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Abstract

Gene expression-based classification of a biological sample’s cell type is an
important step in many transcriptomic analyses, including that of annotating cell
types in single-cell RNA-seq datasets. In this work, we explore the novel
application of hierarchical classification algorithms that take into account the
graph structure of the Cell Ontology to this task. We train these algorithms on a
novel curated dataset comprising nearly all human public, primary bulk samples
in the NCBI’s Sequence Read Archive. These algorithms improve on
state-of-the-art methods and produce accurate cell type predictions on both bulk
and single-cell data across diverse and fine-grained cell types.

Keywords: Machine learning; Cell type; RNA-seq; Hierarchical classification;
Ontology; Sequence Read Archive; Gene expression

1 Background
Gene expression-based computational classification of a biological sample’s con-

stituent cell type is an important task in many gene expression analysis tasks in-

cluding that of annotating cell types in single-cell RNA-seq datasets [1, 2], improving

the metadata in public genomic databases [3, 4], and verifying outcomes of experi-

ments that entail inducing cellular di↵erentiation [5, 6]. Furthermore, interpretable

cell type classifiers may enable greater understanding of cell-type-specific expres-

sion patterns and may prove useful towards e↵orts, such as the Human Cell Atlas

[7], that seek to define and catalog all cell types in the human body. The NCBI’s

Sequence Read Archive (SRA) [8] promises to be a valuable resource for training

machine learning algorithms for this task due to the high number and large va-

riety of cell type samples it contains. However, it has remained underutilized due

to both the poor structure of the metadata [9, 10] and the di�culty in obtaining

uniformly processed expression data. These challenges have recently been addressed

through new metadata normalization e↵orts [11], e�cient RNA-seq quantification

algorithms [12, 13], and mass data processing e↵orts [14, 15, 16] thus paving the

way towards the utilization of the SRA for training cell type classifiers.

In this work, we address three goals pertinent to this task:

1 To capture robust cell type signals by training on, and evaluating with, only

healthy, primary, purified human samples.

2 To take advantage of the hierarchical nature of cell type definitions by explor-

ing novel applications of hierarchical machine learning classification methods.
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3 To build interpretable models that can be used to gain deeper understanding

into the expression patterns that distinguish cell types.

Existing approaches for cell type prediction address some of these goals, but there

has yet to be an investigation that addresses them all simultaneously.

First, to the best of our knowledge, none of the existing machine learning-based

cell type classification approaches that train on public expression data distinguish

between treated versus untreated cells [1, 5, 3]. By training on non-primary cells or

treated cells, a classifier becomes more susceptible to batch e↵ects when treatment

or disease confounds cell type. This also leads to di�culty in model interpretation as

it is unclear whether the derived signal is indicative of cell type or of a confounding

variable such as treatment or disease. In this work, we compiled a set of training

data from the SRA comprising only healthy, primary cells.

We also assert that framing the cell type classification task as that of hierarchical

classification against the Cell Ontology [17] poses a number of advantages over

flat-classification. The Cell Ontology provides a comprehensive hierarchy of animal

cell types encoded as a directed acyclic graph (DAG). This DAG provides a rich

source of prior knowledge to the cell type classification task that remains un-utilized

in flat classification. Flat classification su↵ers from the possibility that predictions

are logically inconsistent with the hierarchy of cell types in that the classifier for

some cell type may, for a given query, output a probability that is larger than the

classifier’s output for its parent cell type in the hierarchy [18]. Such outputs reduce

the interpretability, and therefore scientific usefulness, of the model. In addition,

the use of hierarchical classification approaches allows for the placement of a bulk

RNA-seq sample at a level of the hierarchy appropriate to its heterogeneity. For

example, a population of cells enriched for T cells may be heterogeneous in the

sub-types of T cells (e.g., CD4+ T cells and CD8+ T cells). Finally, by utilizing

the hierarchy during training rather than using flat classification, more accurate

classifiers can be learned [19].

To the best of our knowledge, only work by Lee et al. (2013) frames the cell type

prediction task as a hierarchical classification problem. To this end, they devel-

oped an algorithm called URSA, which uses a framework called Bayesian Network

Correction (BNC) [19]. There also exist discriminative methods for hierarchical

classification that have yet to be applied to the cell type prediction task. Thus, we

applied a number of such approaches including cascaded logistic regression (CLR),

isotonic regression correction (IR) [18], and a heuristic procedure called the True

Path Rule (TPR) [20]. We compared these discriminative methods to BNC and in

our hands found them to outperform the BNC approach.

Furthermore, we sought for our methods to be interpretable in order for our

trained classifiers to be of use not only in classification, but also for investigating

cell type-specific expression patterns. To this end, this work makes extensive use

of linear models, which are particularly amenable to interpretation. We tested the

interpretability of the aforementioned frameworks and found that CLR is particu-

larly interpretable as it is able to delineate functional di↵erences between similar

cell types.

