most amplified and 10 most deleted) (E) across all cohorts, with 682	
numbers above and within the bars representing the total frequency and a frequency of 683	
amplification or deletion of indicated genes, respectively.  684	

(F) Integrated mutational landscape of top 20 mutated SRGs in PCa showing mutual exclusivity, in 685	
large part, between deletions and amplifications of SRGs. 686	

See Table S1 for detail.  687	
 688	
 689	
Figure 4. Dysregulation of SRGs in PCa.  690	
Integrated heatmap of differentially expressed SRGs identified in Oncomine (p<0.05) and RNA-seq 691	
(fold-change (FC)≥ 1.5 and FDR<0.1). In Oncomine (O), the medium-rank of <2500, <4000, and 692	
>4000 for a gene denotes high, moderate and low level of expression, respectively. For visualization, 693	
DEGs revealed by RNA-seq (R) data are categorized into three groups according to FC differences 694	
(FC≥ 3, ≥ 2 and ≥ 1.5). Based on pairwise comparisons, the stages of PCa are defined as tumor 695	
development (pri-PCa vs. normal tissues), ADT treatment response (ADT-after vs. -before), CRPC 696	
progression (CRPC-Ad vs. pri-PCa) and plasticity (CRPC-NE vs. CRPC-Ad). 697	
 698	
 699	
Figure 5. SRGs are prognostic and associated with splicing dysregulation. 700	
(A) Examples of Kaplan-Meier plots for unfavorable and favorable genes associated with patient 701	

overall survival in 7 different cohorts.  702	
(B) Numbers of genes showing favorable and unfavorable prognostic effects in 5 distinct cohorts. 703	

Patient numbers for each cohort are shown in parentheses. 704	
(C) Meta-analysis showing higher level of unfavorable signature and lower level of favorable signature 705	

correlating with reduced overall patient survival, respectively. Data were based on the Setlur and 706	
Glinsky studies.  707	

(D-E) Unfavorable signature is associated with higher Gleason score (D) and higher level of 708	
unfavorable signature positively correlates with disease recurrence in TCGA cohort (E).  709	

(F) DSEs associated with high or low expression level of unfavorable signature in primary PCa cohort. 710	
The p value was calculated using Student’s t-test (D) and log-rank test (A, C, E) *p< 0.05.  711	
See Table S4 for details.  712	
 713	
 714	
Figure 6. CRPC cells are sensitive to pharmacologic modulation of spliceosome activity. 715	
(A-B) Cell proliferation (MTT; left) and colony formation (right) assays in indicated cell lines treated 716	

with varying concentration of E7107 (A) or Pladienolide B (B) in vitro. 717	
(C-D) Cell cycle analysis (C) and migration and invasion assays (D) in indicated PCa cells treated with 718	

varying concentrations of E7107. Results shown were representative of 2–3 repeat experiments. 719	
For D, data represent mean±S.D. from cell number counting of 5–6 random high magnification 720	
(X20) areas. The P value was calculated using Student’s t-test. *P<0.05 and **P<0.01.  721	

(E) Effect of 10nM E7107 on PCa transcriptome in vitro. Shown are schematic of RNA-seq 722	
experiments (top) and the number of total DSEs (bottom left) and DEGs (bottom right) identified 723	
upon E7107 treatment in indicated PCa cells.  724	

(F) AS pattern showing that E7107 reshapes the splicing landscape of PCa cells indicated. 725	
(G) Sashimi plots visualization and RT-PCR validation of IR in DDIT3 gene after an acute E7107 (10 726	

nM, 6 h) treatment. The event DPSI values calculated by rMATS were provided in parentheses. 727	
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(H) GO analysis of genes upregulated at bulk RNA level in PC3 cells after E7107 treatment (10nM, 6 728	
h).  729	

(I-J) GSEA showing enrichment of AR signaling related signatures (I) in E7107-treated PC3 cells, 730	
indicating that E7107 reprograms the AR- PC3 cells back into relatively AR+ LNCaP-like cells. In 731	
support, a LNCaP gene signature (defined as top 300 genes solely expressed or overexpressed in 732	
LNCaP compared with PC3) was significantly enriched in PC3 cells treated with E7107 (J).  733	

(K) Representative FACS plots of PC3 and DU145 cells treated with E7107 (5 nM) for 3 days showing 734	
an increase in cell size. 735	

(L) Upregulation of tumor suppressors (ALOX15, KNX3-1, RBM4 and MIR34A) in PC3 cells after 736	
E7107 treatment. 737	

 738	
 739	
Figure 7. Therapeutic targeting of CRPC cells in vivo. 740	
(A) Schematic of in vivo E7107 treatment.  741	
(B-E) Inhibitory effect of E7107 on the growth of indicated Enza-resistant CRPC models in vivo. 742	

Shown are growth curve (left), endpoint tumor image (middle) and tumor weight (right) of 743	
LAPC9-AI (B and C), LNCaP-AI (D) and PC3 (E) models treated with vehicle or E7107.  744	

(F-G) Effect of E7107 on CRPC transcriptome in vivo. Shown are schematic of RNA-seq experiment 745	
(F) and the ratio of total DSEs (G; left) and total DEGs (G; right) identified upon E7107 treatment 746	
in indicated CRPC models.  747	

(H) AS pattern showing that E7107 reshapes the splicing landscape of CRPC xenografts in vivo. 748	
(I) Sashimi plots and RT-PCR validation of IR in DDIT3 gene after E7107 treatment in vivo. The event 749	

DPSI values calculated by rMATS were provided in parentheses. E, E7107; V, vehicle. 750	
 751	
 752	

  753	
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