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Abstract 

The implementation of genomic selection in recurrent breeding programs raised several concerns, 

especially that a higher inbreeding rate could compromise the long term genetic gain. An optimized 

mating strategy that maximizes the performance in progeny and maintains diversity for long term genetic 

gain on current and yet unknown future targets is essential. The optimal cross selection approach aims 

at identifying the optimal set of crosses maximizing the expected genetic value in the progeny under a 

constraint on diversity in the progeny. Usually, optimal cross selection does not account for within 

family selection, i.e. the fact that only a selected fraction of each family serves as candidate parents of 

the next generation. In this study, we consider within family variance accounting for linkage 

disequilibrium between quantitative trait loci to predict the expected mean performance and the expected 

genetic diversity in the selected progeny of a set of crosses. These predictions rely on the method called 

usefulness criterion parental contribution (UCPC). We compared UCPC based optimal cross selection 

and optimal cross selection in a long term simulated recurrent genomic selection breeding program 

considering overlapping generations. UCPC based optimal cross selection proved to be more efficient 

to convert the genetic diversity into short and long term genetic gains than optimal cross selection. We 

also showed that using the UCPC based optimal cross selection, the long term genetic gain can be 

increased with only limited reduction of the short term commercial genetic gain.  
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INTRODUCTION 

Successful breeding requires strategies that balance immediate genetic gain with population 1 

diversity to sustain long term progress (Jannink 2010). At each selection cycle, plant breeders are facing 2 

the choice of new parental lines and the way in which these are mated to improve the mean population 3 

performance and generate the genetic variation on which selection will act. Although breeders attempt 4 

to account for all available information on candidates, some crosses do not yield selected progeny and 5 

do not contribute to genetic gain (Heslot et al. 2015). As breeding programs from different companies 6 

compete for short term gain, breeders tend to use intensively the most performant individuals sometimes 7 

at the expense of genetic diversity (Rauf et al. 2010; Gerke et al. 2015; Allier et al. 2019a). The 8 

identification of the crossing plan that maximizes the performance in progeny and limits diversity 9 

reduction for long term genetic gain is essential. 10 

Historically, breeders selected the best individuals based on phenotypic observations as a proxy 11 

of their breeding value, i.e. the expected value of their progeny. In order to better estimate the breeding 12 

value of individuals, phenotypic selection has been complemented by pedigree based prediction of 13 

breeding values (Henderson 1984; Piepho et al. 2008) and more recently, with cheap high density 14 

genotyping becoming available, by genomic prediction of breeding values (Meuwissen et al. 2001). In 15 

genomic selection (GS), a model calibrated on phenotype and genotype information of a training 16 

population is used to predict genomic estimated breeding values (GEBVs) from genome-wide marker 17 

information. A truncation selection is commonly applied on GEBVs and the selected individuals are 18 

intercrossed to create the next generation. One of the interests of GS is attributed to the acceleration of 19 

selection progress by shortening generation interval, increasing selection intensity and accuracy (Hayes 20 

et al. 2010; Daetwyler et al. 2013; Heslot et al. 2015). As a consequence, compared to phenotypic 21 

selection, GS is expected to accelerate the loss of genetic diversity due to the rapid fixation of large 22 

effect regions, but also likely due to the higher probability to select the closest individuals to the training 23 

population that are more accurately predicted (Clark et al. 2011; Pszczola et al. 2012). As a result, it has 24 

been shown in an experimental study (Rutkoski et al. 2015) and by stochastic simulations (Jannink 2010; 25 

Lin et al. 2016) that GS increases the loss of diversity compared to phenotypic selection. Thus, the 26 
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optimization of mating strategies in GS breeding programs is a critical area of theoretical and applied 27 

research. 28 

Several approaches have been suggested to balance the short and long term genetic gain while 29 

selecting crosses using GS. In line with Kinghorn (2011), Pryce et al. (2012), and Akdemir and Sánchez 30 

(2016), the selection of a set of crosses, e.g. a list of biparental crosses, requires two components: (i) a 31 

cross selection index (CSI) that measures the interest of a set of crosses and (ii) an algorithm to find the 32 

set of crosses that maximizes the CSI. 33 

The CSI may consider crosses individually, i.e. the interest of a cross does not depend on the 34 

other crosses in the selected set. In classical recurrent GS, candidates with the highest GEBVs are 35 

selected and inter-crossed to maximize the expected progeny mean in the next generation. In this case, 36 

the CSI is simply the mean of parental GEBVs. However, such an approach neither maximizes the 37 

expected response to selection in the progeny, which involves genetic variance generated by Mendelian 38 

segregation within each family, nor the long term genetic gain. Alternative measures of the interest of a 39 

cross have been suggested to account for parent complementarity, i.e. within cross variability and 40 

expected response to selection. Daetwyler et al. (2015) proposed the optimal haploid value (OHV) that 41 

accounts for the complementarity between parents of a cross on predefined haplotype segments. Using 42 

stochastic simulations, the authors observed that OHV selection yielded higher long term genetic gain 43 

and preserved greater amount of genetic diversity than truncated GS. However, OHV does neither 44 

account for the position of quantitative trait loci (QTLs) nor the linkage disequilibrium between QTLs 45 

(Lehermeier et al. 2017b; Müller et al. 2018). Schnell and Utz (1975) proposed the usefulness criterion 46 

(UC) of a cross to evaluate the expected response to selection in the progeny of the cross. The UC of a 47 

cross accounts for the progeny mean (𝜇) that is the mean of parental GEBVs and the progeny standard 48 

deviation (𝜎), the selection intensity (𝑖) and the selection accuracy (ℎ): 𝑈𝐶 = 𝜇 + 𝑖 ℎ 𝜎. Zhong and 49 

Jannink (2007) proposed to predict progeny variance using estimated QTL effects accounting for linkage 50 

between loci. Genome-wide marker effects and computationally intensive stochastic simulations of 51 

progeny have also been considered to predict the progeny variance (e.g. Mohammadi et al. 2015). 52 

Recently, an unbiased predictor of progeny variance (𝜎2) has been derived in Lehermeier et al. (2017b) 53 

for two-way crosses and extended in Allier et al. (2019b) for multi-parental crosses implying up to four 54 
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parents. Lehermeier et al. (2017b) observed that using UC as a cross selection index increased the short 55 

term genetic gain compared to evaluate crosses based on OHV or mean parental GEBV. Similar results 56 

have been obtained by simulations in Müller et al. (2018) considering the expected maximum haploid 57 

breeding value (EMBV) that is akin to the UC for normally distributed and fully additive traits. 58 

Alternatively, one can consider a more holistic CSI that accounts for the interdependence of 59 

crosses in the sense that the interest of a cross depends on the other selected crosses. This is the case in 60 

optimal contribution selection, where a set of candidate parents is evaluated as a whole regarding the 61 

expected short term gain and the associated risk on loosing long term gain. Optimal contribution 62 

selection aims at identifying the optimal contributions (𝒄) of candidate parents to the next generation 63 

obtained by random mating, in order to maximize the expected genetic value in the progeny (𝑉) under 64 

a certain constraint on inbreeding (𝐷) (Wray and Goddard 1994; Meuwissen 1997; Woolliams et al. 65 

2015). Optimal cross selection, further referred as OCS, is an extension of the optimal contribution 66 

selection to deliver a crossing plan that maximizes 𝑉 under the constraint 𝐷 by considering additional 67 

constraints on the allocation of mates in crosses (Kinghorn et al. 2009; Kinghorn 2011; Akdemir and 68 

Sánchez 2016; Gorjanc et al. 2018; Akdemir et al. 2018). In the era of genomic selection, the expected 69 

genetic value in progeny (𝑉) to be maximized is defined as the mean of parental GEBV (𝒂) weighted 70 

by parental contributions 𝒄, i.e. 𝒄′𝒂, and the constraint on inbreeding (𝐷) to be minimized is 𝒄′𝑲𝒄 with 71 