We tested these algorithms on single-cell RNA-seq (scRNA-seq) data, resulting

in promising performance. We propose that hierarchical, machine learning-based
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classification of single-cell expression data will help overcome a number of challenges

in cell type labeling of single-cell datasets. Currently, labeling cell types in scRNA-

seq data is an ad hoc process that involves clustering the cells and then searching for

di↵erential expression of certain cell-type-specific marker genes across these clusters.

This process is challenged both by the fact that there is not a canonical set of marker

genes for most cell types [21] and that this process is a↵ected by the clustering

algorithm [22]. Approaches are beginning to emerge, such as work by Alavi et al.

(2018), that rely on training cell type classifiers on single-cell data.

We note that the process of training a cell type classifier on single-cell data is

somewhat circular in that the ground truth cell type labels are most commonly

based upon gene expression (via the expression of cell type-specific marker genes),

which is then also used for constructing the machine learning features. In this work,

we train our algorithms on only bulk RNA-seq data, that originate from cells that

have been isolated based on phenotypic characteristics downstream of gene expres-

sion itself (such as cell surface proteins). Thus, we suggest that bulk RNA-seq data

in the SRA cannot only be utilized, but also may be preferred, for the training of

cell type classifiers applied towards scRNA-seq datasets.

Finally, we created a Python package, CellO (Cell Ontology-based classification)

that allows users to run pre-trained classifiers on their own RNA-seq data. CellO is

available at https://github.com/deweylab/CellO.

2 Results and discussion
A novel curated RNA-seq dataset of human primary cells

In order to capture robust cell type signals, we sought a dataset of RNA-seq sam-

ples comprising only healthy primary cells. We did not wish to include cells that

underwent multiple passages, were diseased, or underwent other treatments, such

as in vitro di↵erentiation, because these conditions alter gene expression. We there-

fore curated a novel dataset from the SRA consisting of healthy, untreated, primary

cells. We leveraged the annotations provided by the MetaSRA project [11], which

includes sample-specific information including disease-state, treatment, and sample

type (i.e., their status as primary cells). Consequently, we followed the conservative

definition for a primary cell sample by Bernstein et al. (2017), which requires that a

sample has not undergone passaging beyond the first culture. We used the MetaSRA

to capture an initial candidate set of primary samples and then within this set, man-

ually annotated these samples for technical variables (such as bulk vs. single-cell

status) by consulting sources of metadata that are not captured by the MetaSRA

annotation process such as fields in Gene Expression Omnibus [23] records and each

study’s publication. When found, we corrected errors in the MetaSRA-provided Cell

Ontology labels.

This process resulted in a dataset comprising 11,569 total samples. We uniformly

quantified and normalized (via log counts per million) gene expression from the

raw RNA-seq data for these samples. Of these samples, 4,167 were bulk RNA-seq

samples from 263 studies and labeled with 294 cell type terms in the Cell Ontology.

Of these cell types, 105 cell types were the most-specific cell types in our dataset

(i.e., no sample in our data was labelled with a descendent cell type term). These

cell types were diverse, spanning multiple stages of development and di↵erentiation
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(Fig. 1). To the best of our knowledge, this dataset is the largest and most diverse

set of bulk RNA-seq samples derived from only primary cells. Prior to this work, the

most comprehensive bulk primary cell transcriptomic dataset was compiled by Aran

et al. (2017), which contained data for 64 cell types from 6 studies. Whereas our

dataset consists of only RNA-seq data, this prior dataset included samples assayed

with several other technologies, such a microarrays. In addition to bulk samples,

our dataset also includes 7,402 single-cell samples from 15 studies and labeled with

118 cell types.

To evaluate the implemented machine learning methods on their ability to classify

bulk RNA-seq data, we split the bulk RNA-seq data set into a training and a test

set, ensuring both that samples from the same study were never split across the

training and test sets and that the training and test partitions had a high overlap

of cell types. This partition yielded a training set with 3,480 samples across 206

studies and a test set with 687 samples across 57 studies. The training set and test

set shared 197 cell types.

We separately evaluated these methods on their ability to classify scRNA-seq data.

To this end, we created a second test set of all single-cell samples whose cell types

appeared in the bulk RNA-seq data. This resulted in a test set of 4,961 samples

across 13 studies from 66 cell types. As detailed below, we separately examined

how the classifiers handled the remaining single-cell samples whose cell types do

not appear in the bulk RNA-seq training data.