𝑲 a genomic coancestry matrix. To obtain optimal solutions for the vector of contributions 𝒄 and the 72 

crossing plan, i.e. pairing of candidates, differential evolutionary algorithms have been suggested (Storn 73 

and Price 1997; Kinghorn et al. 2009; Kinghorn 2011). Using the concept of optimal contribution 74 

selection for mating decisions is common in animal breeding (Woolliams et al. 2015) and is increasingly 75 

adopted in plant breeding (Akdemir and Sánchez 2016; De Beukelaer et al. 2017; Lin et al. 2017; 76 

Gorjanc et al. 2018; Akdemir et al. 2018). 77 

In plant breeding one typically has larger biparental families than in animal breeding and 78 

especially with GS, the selection intensity within family can be largely increased so that plant breeders 79 

much more capitalize on the segregation variance within families compared to animal breeders. In 80 

previous works, the genetic gain (𝑉) and constraint (𝐷) have been defined at the level of the progeny 81 

before within family selection. Exceptions are represented by the work of Shepherd and Kinghorn 82 
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(1998) and Akdemir et al. (2016; 2018) who added a term to 𝑉 accounting for within cross variance 83 

assuming LE between QTLs. However, to our knowledge no previous study allowed for linkage 84 

disequilibrium (LD) between QTLs. Furthermore, as observed in historical wheat data (Fradgley et al. 85 

2019) and using simulations in a maize context (Allier et al. 2019b), within family selection also affects 86 

the effective contribution of parents to the next generation. This likely biases the prediction of 87 

inbreeding/diversity in the next generation, which to our knowledge has not been considered in previous 88 

studies. 89 

In this study, we suggest to adjust 𝑉 and 𝐷 terms so that within family selection and the fact that 90 

only the best progeny of each family serve as candidates for the next generation are taken into account. 91 

We propose to use the usefulness criterion parental contribution (UCPC) approach (Allier et al. 2019b) 92 

that enables to predict the expected mean performance of the selected fraction of progeny, and to predict 93 

the contribution of parents to the selected fraction of progeny. We compared our OCS strategy based on 94 

UCPC to account for within family selection with other cross selection strategies, in a long term 95 

simulated recurrent genomic selection breeding program involving overlapping generations (Fig. 1A). 96 

Our objectives were to demonstrate (1) the interest of UCPC to predict the genetic diversity in the 97 

selected fraction of progeny and (2) the interest of accounting for within family selection in OCS for 98 

both, short and long term genetic gains.99 
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MATERIAL AND METHODS 

Simulated breeding program 100 

Breeding program 101 

We simulated a breeding program to compare the effect of different cross selection indices (CSI) 102 

on short and long term genetic gain in a realistic breeding context considering overlapping and 103 

connected generations (i.e. cohorts) of three years (Fig. 1A). A detailed description of the simulated 104 

breeding program and the material is provided in Supplementary Material (File S1). 105 

Each simulation replicate started from a population of 40 founders sampled among 57 Iodent 106 

maize genotypes from the Amaizing project (Rio et al. 2019; Allier et al. 2019b). We sampled 1,000 107 

biallelic QTLs among 40,478 high-quality single nucleotide polymorphisms (SNPs) from the Illumina 108 

MaizeSNP50 BeadChip (Ganal et al. 2011) with consensus genetic positions (Giraud et al. 2014). The 109 

sampling process obeyed two constrains: a QTL minor allele frequency ≥ 0.2 and a distance between 110 

two consecutive QTLs ≥ 0.2 cM. Each QTL was assigned an additive effect sampled from a Gaussian 111 

distribution with a mean of zero and a variance of 0.05 and the favorable allele was attributed at random 112 

to one of the two SNP alleles. We initiated a virtual breeding program starting from the founder 113 

genotypes with a burn-in period of 20 years that mimicked recurrent phenotypic selection using doubled 114 

haploid (DH) technology. At each generation, phenotypes were simulated considering an error variance 115 

corresponding to a trait repeatability of 0.4 in the founder population and no genotype by environment 116 

interactions. For phenotyping, every individual was evaluated in four environments in one year. After 117 

20 years of burn-in, we compared different cross selection indices (CSI) for 60 years of recurrent 118 

genomic selection using DH technology. Each year, a cohort 𝑇 was generated by 20 two-way crosses 119 

(|𝑛𝑐|  =  20) of 80 DH progeny each (𝑛𝑃𝑟𝑜𝑔 =  80). We assumed that three years were needed to 120 

produce DH from two-way crosses, and to genotype and phenotype them. Candidate parents of cohort 121 

𝑇 were selected from the available DH of the three cohorts: 𝑇 − 3, 𝑇 − 4 and 𝑇 − 5 (Fig. 1A-B). Per 122 

family, the 4 DH lines (i.e. 5%) with the largest breeding values, detailed in “Evaluation scenario” 123 

section, were considered as potential parents, yielding 4 DH lines/family x 20 families/cohort x 3 cohorts 124 

= 240 potential parents. Considering these 𝑁 = 240 parents, 𝑁(𝑁 − 1)/2 = 28,840 two-way crosses 125 

are possible. The set of |𝑛𝑐|  =  20 two-way crosses among these 28,680 candidate crosses was defined 126 
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using different CSI detailed in the following sections. This simulated scheme yielded overlapping and 127 

connected cohorts as it is standard in practical plant breeding (Fig. 1A). Note that 60 years post burn-in 128 

corresponded in the simulated context to 20 equivalent non-overlapping generations.  129 

Evaluation scenarios 130 

We considered different scenarios for genome-wide marker effects and progeny evaluation. In 131 

order to compare several CSI and not blur the comparison between CSI with the uncertainty in marker 132 

effect estimates, we mainly focused on the use of the 1,000 known QTL effects and positions (referred 133 

to as TRUE scenario). For a representative subset of the CSI, we also considered a more realistic scenario 134 

where the effects of 2,000 randomly sampled non causal SNPs were obtained from a G-BLUP model 135 

with back solving (Wang et al. 2012). This scenario was referred to as GS and marker effects used to 136 

predict the CSI were estimated every year with all candidate parents that were phenotyped and 137 

genotyped. The progeny were selected on their genomic estimated breeding values (GEBV) considering 138 

their phenotypes and genotypes at non causal SNPs. As a benchmark we also considered a phenotypic 139 

selection scenario where progeny were selected based on their phenotypic mean (PS). For details on the 140 

evaluation models see File S1. 141 

Cross selection strategies 142 

Optimal cross selection not accounting for within family selection 143 

Considering 𝑁 homozygote candidate parents, 𝑁(𝑁 − 1)/2  two-way crosses are possible. We 144 

define a crossing plan 𝒏𝒄 as a set of |𝑛𝑐| crosses out of possible two-way crosses, giving the index of 145 

selected crosses, i.e. with the 𝑖𝑡ℎ   element 𝑛𝑐 (𝑖) ∈ [1, 𝑁(𝑁 − 1)/2]. The (𝑁 x 1)-dimensional vector of 146 

candidate parents contributions 𝒄 is defined as:  147 

𝒄 =
1

|𝑛𝑐|
(𝒁𝟏𝒄𝟏 +  𝒁𝟐𝒄𝟐), [Eq. 1] 148 

where 𝒁𝟏 (respectively 𝒁𝟐) is a (𝑁 x |𝑛𝑐|)- dimensional design matrix that links each 𝑁 candidate parent 149 

to the first (respectively second) parent in the set of crosses 𝒏𝒄, 𝒄𝟏 (respectively 𝒄𝟐) is a (|𝑛𝑐| x 1)-150 

dimensional vector containing the contributions of the first (respectively second) parent to progeny, i.e. 151 

a vector of 0.5 when assuming no selection within crosses. 152 
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The (𝑁 x 1)-dimensional vector of candidate parents true breeding values is 𝒂 = 𝑿𝜷𝑇, where 153 