Novel applications of hierarchical classification methods

One straightforward approach to performing cell type prediction against the Cell

Ontology entails training an independent binary classifier for each cell type in the

ontology. We will refer to this as the “independent classifiers” approach. Such an

approach su↵ers from the possibility that the classifiers’ outputs will be inconsistent

with the hierarchical structure of the ontology. An inconsistency occurs when the

output probability for a given cell type exceeds that of one of its parent cell types in

the ontology. We tested the use of independent classifiers and found inconsistencies

to be an important source of errors (Fig. S3). Specifically, we performed leave-

study-out cross-validation on the full set of bulk RNA-seq data and examined the

consistency of all edges that were adjacent to at least one cell type whose classifier

produced a non-negligible probability (> 0.1) of the sample originating from that

cell type. Of these edges, 6.7% were inconsistent (Supporting Methods).

Hierarchical classification algorithms ensure that the output probabilities are con-

sistent with the ontology. We tested three ensemble-based hierarchical classification

algorithms that have yet to be applied to the gene expression-based cell type pre-

diction task: cascaded logistic regression (CLR), isotonic regression correction (IR)

[18], and a heuristic procedure called the True Path Rule (TPR) [20]. Cascaded

logistic regression entails classifying a sample in a top-down fashion from the root

of the ontology downward via an ensemble of binary classifiers. Specifically, each

binary classifier is associated with a cell type and is trained to classify a sample

conditioned on the sample belonging to all of the cell type’s parents in the ontology.

In contrast, IR and TPR train independent, unconditional, one-versus-rest binary

classifiers for each cell type and then, for a given query sample, reconcile the out-

put of these independent classifiers to be consistent with the ontology. IR uses a
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projection-based approach for reconciliation, that entails finding a set of consistent

output cell type probabilities that minimize the sum of squared di↵erences to the

raw, and possibly inconsistent, classifier output probabilities. In contrast, TPR uses

a heuristic procedure that involves a bottom-up pass through the ontology such that

the output of children classifiers are averaged with the output of the parent classifier

to allow information flow across the ontology graph.

To date, the one hierarchical classification method that has been applied to the

task at hand is BNC [19], and therefore, as a baseline, we implemented a BNC

algorithm following the description in Lee et al. (2013). We tested a number of

variants of this algorithm and report here the best-performing variant (Fig. S4).

Lastly, as a näıve baseline, we implemented a one-nearest-neighbor algorithm that

simply returns the cell type labels of the most similar sample in the training set to

the query sample using Pearson correlation as the similarity metric.

We performed three modes of evaluation: per-cell-type, per-sample, and joint [18].

In the per cell type mode of evaluation we evaluate the performance of each method

on each cell type independently. The results of this mode of evaluation are provided

for users who are interested in examining each method’s performance on specific

cell types. Specifically, for each cell type, we compute both the average precision

(a measure of the area under the precision-recall curve) as well as the maximum

achievable recall at 0.9 precision. This latter metric is provided for users who cannot

tolerate low precision.

In the per-sample mode of evaluation, we examine the average performance of the

classifiers on a per-sample basis. To this end, we used two variants of precision and

recall that are sample-centric. Given a sample, the first variants are the standard

precision and recall over the sample’s true cell types and predicted cell types. The

second variants, which we call specific-precision and specific-recall, take into account

only the sample’s most-specific true cell types and predicted cell types according

to the ontology (i.e., the deepest terms in the ontology – see Methods). Then, for

a given prediction threshold, we compute the mean precision and recall (as well as

mean specific-precision and mean specific-recall) across all samples. By varying our

prediction threshold, we compute a mean precision-recall curve, where an operating

point on this curve describes an achievable mean precision and mean recall across

all samples.

A disadvantage to these mean precision and mean recall metrics is that they can

be dominated by large studies due to samples from the same study sharing batch

e↵ects and similar cell type labels. To counteract this, we also compute curves in

which in our calculation of the mean precision and mean recall at a given threshold

down-weights samples according to the number of samples in its study in order

to ensure that each study contributes equally to the mean precision-recall curve.

We refer to these curves as study-weighted, precision-recall curves. An operating

point on such a curve describes an expected precision and recall that is achievable

given that a study is first sampled uniformly from all available studies, and then an

RNA-seq sample is sampled uniformly from that study.

Lastly, for each method, we performed a joint evaluation that entailed treat-

ing each paired sample and cell type prediction independently. The set of all such

predictions was ordered according to prediction probability and the corresponding

precision-recall curve was constructed.
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Advantages of training on data from heterogeneous sources

We hypothesized that by leveraging data from multiple studies, we could mitigate

the models fitting a single study’s batch e↵ects, and would therefore learn more

robust signals for each cell type. We tested this hypothesis using a flat classification

experimental setup in which the hierarchy of cell types was first ignored. Specifically,

for a variety of cell types, we compared the performance between logistic regression

binary classifiers trained on homogeneous data (data originating from a single study)

versus those trained on heterogeneous data (data originating from di↵erent studies).

The experiment proceeded as follows: we first queried the bulk RNA-seq data for

all cell types that included at least three studies with over 10 experiments for that

cell type. For each of these cell types, c, we partitioned the data labelled with c ac-

cording to their study of origin, and then iteratively held out each study-partition as

a test set. From the remaining held-in partitions, we constructed two sets of training

sets. The first set of training sets included positive examples (i.e. data labeled with

c) from only one study, which we call homogeneous training sets. The second set

of training sets included positive examples from all held-in study-partitions, which

we call the heterogeneous training sets. For all training sets, we use a consistent set

of negative examples randomly chosen from the samples that are not labelled as c.

Furthermore, when constructing each training set, we ensured each had an equal

number of positive examples. We then trained a binary classifier on each training set

and evaluated them on the held-out study-partition. Figure 2a provides a schematic

of the experiment (See Supplementary Materials for full details). We computed the

mean average-precision for the homogeneously trained and heterogeneously trained

classifiers across each held out study-partition and cell type pair and found that

heterogeneously trained classifiers tended to have a higher mean average precision

(Fig. 2b). These results support the hypothesis that better generalization can be

achieved by training on data from multiple studies.

Given these results, we hypothesized that the hierarchical classification algorithms

would be less likely to fit the study-specific batch e↵ects of the larger studies if we

increased the contribution of the small studies to each logistic regression, binary

classifier’s loss function. To this end, we tested variants of the aforementioned hier-

archical classification algorithms for which the loss function of each binary classifier

down-weights each sample according to the number of samples in its study so that

each study contributes equally (Methods). After training on the bulk RNA-seq train-

ing set and testing on the bulk RNA-seq test set, we found that the version of CLR,

IR, and TPR that used a sample-weighted loss function in each of their binary clas-

sifiers outperformed the unweighted version with respect to mean average-precision

across the cell types and mean achievable recall at 0.9 precision (Fig. 2). Due to the

fact that we use logistic regression for each of IR, TPR, and CLR’s binary classifiers,

using larger weights for samples from small studies is equivalent to oversampling

training data from these studies. In e↵ect, this increases the diversity of studies that

contribute to each learned model. Thus, this result provides further evidence that

it is advantageous to use training data from a diversity of studies. For all further

analysis in this paper, we use the variant of IR, TPR, and CLR that utilize the

weighted loss function.
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Evaluation on bulk RNA-seq data

We evaluated the aforementioned hierarchical classification algorithms using the

per-cell type (Fig. 3a-b, Fig. S5, Fig. S6), per-sample (Fig. 3c), and joint (Fig. 3d)

modes of evaluation. Overall, we find that IR, TPR, CLR, and independent clas-

sifiers performed similarly and better than the baseline BNC and nearest-neighbor

algorithms. The similar performance of IR, TPR, and CLR to the independent

classifiers demonstrates that reconciling the outputs of the independent predictions

with the ontology structure does not degrade performance. We note that these re-

sults are in line with work by Obozinski et al. (2008), which demonstrates that IR

and CLR outperform BNC on the hierarchical protein function prediction task.

Regarding the per-sample mode evaluation, we note that mean performance on

a sample’s most-specific cell types was below that of the mean performance when

considering all of the sample’s cell types (Fig. 3c). We posit three reasons for this:

first, it is likely easier for the classifiers to distinguish broad categories of cell types

than it is to distinguish fine-grained cell types for which cell-type-specific expression

signatures may be more subtle. Second, the amount of training data supporting each

cell type strictly decreases down the ontology. Third, we note that a subset of the

errors are due to the classifiers providing significant probability to more specific cell

types than the most-specific true cell types for a given sample (e.g., a T cell sample

predicted to be a CD4+ T cell sample). This may be due to the prevalence of an

unlabeled, more-specific cell type in some heterogeneous bulk RNA-seq samples.

Evaluation on single-cell RNA-seq data

We trained the IR, TPR, and CLR algorithms on the entire set of bulk RNA-seq data

and evaluated them on the test set consisting of 4,961 single-cell RNA-seq samples

whose cell types appear in the bulk RNA-seq training data. We note that many cells

were labeled as a broad cell type rather than a specific cell type. For example, in

study ERP017126, many cells are described by the data as general pancreatic cells.

These samples are likely missing cell type labels because they should, in theory,

be labeled with a specific cell type (i.e., lower in the ontology) due to the facts

that each sample originates from a single cell and that there are known subtypes of

pancreatic cells. We therefore modified our evaluation metrics to take into account

these ambiguous, generally-labeled single-cell samples so as not to penalize the

algorithms for predicting cell types more specific than their given labels (Supporting

Methods). We found that these algorithms perform well in all modes of evaluation

using these modified metrics (Fig. 4, Fig. S7).