𝑿 = (𝒙1, … , 𝒙𝑁)′ is the (𝑁 x 𝑚)-dimensional matrix of known parental genotypes at 𝑚 biallelic QTLs, 154 

where 𝒙𝑝 denotes the (𝑚 x 1)-dimensional genotype vector of parent 𝑝 ∈ [1, 𝑁], with the 𝑗𝑡ℎ element 155 

coded as 1 or -1 for the genotypes AA or aa at QTL 𝑗. 𝜷𝑇 is the (𝑚 x 1)-dimensional vector of known 156 

additive QTL effects for the quantitative agronomic performance trait considered. The genetic gain 157 

𝑉(𝒏𝒄) for this set of two-way crosses is defined as the expected mean performance in the DH progeny:  158 

𝑉(𝒏𝒄) =  𝒄′𝒂. [Eq. 2] 159 

We define the constraint on diversity (𝐷) as the mean expected genetic diversity in DH progeny (He, 160 

Nei 1973): 161 

𝐷(𝒏𝒄) = 1 −  𝒄′𝑲𝒄, [Eq. 3] 162 

where 𝑲 =
1

2
(

1

𝑚
𝑿𝑿′ + 1) is the (𝑁 x 𝑁)-dimensional identity by state (IBS) coancestry matrix between 163 

the 𝑁 candidates. File S2 details the relationship between the IBS coancestry among parents (𝑲), the 164 

parental contributions to progeny (𝒄) and the mean expected heterozygosity in progeny 𝐻𝑒 =165 

1

𝑚
∑ 2𝑝𝑗(1 − 𝑝𝑗)𝑚

𝑗=1  where 𝑝𝑗 is the frequency of the genotypes AA at QTL 𝑗 in the progeny. 166 

Accounting for within family selection in OCS 167 

In the OCS, as just defined and also considered in Gorjanc et al. (2018), the progeny derived 168 

from the 𝒏𝒄 crosses are all expected to contribute to the next generation. We suggest to consider 𝑉(𝒏𝒄) 169 

and 𝐷(𝒏𝒄) terms accounting for the fact that only a selected fraction of each family will be candidate 170 

for the next generation (e.g. 5% per family in our simulation study). For this, we apply the UCPC 171 

approach proposed by Allier et al. (2019b) for two-way crosses and extend its use to evaluate the interest 172 

of a set 𝒏𝒄 of two-way crosses after selection in progeny. 173 

UCPC for two-way crosses 174 

Two inbred lines 𝑃1 and 𝑃2 are considered as parental lines for a candidate cross 𝑃1 x 𝑃2 and 175 

(𝒙1, 𝒙2)′ denotes their genotyping matrix. Following Lehermeier et al. (2017b), the DH progeny mean 176 

and progeny variance for the performance trait in the progeny before selection can be computed as: 177 

𝜇𝑇 = 0.5 (𝒙′1𝜷𝑇 + 𝒙′2𝜷𝑇), [Eq. 4a] 178 

𝜎𝑇
2 = 𝜷𝑇

′  𝚺 𝜷𝑇, [Eq. 4b] 179 
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where 𝒙1, 𝒙2 and 𝜷𝑇 were defined previously and 𝚺  is the (𝑚 x 𝑚)-dimensional variance covariance 180 

matrix of QTL genotypes in DH progeny defined in Lehermeier et al. (2017b).  181 

To follow parental contributions, we consider 𝑃1 parental contribution as a normally distributed 182 

trait (Allier et al. 2019b). As we only consider two-way crosses and biallelic QTLs, we can simplify for 183 

computational reasons the formulas by using identity by state (IBS) parental contributions computed for 184 

polymorphic QTLs between 𝑃1 and 𝑃2 instead of using identity by descent (IBD) parental contributions 185 

(Allier et al. 2019b). We define the (𝑚 x 1)-dimensional vector 𝜷𝐶1 to follow 𝑃1 IBS genome 186 

contribution at QTLs as 𝜷𝐶1 =
𝒙1−𝒙2

(𝒙1−𝒙2)′(𝒙1−𝒙2)
. We compute the 𝑃1 mean contribution in the progeny 187 

before selection 𝜇𝐶1 = 0.5 (𝒙′1𝜷𝐶1 + 𝒙′2𝜷𝐶1 + 1 ), where 𝒙′𝑝𝜷𝐶1 + 0.5 is the contribution of 𝑃1 to 188 

parent 𝑝. The progeny variance 𝜎𝐶1
2  for the 𝑃1 contribution trait in the progeny before selection is 189 

computed using Eq. 4b by replacing 𝜷𝑇 by 𝜷𝐶1. The progeny mean for 𝑃2 contribution is then defined 190 

as 𝜇𝐶2 = 1 − 𝜇𝐶1.  191 

Following Allier et al. (2019b), we compute the covariance between the performance trait and 𝑃1 192 

contribution trait in progeny as:  193 

𝜎𝑇,𝐶1 = 𝜷𝑇
′  𝚺 𝜷𝐶1. [Eq. 5] 194 

The expected mean performance of the selected fraction of progeny, i.e. usefulness criterion (Schnell 195 

and Utz 1975), of the cross 𝑃1 x 𝑃2 is:  196 

𝑈𝐶(𝑖) = 𝜇𝑇 + 𝑖ℎ𝜎𝑇, [Eq. 6] 197 

where 𝑖 is the within family selection intensity and the exponent (𝑖) in 𝑈𝐶(𝑖) expresses the dependency 198 

of 𝑈𝐶 on the selection intensity 𝑖. We considered a selection accuracy ℎ = 1 as in Zhong and Jannink 199 

(2007), which holds when selecting on true breeding values. The correlated responses to selection on 𝑃1 200 

and 𝑃2 genome contributions in the selected fraction of progeny are (Falconer and Mackay 1996): 201 

𝑐1
(𝑖)

= 𝜇𝐶1 + 𝑖
𝜎𝑇,𝐶1

𝜎𝑇
 and 𝑐2

(𝑖)
= 1 − 𝑐1

(𝑖)
 . [Eq. 7] 202 

Cross selection based on UCPC 203 

Accounting for within family selection intensity 𝑖, the genetic gain term 𝑉(𝑖)(𝒏𝒄) for a set of 204 

two-way crosses 𝒏𝒄 is defined as the expected performance in the selected fraction of progeny:  205 
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𝑉(𝑖)(𝒏𝒄) =
1

|𝒏𝒄|
 ∑ 𝑼𝑪(𝑖)(𝑗)𝑗∈𝒏𝒄 . [Eq. 8] 206 

The constraint on diversity 𝐷(𝑖)(𝒏𝒄) in the selected progeny is defined as: 207 

𝐷(𝑖)(𝒏𝒄) = 1 −  𝒄(𝑖)′𝑲𝒄(𝑖), [Eq. 9] 208 

where 𝒄(𝒊) is defined like 𝒄 in Eq. 1 but accounting for within family selection by replacing the ante-209 

selection parental contributions 𝒄𝟏 and 𝒄𝟐 by the post-selection parental contributions 𝒄𝟏 
(𝒊)

 and 𝒄𝟐 
(𝒊)

 (Eq. 210 

7), respectively. Note that considering the absence of selection in progeny, i.e. 𝑖 = 0, yields 𝑉(𝑖=0)(𝒏𝒄) 211 

being the mean of parent breeding values (Eq. 2) and 𝐷(𝑖=0)(𝒏𝒄) the expected diversity in progeny 212 

before selection (Eq. 3), which is equivalent to optimal cross selection as suggested by Gorjanc et al. 213 