Next, we examined the predictions performed on cells that represented challeng-

ing cases for the classifiers. Specifically, we identified two categories of challenging

samples: samples that were only labeled with a broad cell type and samples labeled

with a combination of cell types that do not appear in the training data. We ex-

amined two studies, SRP067844 and ERP017126, that contained samples that were

representative of these challenges and examined their predictions in depth.

When given samples labeled as a general cell type, but not a more specific cell

type, the algorithm often predicted a more specific cell type than the labeled cell

types. Study SRP067844 included a set of samples labelled only as embryonic, neural

cells, but not as a more specific cell type. In such instances, the algorithm often
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labeled them as the more specific label, “neuron”, which may be accurate given that

this study sought to sequence cells from the developing nervous system (Fig. 5a)

[24]. Study ERP017126 contained a set of pancreatic cells that were unlabeled for

a specific pancreatic cell type. Many of these cells were predicted as a specific

endocrine cell type such as pancreatic alpha cells (Fig. 5b).

When the methods were provided a query that should be assigned with a com-

bination of labels that it had not seen before during training, its outputs were

reasonable. Study SRP067844 consisted of embryonic neural cells. Although the

training data contains samples of both embryonic cells and cells of various neural

cell types, it does not contain any sample labeled as both neural cell and embry-

onic cell. For these samples, we found that the algorithm was often able to label

these samples as “neural cell”, but often failed to label them as “embryonic cell”.

Furthermore, the algorithm had di�culty labeling these samples with their specific

neural cell types such as “radial glial cell” (Fig. 5c). Similarly, study ERP017126

contained various pancreatic cell types that did not exist in the training data such

as pancreatic delta cells and pancreatic ductal cells. We found that the delta cells

were often predicted correctly as enteroendocrine cells (Fig. 5d) and were not con-

fused with similar pancreatic endocrine cell types such as alpha cells or beta cells.

Similarly, pancreatic ductal cells were often predicted as secretory cells (Fig. 5e).

Although the term “secratory cell” is not an ancestral term of “pancreatic ductal

cell” in the Cell Ontology, these predictions may nonetheless be considered correct

predictions given that pancreatic ductal cells are known to secrete biocarbonate

[25].

Comparison of interpretability between frameworks

With the exception of the one-nearest neighbor classifier, the methods that we have

explored can be subdivided into two categories: those that train a set of one-versus-

rest binary classifiers (BNC, IR, TPR) and the CLR framework, which trains a set

of “local” binary classifiers that classify a sample as a given cell type conditioned on

the sample belonging to its parent cell types. We explored the question of whether

one framework provides an advantage in model interpretability. To address this

question, we analyzed the gene coe�cients in each binary classifier’s linear model

for enrichment of genes involved in known biological processes. We use the number

of enriched biological processes as a quantitative measure of model interpretability.

Specifically, for each learned binary classifier, we rank the genes by their corre-

sponding coe�cients in the linear model. We then performed a gene set enrichment

analysis with GSEA [26] on these ranked genes using all “biological process” gene

sets from the Gene Ontology (GO) [27] that were associated with at least 5 genes.

This analysis targeted enrichment at both the top and bottom of the ranked list of

genes, which identified biological processes that were either relatively upregulated

or downregulated in a given cell type. We then use a false discovery rate q-value

cuto↵ of 0.05 for proclaiming enrichment.

We found that the models learned in the CLR framework tended to be enriched

for more GO terms than the one-versus-rest frameworks (Fig. 6). We posit that

this phenomenon is due to the fact that since the CLR framework involves the

training of binary classifiers that seek to distinguish only between a small set of
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similar cell types, the CLR’s classifiers are “more focused” than the one-versus-

rest classifiers, which seek to distinguish each cell type from all other cell types.

Thus, the CLR framework may prove more useful for exploring cell type-specific

expression patterns and for finding expression patterns that distinguish similar cell

types. The trained model coe�cients can be downloaded for further analysis from

http://deweylab.biostat.wisc.edu/cell type classification.

3 Conclusions
In this work, we explore the application of hierarchical classification algorithms

towards cell type prediction using a novel, well-curated set of human primary cell

RNA-seq samples. This dataset may prove useful for future investigations of cell

type expression patterns or for use in cell type deconvolution methods [28, 29].

We demonstrate that the trained classifiers perform well across cell types on bulk

RNA-seq data and o↵er a promising approach to cell type annotation in single cell

datasets.

We also found that classification performance is not only dependent on the number

of training samples, but also on the diversity of those samples. Specifically, we

found that the classifier benefits from training on data from multiple studies. Thus,

we argue that the heterogeneity present in the public expression data presents an

opportunity to learn robust models. This observation may extend beyond cell type

prediction to other phenotype prediction tasks such as expression-based disease

prediction.

Furthermore, by using linear models, the trained parameters are easily interpreted

as cell type specific signatures across the ontology. However, we note that since cer-

tain cell types undergo similar sorting and preparation procedures (e.g., fluorescence

activated cell sorting), it remains unclear to what extent these procedures a↵ect gene

expression and thus confound with cell type. We sought to mitigate this e↵ect by

using data from a diversity of studies. We also note that the CLR algorithm may

help to further mitigate this e↵ect, since the binary classifiers trained in this frame-

work for each cell type condition on the sample belonging to the parent cell types.

Thus, for a given cell type, if the parent cell types were prepared through simi-

lar procedures, the learned model parameters for that cell type will better capture

biological cell type signatures.

There are a number of avenues that require further investigation. First, a num-

ber of newly developed single-cell sequencing protocols were absent from our data.

Whereas our data included single-cell samples from protocols such as MARS-seq

[30] and SMART-Seq2 [31], it did not include data from droplet-based protocols

such as Chromium 10x. Future work will require evaluating the performance of

these algorithms on such protocols. We expect that the methods described in this

work will require modifications for these protocols to account for the extremely low

read depths per cell common to these protocols.

Finally, we expect the performance of hierarchical classifiers to improve as both

more data is collected and as the Cell Ontology is expanded. More data will be

collected both as data is continually added to the SRA and as improvements are

made to the SRA’s metadata thereby allowing retrieval of previously undiscovered

primary cell samples.
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Methods
A schematic diagram of the experiments in this study is given in Figure S1.

Data processing

We quantified the gene expression of all samples with kallisto (v0.43.1) [13]

against the human genome release GRCh38 with GENCODE annotation ver-

sion 27. We chose kallisto for gene expression quantification in order to pri-

oritize processing speed on this large dataset, figuring that any small loss

in accuracy (at the gene level) relative to a less approximate, but slower

method would not be significant for the cell type classification task. This pro-

duced estimated counts for 200,401 isoform-level genomic features. We summed

these counts by gene to produce counts for 58,243 gene-level features. The cu-

rated metadata and associated quantified samples are available to download at

http://deweylab.biostat.wisc.edu/cell type classification.

Partitioning bulk RNA-seq data into training and test sets

When creating a training and test partition of the bulk RNA-seq data, we sought to

satisfy a number of criteria that would enable unbiased estimation of performance

across cell types. First, we required that no study be split between the training and

test sets in order to ensure that a model is never tested on data from a study on

which it was trained. This mitigates the possibility that the algorithm will provide

an overly optimistic estimate of the generalization error when run on the test set.

Second, we sought an approximately 80/20 split of the data between the training and

test sets. Third, we sought for all cell types to be represented in both the training

and test sets. Fourth, and finally, for all cell types represented by three or more

studies, we sought for at least two of those studies to be assigned to the training

set to enable an estimate of performance on that cell type when performing leave-

study-out-cross validation on the training set during development. We framed this

partitioning task as an optimization problem where our four criteria were encoded

in an objective function (Supporting Methods). Minimizing this objective function

entails creating a partition that most closely meets the aforementioned four criteria.

Description of algorithms

In the following descriptions of the algorithms used in this work, we let x 2 RG

denote a gene expression profile, in units of log-counts per million (log-CPM), where

G is the number of considered genes. Specifically, for gene i in x, log-CPM is defined

as

xi := log

 "
ciPG
j=1 cj

⇥ 106
#
+ 1

!

where ci is the expected number of reads mapped to the ith gene. We let n denote

the number of samples, m denote the number of considered cell types, yi 2 {0, 1}
denote the cell type assignment for cell type i 2 [m], and X denote the training

set.
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Independent binary classifiers

We used logistic regression with L2-regularization, using scikit-learn (v.0.20.2), for

all independent binary classifiers trained in the CLR, IR, and TPR frameworks as

well as in the independent classifier baseline method. Our choice of L2 penalty over

L1 penalty was motivated by our goal of training interpretable models. Specifically,

because the L1 penalty induces sparsity, we were concerned that it would lead to

zeroing-out the coe�cients of important cell-type-specific genes when such genes

correlated highly with other predictive genes. That is, we sought for our models to

weight all genes according to their predictive ability.

One-nearest neighbor

Given a query gene expression profile x, we return all cell type labels belonging to

the training set expression profile

arg minx02X 1� Corr(x,x0)

where Corr(x,x0) is the Pearson correlation of the expression values in x and x0.

Cascaded logistic regression

Classification is made in a top-down fashion starting from the root of the ontology

downward as proposed by Obozinski et al. (2008). This is accomplished by train-

ing a logistic regression, binary classifier for each cell type i 2 [m] to model the

distribution

qi := p(yi = 1 | ⇡i = 1,x)

where ⇡i 2 {0, 1} indicates whether the sample belongs to all of the parents of i in

the ontology. In order to model these distributions, each cell type’s negative training

examples consist of those samples that are labeled with all parent cell types, but

not the target cell type. Given these learned distributions, the probability that x

originates from cell type i is computed via

p(yi = 1 | x) = qi
Y

j2Ai

qj

where Ai denotes the ancestors of cell type i in the ontology’s DAG.