(2018). The R code (R Core Team 2017) to evaluate a set of crosses as presented in the UCPC based 214 

optimal cross selection is provided in File S3. 215 

Multi-objective optimization framework  216 

In practice one does not evaluate only one set of crosses but several ones in order to find the 217 

optimal set of crosses to reach a specified target that is a function of 𝑉(𝑖)(𝒏𝒄) and 𝐷(𝑖)(𝒏𝒄). We use the 218 

𝜺-constraint method (Haimes et al. 1971; Gorjanc and Hickey 2018) to solve the multi-objective 219 

optimization problem:  220 

max
𝐧𝐜

 𝑉(𝑖)(𝒏𝒄) 221 

with 𝐷(𝑖)(𝒏𝒄) ≥  𝐻𝑒(𝑡), [Eq. 10] 222 

where 𝐻𝑒(𝑡), ∀ 𝑡 ∈ [0, 𝑡∗] is the minimal diversity constraint at time 𝑡. A differential evolutionary 223 

algorithm was implemented to find the set of 𝒏𝒄 crosses that is a Pareto-optimal solution of Eq. 10 224 

(Storn and Price 1997; Kinghorn et al. 2009; Kinghorn 2011). The direct consideration of 𝐻𝑒(𝑡) in the 225 

optimization allows to control the decrease in genetic diversity similarly to what was suggested for 226 

controlling inbreeding rate in animal breeding (Woolliams et al. 1998, 2015). The loss of diversity along 227 

time is controlled by the targeted diversity trajectory, i.e. 𝐻𝑒(𝑡), ∀ 𝑡 ∈ [0, 𝑡∗] where 𝑡∗ ∈ ℕ∗ is the time 228 

horizon when the genetic diversity 𝐻𝑒(𝑡∗) = 𝐻𝑒∗ should be reached. In this study 𝐻𝑒(𝑡) is defined as: 229 

𝐻𝑒(𝑡) = {
𝐻𝑒0 + (

𝑡

𝑡∗)
𝑠

(𝐻𝑒∗ − 𝐻𝑒0),  ∀ 𝑡 ∈  ⟦0, 𝑡∗⟧  

𝐻𝑒∗,  ∀ 𝑡 > 𝑡∗
, [Eq. 11] 230 
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where 𝐻𝑒0 is the initial diversity at 𝑡 = 0 and 𝑠 a shape parameter with 𝑠 = 1 for a linear trajectory. 231 

Fig. 2 gives an illustration of alternative trajectories that can be defined using Eq. 11. 232 

Cross selection indices  233 

We considered different cross selection approaches varying in the within family selection 234 

intensity (𝑖) in 𝑉(𝑖)(𝒏𝒄), 𝐷(𝑖)(𝒏𝒄) (Eq. 10) and of the targeted diversity trajectory 𝐻𝑒(𝑡) (Eq. 11). We 235 

first considered as a benchmark the absence of constraint 𝐷(𝑖)(𝒏𝒄), i.e. the absence of a diversity 236 

trajectory to follow (𝐻𝑒(𝑡) = 0, ∀𝑡). We defined the cross selection indices PM and UC, respectively 237 

considering 𝑉(𝑖=0)(𝒏𝒄) and 𝑉(𝑖=2.06)(𝒏𝒄) with 𝑖 = 2.06 corresponding to select the 5% most 238 

performant progeny per family. PM is equivalent to cross the best candidates together without 239 

accounting for within cross variance while UC is defined as crossing candidates based on the expected 240 

mean performance of the 5% selected fraction of progeny. Notice that the absence of constraint on 241 

diversity also means the absence of constraint on parental contributions. To compare optimal cross 242 

selection accounting or not for within family selection, we considered three linear diversity trajectories 243 

(Eq. 11) with 𝐻𝑒∗ = {0.01, 0.10, 0.15} that should be reached in 𝑡∗ = 60 years. We defined the OCS 244 

methods, further referred to as OCS-He*, with 𝑉(𝑖=0)(𝒏𝒄) and 𝐷(𝑖=0)(𝒏𝒄). We defined the UCPC cross 245 

selection methods, further referred as UCPC-He*, with 𝑉(𝑖=2.06)(𝒏𝒄) and 𝐷(𝑖=2.06)(𝒏𝒄). The eight cross 246 

selection indices considered are summarized in Table 1. 247 

Simulation 1: Interest of UCPC to predict the diversity in the selected fraction of progeny 248 

Simulation 1 aimed at evaluating the interest to account for the effect of selection on parental 249 

contributions, i.e. post-selection parental contributions (using UCPC), compared to ignore selection, i.e. 250 

ante-selection parental contributions (similarly as in OCS), to predict the genetic diversity (He) in the 251 

selected fraction of progeny of a set of 20 crosses (using Eq. 9 and Eq. 3, respectively). We considered 252 

a within family selection intensity corresponding to selecting the 5% most performant progeny. We used 253 

the same genotypes, genetic map and known QTL effects as for the first simulation replicate of the PM 254 

cross selection index in the TRUE scenario (Table 1). We extracted the simulated genotypes of 240 DH 255 

candidate parents of the first post burn-in cohort (further referred as E1) and of 240 DH candidate parents 256 

of the 20th post burn-in cohort (further referred as E2). Due to the selection process, E1 showed a higher 257 
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diversity and lower performance compared to E2. We randomly generated 300 sets of 20 two-way 258 

crosses: 100 sets of intra-generation E1 crosses (E1 x E1), 100 sets of intra-generation E2 crosses (E2 x 259 

E2) and 100 sets of inter- and intra-generation crosses randomly sampled (E1 x E2, E1 x E1, E2 x E2). 260 

We derived 80 DH progeny per cross and predicted the ante- and post-selection parental contributions 261 

to evaluate the post-selection genetic diversity (He) for each set of crosses. We estimated the empirical 262 

post-selection diversity for each set of crosses and compared predicted and empirical values considering 263 

the mean prediction error as the mean of the difference between predicted He and empirical post-264 

selection He, and the prediction accuracy as the squared correlation between predicted He and empirical 265 

post-selection He. 266 

Simulation 2: Comparison of different cross selection indices 267 

We ran ten independent simulation replicates of all eight CSI summarized in Table 1 for 60 268 

years post burn-in considering known effects at the 1,000 QTLs (TRUE scenario). We also compared 269 

in ten independent simulation replicates the CSI: PM, UC, OCS-He* and UCPC-He* with He*=0.01 270 

considering estimated marker effect at the 2,000 SNPs (GS scenario) and PM based only on phenotypic 271 

evaluation (PS scenario). We followed several variables on the 80 DH progeny/family x 20 crosses 272 

realized every year. At each cohort 𝑇 ∈ [0,60] with 𝑇 = 0 corresponding to the last burn-in cohort, we 273 

computed the additive genetic variance as the variance of the 1600 DH progeny true breeding values 274 

(TBV): 𝜎𝐴
2(𝑇) = 𝑣𝑎𝑟(𝑇𝐵𝑉(𝑇)). We followed the mean genetic merit of all progeny 𝜇(𝑇) =275 

𝑚𝑒𝑎𝑛(𝑇𝐵𝑉(𝑇)) and of the ten most performant progeny 𝜇10(𝑇) = 𝑚𝑒𝑎𝑛 (max
10

(𝑇𝐵𝑉(𝑇))) as a proxy 276 

of realized performance that could be achieved at a commercial level by releasing these lines as varieties. 277 

Then, we centered and scaled the two genetic merits to obtain realized cumulative genetic gains in units 278 

of genetic standard deviation at the end of the burn-in (𝑇 = 0), at the whole progeny level 𝐺(𝑇) =279 