Bayesian Network Correction

A support vector machine (SVM) binary classifier is trained for each cell type using

a linear kernel and a one-versus-rest training strategy. The classifier outputs are then

reconciled with the ontology graph using a Bayesian network as proposed by Lee et

al. (2013). The true assignments for each cell type, denoted y1, . . . , ym, are modelled

as latent random variables, and the classifier outputs, denoted f1(x), . . . , fm(x)

(signed distances to each decision boundary), are modelled as observed random

variables in a Bayesian network. The final output probability for cell type i is then

the marginal probability

p(yi = 1 | f1(x), . . . , fm(x))
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Due to the size of the ontology, we perform approximate inference using Gibbs sam-

pling rather than exact inference using the Laurintzen algorithm as was performed

by Lee et al..

Isotonic regression correction

We train a binary classifier for each cell type i 2 [m] to model p(yi | x) using logistic

regression and a one-versus-rest training strategy. As proposed by Obozinski et al.

(2008), these probabilities are then reconciled with the ontology graph using isotonic

regression. Specifically, we output the set of probabilities

p1, . . . , pm := arg minp0
1,...,p

0
m

mX

i=1

(p0i � p̂i)
2

subject to

8i 2 [m], 8j 2 Par(i), pi < pj

where 8i 2 [m], p̂i := p(yi = 1 | x) as output by each classifier and Par(i) is the set

of parent cell types for cell type i.

True Path Rule

We train a binary classifier for each cell type i 2 [m] to model p(yi | x) using

logistic regression and a one-versus-rest training strategy. As proposed by Notaro

et al. (2017), this method involves two passes across the ontology: on a bottom-up

pass, each cell type’s output probability is averaged with the outputs of all child

cell types classifiers for which the classifier makes a positive prediction according

to a predefined threshold. More specifically, each cell type i’s output probability is

set to

pi :=
1

|Ci|+ 1

0

@p̂i +
X

j2Ci

p̂j

1

A

where p̂i := p(yi = 1 | x) according to the classifier and

Ci := {j 2 Children(i) : p̂i > t}

is the set of children of cell type i for which the classifier output a positive prediction

according to a predefined threshold t. We used a threshold of t = 0.5. This bottom-

up pass allows sharing of information across the classifiers. In the top-down pass

of the ontology, the output probabilities are set to ensure consistency with the

ontology.

Sample-weighted loss function

In logistic regression, the loss on a given sample is given by

`(y,x) := �y log(p̂(x)) + (1� y)log(1� p̂(x))
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where x is the feature vector, y 2 {0, 1} is the true label and p̂(x) 2 [0, 1] is

the classifier’s estimate of p(y = 1 | x). The full loss over the data set D :=

{(y1,x1), . . . , (yn,xn)} is then

L(D) :=
1

n

nX

i=1

`(yi,xi)

We tested a variant of logistic regression in which each sample’s term in the loss

function is weighted according to the number of samples in its study so that each

study contributed equally to the loss function. For a given sample i, let Si be the

set of samples in the study for which i belongs. The sample-weighted loss function

is then

Lw(D) :=
1

s

nX

i=1

1

|Si|
`(yi,xi)

where s is the number of studies. This loss function is equivalent to the loss function

that would obtained by oversampling samples from each study in proportion to the

number of samples that study.

Per-sample evaluation metrics

In the per-sample mode of evaluation, we analyze the average performance over

each sample. For a given sample, let T be the full set of a true cell type labels

and P be the set of predicted labels. The per-sample precision and recall are then

defined as

Precision :=

(
|T\P |
|P | : |P | > 0

1 : |P | = 0

Recall :=

(
|T\P |
|T | : |T | > 0

1 : |T | = 0

respectively. We further define a version of precision and recall, termed specific-

precision and specific-recall, that seek to summarize how well the classifier is re-

trieving the most granular cell types that describe the sample. Given a cell type

label c from the ontology, let Ch(c) be the children of c in the ontology DAG. We

then define the most-specific set of true labels and most-specific set of predicted

labels as

T 0 := {c 2 T : |Ch(c) \ T | = 0}

P 0 := {c 2 P : |Ch(c) \ P | = 0}

respectively. Specific precision and recall are then defined as

Specific-Precision :=

(
|T\P 0|
|P 0| : |P 0| > 0

1 : |P 0| = 0

Specific-Recall :=

(
|T 0\P |
|T 0| : |T 0| > 0

1 : |T 0| = 0
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respectively. Given these per-sample measures of precision and recall, we then com-

pute mean precision (MP), mean recall (MR), mean specific-precision (MSP), and

mean specific recall (MSR) across all samples.

Finally, as was noted previously, since samples from the same study perform

similarly, these metrics will be most e↵ected by these large studies. To counteract

this e↵ect we also define a set of average metrics that use a weighted mean so

that each study contributes equally. These metrics, which we call weighted-mean

precision (WMP), weighted-mean recall (WMR), weighted-mean specific-precision

(WMSP), and weighted-mean specific-recall (WMSR) are defined as

WMP :=
1

s

nX

i=1

1

|Si|
Precisioni

WMR :=
1

s

nX

i=1

1

|Si|
Recalli

WMSP :=
1

s

nX

i=1

1

|Si|
Specific-Precisioni

WMSR :=
1

s

nX

i=1

1

|Si|
Specific-Recalli

where n is the total number of samples, s is the total number of studies, and Si

is the set of samples in the study that includes sample i. Finally, by varying the

prediction threshold, we can compute curves for all of these metrics. Specifically,

we compute mean PR-curves, mean specific-PR-curves, weighted-mean PR-curves,

and weighted-mean specific-PR-curves.
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Figure 1 Data set summary. Euler diagrams of the cell types in the bulk RNA-seq data set
divided by (a) broad cell types, (b) somatic cell types, (c) germ line cell types, and (d)
hematopoietic cell types. Diagrams were created with nVenn [32].
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Figure 2 E↵ects of training on heterogeneous datasets. (a) A schematic illustrating the
experimental setup for our investigation into the e↵ects of training on data from multiple studies
versus training on data from a single study. For a given cell type, we find all studies that
contained at least ten samples for that cell type. The numbered colored rectangles illustrate such
samples partitioned by their study. We then hold out each study and construct two sets of training
sets – one set of homogeneous training sets and another of heterogeneous training sets. A
classifier is trained on each training set and evaluated on data in the held out study. Above, we
illustrate the training sets constructed when holding out studies 3 and 4. Each training set uses an
identical set of negative examples and identical sized sets of positive examples (the minimum
number of samples in a given study partition). (b) Comparing the mean-average precision across
cell types between the homogeneously trained classifiers and the heterogeneously trained
classifiers on each held out study. (c) Comparing two variants of IR, TPR, CLR, and independent
one-vs.-rest classifiers (Ind.). In the first variant (Unweighted), we use the standard log-loss
function for each logistic regression classifier. In the second variant (Sample-weighted), we modify
the loss function to down-weight each sample by the number of samples in its study. We compare
the distributions of average-precision across all cell types. (d) Comparing the distributions over
the highest achievable recalls when precision is fixed at 0.9 across all cell types.
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Figure 3 Evaluation on bulk RNA-seq data. (a) Comparison between the distributions of
average-precision generated by each method across all cell types. (b) Comparison of the
distributions over the highest achievable recalls when precision is fixed at 0.9 across all cell types.
(c) Variants of the mean precision-recall curves for comparing the average performance of each
method across all samples. (d) The joint-precision recall curves for all methods generated by
ranking all sample-cell type output probabilities jointly.
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Figure 4 Evaluation on single-cell RNA-seq data. (a) Comparison between the distributions of
average-precision generated by each method across all cell types. (b) Comparison of the
distributions over the highest achievable recalls when precision is fixed at 0.9 across all cell types.
(c) Variants of the mean precision-recall curves for comparing the average performance of each
method across all samples. (d) The joint-precision recall curves for all methods generating by
ranking all sample-cell type output probabilities jointly.
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Figure 5 Example predictions on challenging single-cell samples. Randomly sampled output
from the IR classifier on di�cult-to-classify single-cell samples. Columns correspond to cells and
rows correspond to cell types that appeared in the training data. The intensity of each element is
proportional to the output probability for the corresponding sample and cell type. Each element is
colored according to the relationship between the sample and the cell type. Green denotes a
prediction of a most-specific true cell type (annotated with an ’X’) for the sample. Blue denotes a
prediction of a less-specific, but true cell type. Purple denotes ambiguous predictions that cannot
be verified as correct or incorrect (descendents of the sample’s true cell types as well as ancestors
of those descendents). Red denotes a likely error (a cell type that is neither a true cell type,
descendant of a true cell type, nor ancestor of a descendent of a true cell type). We investigated
the predictions of samples that are labeled as general cell types, but not more specific cell types
from studies ERP017126 (a) and SRP067844 (b). We also investigated predictions on cell types
that did not appear in the training data including embryonic radial glial cells (c), delta cells (d),
and ductal cells (e).
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Figure 6 GO enrichment comparison. (a) Comparing the number of GO terms enriched in the
ranked list of each binary classifier’s coe�cients between the cascaded logistic regression and
one-vs.-rest frameworks. (b) The distribution of the number of enriched GO terms between these
two frameworks using two FDR thresholds for enrichment.
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