(𝜇(𝑇) − 𝜇(0))/√𝜎𝐴
2(0)  and at the commercial level 𝐺10(𝑇) = (𝜇10(𝑇) − 𝜇(0))/√𝜎𝐴

2(0). 280 

The interest of long term genetic gain relies on the ability to breed at long term, which depends 281 

on the short term economic success of breeding. Following this rationale, we penalized strategies that 282 

compromised the short term commercial genetic gain using the weighted cumulative discounted 283 

commercial gain following Dekkers et al. (1995) and Chakraborty et al (2002). In practice, we computed 284 
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the weighted sum of the commercial gain value in each generation ∑ 𝑤𝑇 𝐺10(𝑇)60
𝑇=1 , where the weights 285 

𝑤𝑇 = 1/(1 + 𝜌)𝑇 , ∀𝑇 ∈ [1,60] were scaled to have ∑ 𝑤𝑇 60
𝑇=1 = 1 and 𝜌 is the interest rate per cohort. 286 

For 𝜌 = 0, the weights were 𝑤𝑇∈[1,60] = 1/60, i.e. the same importance was given to all cohorts. We 287 

compared different values of 𝜌 and reported results for 𝜌 = 0, 𝜌 = 0.04 giving approximatively seven 288 

times more weight to short term gain (after 10 years) compared to long term gain (after 60 years) and 289 

𝜌 = 0.2 giving nearly no weight to gain reached after 30 years of breeding. 290 

We also measured the genetic diversity as the additive genic variance at QTLs 𝜎𝑎
2(𝑇) =291 

∑ 4 𝑝𝑗(𝑇) (1 − 𝑝𝑗(𝑇)) 𝛽𝑗
2𝑚

𝑗=1 , the mean expected heterozygosity at QTLs (He, Nei 1973) 𝐻𝑒(𝑇) =292 

𝑚−1 ∑ 2 𝑝𝑗(𝑇) (1 − 𝑝𝑗 (𝑇))𝑚
𝑗=1 , and the number of QTLs where the favorable allele was fixed or lost 293 

in the progeny, with 𝑝𝑗(𝑇) the allele frequency at QTL 𝑗 ∈ [1, 𝑚] in the 1600 DH progeny and 𝛽𝑗 the 294 

additive effect of the QTL 𝑗. In addition we considered the ratio of additive genetic over genic variance 295 

𝜎𝐴
2/𝜎𝑎

2 which provides an estimate of the amount of additive genic variance captured by negative 296 

covariances between QTL, known as the Bulmer effect under directional selection (Bulmer 1971, 1980; 297 

Lynch and Walsh 1999). All these variables were further averaged on the ten simulation replicates.298 
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RESULTS 299 

Simulation 1 300 

Compared to the usual approach that ignores the effect of selection on parental contributions, 301 

accounting for the effect of within family selection increased the squared correlation (R²) between 302 

predicted genetic diversity and genetic diversity in the selected fraction of progeny (Fig. 3A-B) for all 303 

three types of sets of crosses. The squared correlation between predicted genetic diversity and post-304 

selection genetic diversity for intra-generation sets of crosses was only slightly increased (E1 x E1: from 305 

0.811 to 0.822 and E2 x E2: from 0.880 to 0.888) while the squared correlation for a set of crosses 306 

involving also inter-generation crosses was more importantly increased (from 0.937 to 0.987) (Fig. 3A-307 

B). Using post-selection parental contributions instead of ante-selection parental contributions also 308 

reduced the mean prediction error (predicted – empirical He) (Fig. 4A-B) for all three types of sets of 309 

crosses. The mean prediction error for intra-generation sets of crosses was only slightly reduced (E1 x 310 

E1: from 0.006 to 0.005 and E2 x E2: from 0.016 to 0.015) while the mean prediction error for sets 311 

involving inter-generation crosses was more reduced (from 0.032 to 0.008) (Fig. 4A-B). The mean 312 

prediction error was reduced but still positive when considering post-selection parental contributions, 313 

which means that the genetic diversity in the selected fraction of progeny is overestimated. Note that the 314 

ante-selection contributions predicted well the empirical genetic diversity before selection for three 315 

types of sets of crosses (mean prediction error = 0.000 and R² > 0.992, results not shown). 316 

Simulation 2  317 

Interest of UC over PM 318 

Considering known QTL effects (TRUE scenario), we observed that UC yielded higher short 319 

and long term genetic gain at commercial level (G10) than PM (9.316 compared to 8.338 ten years post 320 

burn-in and 18.293 compared to 15.744 sixty years post burn-in, Fig. 5B-C). When considering the 321 

whole progeny mean performance (G), PM outperformed UC for the five first years and after five years 322 

UC outperformed PM (Fig. 5A). UC showed higher genic (𝜎𝑎
2) and genetic (𝜎𝐴

2) additive variances than 323 

PM (Fig. 6A-B) but both yielded a genic and genetic variance near to zero after sixty years of breeding. 324 

The genetic over genic variance ratio (𝜎𝐴
2/𝜎𝑎

2) was also higher for UC compared to PM (Fig. 6C). The 325 
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evolution of genetic diversity (He) along years followed the same tendency as the genic variance (Fig. 326 

7A, Fig. 6A). UC fixed more favorable alleles at QTLs after 60 years (Fig. 7B) and lost less favorable 327 

alleles at QTLs than PM in all ten simulation replicates with an average of 243.1 QTLs where the 328 

favorable allele was lost compared to 274.9 QTLs for PM (Fig. 7C). 329 

Targeted diversity trajectory 330 

Considering known QTL effects (TRUE scenario), the tested optimal cross selection methods 331 

OCS-He* and UCPC-He* showed lower short term genetic gain at the whole progeny level (G, Fig. 5A) 332 

and at the commercial level (G10, Fig. 5B-C) but higher long term genetic gain than UC. The lower the 333 

targeted diversity He*, the higher the short and midterm genetic gain at both whole progeny (G, Fig. 334 

5A) and commercial (G10, Fig. 5B-C) levels. The higher the targeted diversity He*, the higher the long 335 

term genetic gain except for OCS-He*=0.10 and OCS-He*=0.01 that performed similarly after 60 years 336 

(on average, G10 = 21.925 and 21.892, Fig. 5B). The highest targeted diversity (He* = 0.15) showed a 337 

strong penalty at short and midterm, while the intermediate targeted diversity (He* = 0.10) showed a 338 

lower penalty at short and midterm compared to the lowest targeted diversity (He* = 0.01) (Fig. 5A-C).  339 

For all targeted diversities and all simulation replicates, accounting for within family selection (UCPC-340 

He*) yielded a higher short term commercial genetic gain (G10) after 10 years compared to OCS-He* 341 

(Fig. 5B-C). Long term commercial genetic gain (G10) after 60 years was also higher for UCPC-He* 342 

than for OCS-He* with He* = 0.01 in the ten simulation replicates (on average G10: 22.869 compared 343 

to 21.892) and with He* = 0.10 in nine out of ten replicates (on average G10: 22.474 compared to 21.925). 344 

However, for He* = 0.15, UCPC-He* outperformed OCS-He* at long term in only three out of ten 345 

replicates (on average G10: 20.665 compared to 20.938) (Fig. 5B-C). The cumulative commercial gain 346 

giving more weight to short term than to long term gain (𝜌 = 0.04) was higher for UCPC-He* than 347 

OCS-He* in all simulation replicates for He* = 0.01 (on average, 12.321 compared to 11.675), in all 348 

simulation replicates for He*=0.10 (on average, 11.788 compared to 11.278) and in nine out of ten 349 

simulation replicates for He*=0.15 (on average, 11.176 compared to 10.884) (Table 2). Cumulative 350 

commercial gain giving the same weight to short and long term gain (𝜌 = 0) was also higher for UCPC-351 

He* compared to OCS-He* (Table 2). When giving almost no weight to long term gain after 30 years 352 
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(𝜌 = 0.2), the best CSI appeared to be UC followed by the UCPC-He* with the lowest constraint on 353 

diversity (i.e. low He*). 354 

For a given He* the additive genic variance (𝜎𝑎
2, Fig. 6A) and genetic diversity at QTLs (He, 355 

Fig. 7A) were constrained by the targeted diversity trajectory for both UCPC-He* or OCS-He*. 356 

However, UCPC-He* and OCS-He* behaved differently for genetic variance (𝜎𝐴
2, Fig. 6A) resulting in 357 

differences for the ratio genetic over genic variances (𝜎𝐴
2/𝜎𝑎

2, Fig. 6C). UCPC-He* yielded a higher 358 

ratio than OCS-He* (Fig. 6C) independently of the targeted diversity He* at short and midterm. For low 359 

targeted diversity (He* = 0.01), UCPC-He* showed in all ten replicates a lower number of QTLs where 360 

the favorable allele was lost compared to OCS-He* (Fig. 7C, on average 173.6 QTLs-194.3 QTLs).  361 

Estimated marker effects 362 

Considering estimated marker effects (GS scenario) yielded lower genetic gain than when 363 

considering known marker effects (File S1). However, the short and long term superiority of the 364 

usefulness criterion (UC) over the CSI ignoring within cross variance (PM) was consistent with 365 

estimated effects (G10 = 8.338 compared to 7.713 ten years post burn-in and G10 = 15.367 compared to 366 

13.287 sixty years post burn-in, Fig. 8). Similarly, the short and long term superiority of UCPC-367 

He*=0.01 based optimal cross selection over UC and OCS-He*=0.01 was also conserved (G10 = 8.162 368 

compared to 7.734 ten years post burn-in and G10 = 18.161 compared to 17.528 sixty years post burn-369 

in, Fig. 8). Observations on the genic variance (𝜎𝑎
2) and genetic variance (𝜎𝐴

2) were consistent as well. 370 

We also observed that UCPC-He*=0.01 yielded a lower number of QTLs where the favorable allele was 371 

lost compared to OCS-He*=0.01 (Fig. 8). PM not considering the marker information, i.e. phenotypic 372 

selection (PS scenario), yielded lower short and long term genetic gains than PM considering marker 373 

information (G10 = 6.402 ten years post burn-in and G10 = 10.810 sixty years post burn-in, Fig. 8).374 
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DISCUSSION 375 

Predicting the next generation diversity 376 

Accounting for within family selection compared to not accounting for selection to predict the 377 

genetic diversity in the selected fraction of progeny increased the squared correlation and reduced the 378 

mean error of post-selection genetic diversity prediction (Fig. 4, Fig. 3). The gain in squared correlation 379 

(Fig. 3) and the reduction in mean error (Fig. 4), i.e. the interest of UCPC, were more important for 380 

parents showing differences in performance. This result is consistent with observations in Allier et al. 381 

(2019b) where crosses between two phenotypically distant parents yielded post-selection parental 382 

contributions that differ from their expectation before selection (i.e. 0.5). The mean prediction error was 383 

always positive, that can be explained by the use in Eq. 9 of genome-wide parental contributions to 384 

progeny in lieu of parental contributions at individual QTLs to predict allelic frequency changes due to 385 

selection (File S2). As a result, the predicted extreme frequencies at QTLs in the progeny are shrunk 386 

towards the mean frequency, leading to an overestimation of the expected heterozygosity (He) (results 387 

not shown). Local changes in allele frequency under artificial selection could be predicted following 388 

Falconer and Mackay (1996) and Gallais et al. (2007), but this approach would assume linkage 389 

equilibrium between QTLs, which is a strong assumption that does not correspond to the highly 390 

polygenic trait that we simulated. 391 

Effect of usefulness criterion on short and long term recurrent selection 392 

In a first approach, we considered no constraint on diversity during cross selection and compared 393 

cross selection maximizing the usefulness criterion (UC) or maximizing the parental mean (PM) in the 394 

TRUE scenario assuming known QTL effects and positions. The UC yielded higher short term genetic 395 

gain at commercial level (G10, Fig. 5B-C). This was expected because UC predicts the mean 396 

performance of the best fraction of progeny. When considering the genetic gain at the mean progeny 397 

level (G, Fig. 5A), UC needed five years to outperform PM. These results underline that UC maximizes 398 

the mean performance of the next generation issued from the intercross of selected progeny, sometimes 399 

at the expense of the current generation progeny mean performance. This observation is consistent with 400 

the fact that candidate parents of the sixth cohort came all from the three first cohorts generated 401 

considering UC and thus the sixth cohort took the full advantage of the use of UC (Fig. 1A). This 402 
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tendency was also observed in simulations by Müller et al. (2018) considering the EMBV approach, 403 

akin to the UC for normally distributed additive traits. The UC also showed a higher long term genetic 404 

gain at both commercial (G10) and whole progeny level (G) compared to intercross the best candidate 405 

parents (PM). This long term gain was driven by a higher additive genic variance at QTLs (𝜎𝑎
2, Fig. 6A) 406 

and a lower genomic covariance between QTLs (𝜎𝐴
2/𝜎𝑎

2, Fig. 6C) resulting in a higher additive genetic 407 

variance in UC compared to PM (𝜎𝐴
2, Fig. 6B). Note that with lower 𝜎𝑎

2 the ratio 𝜎𝐴
2/𝜎𝑎

2 becomes less 408 

interpretable at long term (Fig. 6C). UC also better managed the fixation (Fig. 7B) or the maintenance 409 

(Fig. 7C) of the favorable allele at QTLs compared to PM. These results highlight the interest of 410 

considering within cross variance in cross selection for improving long term genetic gain as observed in 411 

Müller et al. (2018). 412 

Accounting for within family variance in optimal cross selection 413 

Assuming known marker effects, we observed that to consider a constraint on diversity, i.e. in 414 

optimal cross selection, always maximized the long term genetic gain along with a variable penalty at 415 

short term gain compared to no constraint on diversity when selecting crosses (e.g. UC). We further 416 

compared the OCS (Gorjanc et al. 2018) with the UCPC based optimal cross selection that accounts for 417 

the fact that only a selected fraction of each family is candidate for the next generation. In the 418 

optimization framework considered, we compared the ability of UCPC (referred to as UCPC-He*) and 419 

OCS (referred to as OCS-He*) to convert a determined loss of diversity into genetic gain. For a given 420 

diversity trajectory, UCPC-He* yielded higher short term commercial gain than OCS-He*. Both, OCS-421 

He* and UCPC-He* yielded similar additive genic variance (𝜎𝑎
2) but we observed differences in terms 422 

of the ratio 𝜎𝐴
2/𝜎𝑎

2 . As expected under directional selection, the ratio 𝜎𝐴
2/𝜎𝑎

2 was positive and inferior 423 

to one, revealing a negative genomic covariance between QTLs (Bulmer 1971). UCPC-He* yielded a 424 

higher ratio, i.e. lower repulsion, and thus a higher additive genetic variance (𝜎𝐴
2) than OCS-He* for a 425 

similar He*. This explains the higher long term genetic gain at commercial and whole progeny levels 426 

observed for UCPC-He*. This result supports the idea, suggested in Allier et al. (2019a), that accounting 427 

for complementarity between parents when defining crossing plans is an efficient way to favor 428 

recombination events to reveal part of the additive genic variance hidden by repulsion between QTLs. 429 
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For low targeted diversity (He* = 0.01), UCPC-He* also appeared to better manage the rare favorable 430 

alleles at QTLs than OCS-He*. These results highlighted the interest of UCPC based optimal cross 431 

selection to convert the loss of genetic diversity into genetic gain by maintaining more rare favorable 432 

alleles and limiting repulsion between QTLs. Note that the superiority of UCPC-He* over OCS-He* for 433 

long term genetic gain decreased when considering higher targeted diversity. In case of higher targeted 434 

diversity (He* = 0.15), the loss of diversity was likely not sufficient to fully express the additional 435 

interest of UCPC compared to OCS to convert diversity into genetic gain. In this case UCPC-He* and 436 

OCS-He* performed similarly. Accounting for within cross variance to measure the expected gain of a 437 

cross in optimal cross selection was already suggested in Shepherd and Kinghorn (1998). More recently, 438 

Akdemir and Sánchez (2016) and Akdemir et al. (2018) accounted for within cross variance considering 439 

linkage equilibrium between QTLs. Akdemir and Sánchez (2016) also observed that accounting for 440 

within cross variance during cross selection yielded higher long term mean performance with a penalty 441 

at short term mean progeny performance. 442 

Short term economic returns condition the ability of a breeder to target long term genetic gain. 443 

Hence, it is necessary to make sure that tested breeding strategy do not compromise too much the short 444 

term commercial genetic gain. For this reason, we considered the weighted cumulative discounted 445 

commercial gain following Dekkers et al. (1995) and Chakraborty et al (2002) as a summary variable to 446 

evaluate CSI while giving more or less weight to short and long term performance. UCPC-He* 447 

outperformed OCS-He* for a given He* considering either uniform weights (𝜌 = 0) or giving 448 

approximately seven time more weight to short term gain compared to long term gain (𝜌 = 0.04). This 449 

was also true when focusing only on short term gain (𝜌 = 0.2), but in this case the best model was UC 450 

without accounting for diversity while selecting crosses (Table 2). 451 

Practical implementations in breeding 452 

UCPC with estimated marker effects 453 

In simulations, we firstly considered 1,000 QTLs with known additive effects sampled from a 454 

centered normal distribution. For a representative subset of cross selection indices (PM, UC, UCPC-455 

He* and OCS-He* with He*=0.01, Fig. 8) we considered 2,000 SNPs estimated effects. The main 456 

conclusions were consistent considering both estimated and known marker effects, supporting the 457 
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practical interest of UCPC based optimal cross selection (Fig. 8). With estimated marker effects instead 458 

of known QTL effects, the predicted progeny variance (𝜎2) corresponded to the variance of the predicted 459 

breeding values which are shrunk compared to true breeding values depending on the model accuracy 460 

(referred to as variance of posterior mean, VPM in Lehermeier et al. (2017a; b)). An alternative would 461 

be to consider the marker effects estimated at each sample of a Monte Carlo Markov Chain process, e.g. 462 

using a Bayesian Ridge Regression, to obtain an improved estimate of the additive genetic variance 463 

(referred to as posterior mean variance, PMV in Lehermeier et al. (2017a; b)).  464 

In practice, QTL effects are unknown, so the selection of progeny cannot be based on true 465 

breeding values and thus the selection accuracy (ℎ) is smaller than one. In our simulation study assuming 466 

unknown QTLs (GS scenario), progeny were selected based on estimated breeding values taking into 467 

account genotypic information as well as replicated phenotypic information leading to a high selection 468 

accuracy, as it can be encountered in breeding. In order to shorten the cycle length of the breeding 469 

scheme, selection of progeny can be based on predicted GEBVs of genotyped but not phenotyped 470 

progeny. In such a case, the selection accuracy (ℎ) will be considerably reduced. We assume that 471 

selection based on UCPC can be improved when using PMV instead of VPM and by taking into account 472 

the proper selection accuracy (ℎ) within crosses adapted to the selection scheme. When selection is 473 

based on predicted values, i.e. genotyped but not phenotyped progeny, the shrunk predictor VPM might 474 

present a good approximation of (ℎ𝜎)2.  475 

UCPC based optimal cross selection  476 

In this study, we assumed fully homozygous parents and two-way crosses. However, neither the 477 

optimal cross selection nor UCPC based optimal cross selection are restricted to homozygote parents. 478 

Considering heterozygote parents in optimal cross selection is straightforward. Following the extension 479 

of UCPC to four-way crosses (Allier et al. 2019b), UCPC optimal cross selection can be used for phased 480 

heterozygous individuals, as it is commonly the case in perennial plants or animal breeding. We 481 

considered an inbred line breeding program but the extension to hybrid breeding is of interest for species 482 

as maize. The use of testcross effects, i.e. estimated on hybrids obtained by crossing candidate lines with 483 

lines from the opposite heterotic pool, in UCPC based optimal cross selection is straightforward and so 484 

the UCPC based optimal cross selection can be used to improve each heterotic pool individually. In 485 
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order to jointly improve two pools, further investigations are required to include dominance effects in 486 

UCPC based optimal cross selection. In addition, this would imply that crossing plans in both pools are 487 

jointly optimized to manage genetic diversity within pools and complementarity between pools. 488 

We considered a within family selection intensity corresponding to the selection of the five 489 

percent most performant progeny as candidates for the next generation. Equal selection intensities were 490 

assumed for all families but in practice due to experimental constraints or optimized resource allocation 491 

(e.g. generate more progeny for crosses showing high progeny variance but low progeny mean), within 492 

family selection intensity can be variable. Different within family selection intensities (see Eq. 8 and 493 

Eq. 9) can be considered in UCPC based optimal cross selection, but an optimization regarding resource 494 

allocation of the number of crosses and the selection intensities within crosses warrants further 495 

investigations. However, in marker-assisted selection schemes based on QTL detection results 496 

(Bernardo et al. 2006) an optimization of selection intensities per family was observed to be only of 497 

moderate interest. 498 

Proposed UCPC based optimal cross selection was compared to OCS in a targeted diversity 499 

trajectory context. We considered a linear trajectory but any genetic diversity trajectory can be 500 

considered (e.g. Fig. 2). The optimal diversity trajectory cannot be easily determined and depends on 501 

breeding objectives and data considered. Optimal contribution selection in animal breeding considers a 502 

similar 𝜖-constraint optimization with a targeted inbreeding trajectory determined by a fixed annual rate 503 

of inbreeding (e.g. 1% advocated by the FAO, Woolliams et al. 1998). Woolliams (2015) argued that 504 

the optimal inbreeding rate is also not straightforward to define. An alternative formulation of the 505 

optimization problem to avoid the use of a fixed constraint is to consider a weighted index 506 

(1 − 𝛼)𝑉(𝒏𝒄) + 𝛼𝐷(𝒏𝒄), where 𝛼 is the weight balancing the expected gain 𝑉(𝒏𝒄) and constraint 507 

𝐷(𝒏𝒄) (De Beukelaer et al. 2017). However, the appropriate choice of 𝛼 is difficult and is not explicit 508 

either in terms of expected diversity nor expected gain. 509 

Introgression of diversity and anticipation of a changing breeding context 510 

We considered candidate parents coming from the three last overlapping cohorts (Fig. 1) in 511 

order to reduce the number of candidate crosses during the progeny covariances prediction (UCPC) and 512 

the optimization process. This yielded elite candidate parents that were not directly related (no parent-513 
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progeny) and that did not show strong differences in performances, which is standard in a commercial 514 

plant breeding program focusing on yield improvement. However, when the genetic diversity in a 515 

program is too low so that long term genetic gain is compromised, external genetic resources need to be 516 

introgressed by crosses with internal elite parents. As suggested by results of simulation 1, we conjecture 517 

that the advantage of UCPC based optimal cross selection over OCS increases in such a context where 518 

heterogeneous, i.e. phenotypically distant, genetic material are crossed. This requires investigations that 519 

we hope to address in subsequent research.  520 

Our simulations also assumed fixed environments and a single targeted trait over sixty years. 521 

However, in a climate change context and with rapidly evolving societal demands for sustainable 522 

agricultural practices, environments and breeders objectives will likely change over time. In a multi-523 

trait context, the multi-objective optimization framework proposed in Akdemir et al. (2018) can be 524 

adapted to UCPC based optimal cross selection. The upcoming but yet unknown breeding objectives 525 

make the necessity to manage genetic diversity even more important than highlighted in this study. 526 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/634303doi: bioRxiv preprint 

https://doi.org/10.1101/634303
http://creativecommons.org/licenses/by-nc-nd/4.0/


UCPC for optimal cross selection 

24 
 

TABLES & FIGURES 

  

 

Figure 1 Schematic view of the simulated breeding program: (A) overall view of the breeding program 

and overlapping cohorts, (B) life cycle of a given post burn-in cohort 𝑻 depending on the scenario 

considered (TRUE with 1,000 known QTL effects, PS in absence of genomic information or GS with 

2,000 non causal SNPs estimated effects). 

 

 

Figure 2 Targeted diversity trajectories for three different shape parameters (s = 1, linear trajectory; s = 

2, quadratic trajectory and s = 0.5 inverse quadratic trajectory) for fixed initial diversity (He0 = 0.3) at 

generation 0 and targeted diversity (He* = 0.01) at generation 60 (t* = 60). We considered in this study 

only linear trajectories (s = 1).  

 

A B 
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Figure 3 Squared correlations (R²) between predicted genetic diversity (He) and empirical He in the 

selected fraction of progeny of a set of 20 biparental crosses in the TRUE scenario considering (A) ante-

selection parental contributions or (B) post-selection parental contributions to predict He. In total 100 

sets of each three types of crosses (intra-generation: E1xE1 and E2xE2 or randomly intra and inter-

generations: Random (E1,E2)) are shown and the squared correlations between predicted and empirical 

post-selection He are given in the corresponding color. 

 

 

Figure 4 Mean prediction error (predicted - empirical) of predicting the genetic diversity (He) in the 

selected fraction of progeny of a set of 20 biparental crosses in the TRUE scenario depending on the 

mean difference of performance between parents (Delta TBV). Mean prediction error is measured as the 

predicted He - empirical post-selection He, considering (A) ante-selection parental contributions or (B) 

post-selection parental contributions to predict He. In total 100 sets of each three types of crosses (intra-

generation: E1xE1 and E2xE2 or randomly intra and inter-generations: Random (E1,E2)) are shown and 

the averaged errors are given in the corresponding color. 

 

A B 

A B 
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Figure 5 Genetic gains for different cross selection indices in the TRUE scenario (PM: parental mean, 

UC: usefulness criterion, OCS-He*: optimal cross selection and UCPC-He*: UCPC based optimal cross 

selection) according to the generations. (A) Genetic gain (G) measured as the mean of the whole 

progeny, (B) commercial genetic gain (G10) measured as the mean of the ten best progeny and (C) G10 

relative to selection based on parental mean (PM). 

 

 

 

Figure 6 Genetic and genic additive variances for different cross selection indices in the TRUE scenario 

(PM: parental mean, UC: usefulness criterion, OCS-He*: optimal cross selection and UCPC-He*: 

UCPC based optimal cross selection) according to the generations. (A) Additive genic variance (𝜎𝑎
2) 

measured on the whole progeny, (B) additive genetic variance (𝜎𝐴
2) measured on the whole progeny and 

(C) ratio of genetic over genic variance (𝜎𝐴
2/𝜎𝑎

2) reflecting the Bulmer effect.  

 

 

 

 

 

A B C 
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.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/634303doi: bioRxiv preprint 

https://doi.org/10.1101/634303
http://creativecommons.org/licenses/by-nc-nd/4.0/


UCPC for optimal cross selection 

27 
 

 

Figure 7 Genetic diversity at QTLs for different cross selection indices in the TRUE scenario (PM: 

parental mean, UC: usefulness criterion, OCS-He*: optimal cross selection and UCPC-He*: UCPC 

based optimal cross selection) according to the generations. (A) Genetic diversity at QTLs in the whole 

progeny (𝐻𝑒), (B) number of QTLs where the favorable allele is fixed in the whole progeny and (C) 

number of QTLs where the favorable allele is lost in the whole progeny.  

A B C 
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Figure 8 Evolution of different variables for different cross selection indices according to the 

generations in the GS scenario (PM: parental mean, UC: usefulness criterion, OCS-He*: optimal cross 

selection and UCPC-He*: UCPC based optimal cross selection for He*=0.01) and in the PS scenario 

(PM: parental mean). (A) Genetic gain at whole progeny level (G), (B) genetic gain at commercial level 

(G10) and (C) G10 relatively to PM (GS), genetic gain is measured on true breeding values. (D) Genic 

variance at QTLs (𝜎𝑎
2), (E) genetic variance of true breeding values (𝜎𝐴

2) and (F) ratio of genic over 

genetic variance (𝜎𝐴
2/𝜎𝑎

2), (G) genetic diversity at QTLs and number of QTLs where the favorable allele 

was fixed (H) and lost (I).  
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Table 1 Summary of tested cross selection indices (CSI) defined for a set of crosses 𝒏𝒄 depending on 

the within family selection intensity 𝑖.  
 

Cross selection index 
(CSI) 

Gain term  Diversity term  

PM 𝑉(𝑖=0)(𝒏𝒄) - 

OCS-He* (3 different He*) 𝑉(𝑖=0)(𝒏𝒄) 𝐷(𝑖=0)(𝒏𝒄) 
UC 𝑉(𝑖=2.06)(𝒏𝒄) - 

UCPC-He* (3 different He*) 𝑉(𝑖=2.06)(𝒏𝒄) 𝐷(𝑖=2.06)(𝒏𝒄) 
 
𝐻𝑒∗ = {0.15; 0.10; 0.01} to be reached linearly (𝑠 = 1) at the end of simulation (𝑡∗ = 60 years). 

𝑉(𝑖=0)(𝒏𝒄) is the averaged parental mean (PM) of crosses in 𝒏𝒄 and 𝑉(𝑖=2.06)(𝒏𝒄) is the averaged 

usefulness criterion (UC) of crosses in 𝒏𝒄 considering a within family selection intensity of 2.06. 

𝐷(𝑖=0)(𝒏𝒄) and 𝐷(𝑖=2.06)(𝒏𝒄) are the expected genetic diversity in the progeny before and after within 

family selection, respectively. 

 
 
 
Table 2 Weighted cumulative gain for three different parameters 𝝆 giving more or less weight to short 

term gain than to long term gain and assuming known QTL effects (TRUE scenario) 

 
 

 

 

 

 

 

 

 

 

Mean weighted cumulative gain with 𝜌 = 0 (constant weight along years), 𝜌 = 0.04 (decreasing weight 

along years) and 𝜌 = 0.2 (nearly null weights after 30 years) on the ten independent replicates. For each 

weighted cumulative gain, the rank of the CSI (# rank) from the most performant (#1) to the less 

performant (#8) is given. 

 

 Weighted cumulative gain 

Cross selection index 
(CSI) 

𝝆 =  𝟎 
(# rank) 

𝝆 =  𝟎. 𝟎𝟒 
(# rank) 

𝝆 =  𝟎. 𝟐 

(# rank) 

UCPC - He*=0.01 (TRUE) 15.949 (#1) 12.321 (#1) 6.682 (#2) 

UCPC - He*=0.10 (TRUE) 15.174 (#2) 11.788 (#2) 6.593 (#3) 

UC (TRUE) 14.408 (#5) 11.689 (#3) 6.822 (#1) 

OCS - He*=0.01 (TRUE) 15.148 (#3) 11.675 (#4) 6.360 (#5) 

OCS - He*=0.10 (TRUE) 14.630 (#4) 11.278 (#5) 6.230 (#7) 

UCPC - He*=0.15 (TRUE) 14.205 (#6) 11.176 (#6) 6.454 (#4) 

OCS - He*=0.15 (TRUE) 14.056 (#7) 10.884 (#7) 6.103 (#8) 

PM (TRUE) 12.609 (#8) 10.392 (#8) 6.345 (#6) 
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