
  

  

Abstract—How can we best explore and fit density and 
frequency dependence in the evolutionary and ecological 
dynamics of growing tumors? Here, we present an introduction 
to recent developments in our lab, and give two examples of 
complex interaction-driven tumor growth combined with 
statistical outcomes of treatment.  

I. COMPETITIVE GROWTH DYNAMICS IN CANCER 

 Evolutionary game theory (EGT) allows to study the long-
term success of co-evolving types that at least temporally 
coexist in a population, and whose interactions are quantified 
by a strategic interaction pattern, or game. The game is 
typically formulated as a table that ascribes payoffs to every 
pairwise interaction between types, e.g. cell types or strategies. 
Based on these interactions, EGT is able to mathematically 
predict the changes in the relative abundance of types, as 
payoffs are translated to proliferative advantage, or fitness. Of 
particular interest in this context is frequency-dependent 
selection, in which the fitness landscape changes as the 
population evolves1. This framework is useful to identify 
equilibria in which types may coexist and to make statements 
about the stability of these equilibria2, and to elucidate the 
rules of phenotype-driven changes and overall population 
diversity3. EGT traditionally describes populations with a 
predefined set of phenotypes, and the dynamics happen in 
populations of fixed size or of universal growth4. Only recently 
have a flexible number of phenotypes5 or a population that 
changes in size6 been considered in terms of their ability to 
generate and maintain coexistence of types under frequency 
dependent selection7. Recent developments show that EGT is 
an exciting field for mathematical modelling of cancer, yet 
proper integration of inhomogeneous growth models, i.e. 
density dependence, paired with frequency dependent 
selection is still lacking behind, but has wide applicative 
importance8. In this presentation we revise how individual-
based processes that include frequency-dependence and 
density-dependence can be analyzed, and provide two 
examples based on recent data of cancer growth.  

II. INDIVIDUAL BASED MODELING 

Let us assume that there are m cell types in the growing 
population, each growing with the net growth rate 

 ri = bi – di (1) 

in mono-culture, where bi and di are the intrinsic birth and 
death rates of each type, potentially themselves system 
dependent8. Next, we can assume that the payoff of type i 
interacting with type j is  

 aij (2) 
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such that a deterministic growth model that emerges directly 
from an individual based (stochastic) formulation9 can be 
written as 

  (3) 

which incorporates the interactions (payoffs) as negatively 
affecting each cell type, resembling the Lotka-Volterra 
equation6. Here, we assume that the cellular densities are 
normalized with respect to the system’s carrying capacity, 
which leads to the logistic multiplier of the birth rates.  

III. FIBROBLAST-MACROPHAGE GAME IN LYMPHOMA 

It is important to consider potential impacts of radiation 
therapy on lymphoma tumor microenvironment, and how 
those changes could help or hinder lymphoma cell growth. For 
example, irradiation can cause fibroblasts to be growth-
arrested10 and induce a senescence-associated secretory 
phenotype, which may have tumor-suppressive function11,12. 
We modeled lymphoma cell growth with different 
combinations of wildtype and senescent fibroblasts, and in co-
culture of activated or inactivated macrophages. The goal is to 
tease apart the effects of tumor-typical complex 
microenvironmental conditions on lymphoma cell growth. We 
used an ordinary differential equation model of the form of (3) 
to describe the birth, death, and interactions between the three 
cell types of fibroblasts (FIB), macrophages (MAC) and 
lymphoma (LYM). We iteratively estimated the rates from 
single, double, and triple culture experiments using cell counts 
over time. We tracked the changes in parameters due to the 
addition of each new cell type and extrapolated lymphoma 
growth with in silico simulations. In this system, the 
competitive interactions between the three types are 
summarized in the following pairwise-interaction payoff table: 

  (4) 

This table describes inter-species (aij, i¹j) and intra-species 
(aij, i=j) competition. In the deterministic limit of large 
population sizes, the rate equations for this triple culture 
system are described by Eq. (3). We found that senescence cell 
types, especially in combination with lymphoma cells and 
macrophages, predict an expansion of the tumor. Figure 1 
shows the predict growth after 3 weeks as indicated by log-
fold-change of the tumor cell population. The size of each 
point scales based on the log-fold-change; smaller points 
represent less growth and larger points represent more 
lymphoma growth. The absence of points in parameters space 
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indicates a contracting lymphoma population. Simulations 
with both irradiated fibroblasts (IRR) and super-
repressed/inactive macrophages (ASR) predicted the largest 
lymphoma population growth (pink points), even with 10-fold 
more fibroblast and macrophages initially present compared to 
lymphoma cells. Super-repressed macrophages with wildtype 
fibroblasts predicted some contraction of the lymphoma 
population, while irradiated fibroblasts in the presence of 
wildtype macrophages predicted unchecked lymphoma 
growth when low numbers of macrophages were present.  

Figure 1.  Forecasted lymphoma growth in different (micro-)environments. 
MEF=normal fibroblasts. IRR=Irradiated fibroblasts. ANA=normal 
macrophages. ASR=super-repressed macrophages. LC=lymphoma cells. 

IV. CAR T-WILDTYPE T-CELL INTERACTIONS 

Modern immune therapeutic interventions, such as CAR T-
cell therapy, rely on the expansion of genetically engineered 
T-cells that have been taken from the patient to be altered ex 
vivo. CAR T-cell therapy represents a huge medical 
breakthrough in cancer treatment13, but comes with a set of 
harsh side-effects. Little research has been made to model the 
dynamics of CAR T-cells mechanistically. The utility of a 
mechanistic model includes being able to determine efficacy 
of treatment on individual patients and optimal proportion of 
CAR T cell subtypes which maximize favorable treatment 
outcomes and minimize potential risks for side effects. We 
developed a mechanistic model, which describes the 
dynamics of CAR T cell dynamics in vivo (Figure 2), and 
identified three crucial states (equilibria of the co-
evolutionary system) based on CAR T-cells interacting 
competitively with wildtype T cells; tumor eradication, stable 
tumor (coexistence), tumor growth irrespective of therapy. 
Possible equilibria (long-term stable states) of the (stochastic) 
dynamical system  should correspond to the following clinical 
states observed in patients: No response, transient response, 
and long-term response (cure). Due to potentially low tumor 
burden, these dynamics are inevitably stochastic, their 
deterministoic (mean-field) analog should be of a form 
similar to the model in Equation (3), that is we assume that 

growth is logistically dampened, as well as impacted by 
competitive interactions.  

 

 
Figure 2.  A: Model schematic (for an apppropriate non-linear ODE 
system). B: Stochastic model driven by birth, death and interaction events. C: 
Population dynamics of the CAR, wildtype and tumor towards a PD state. 
Initial treatment response is seen for 50 days followed by disease progression 
(inset). D: Stochastic population dynamics usig the same parameters.   

V. DATA FITTING 

We assume that the system of interest has been measured 
over time, in multiple instances, such that longitudinal cell 
count data is available. Net growth, birth, and competition 
rates can be estimated from the experimental data in a step-
wise fashion.  First, the net growth rates can be estimated for 
each cell type assuming an exponential growth model from 
mono-culture experiments, as performed in previous work14. 
Then, individual birth and competition rates can be estimated 
from multi-culture systems, and L1 loss regularization-based 
machine learning can be used to determine interaction 
parameters payoffs, and potentially shrink the model structure. 
The number of parameters, , is identified by varying the 
penalty coefficient and applying an Akaike information 
criterion (AIC) to determine the goodness of fit, using the sum 
of the residuals between the experimental data and the fitted 
estimates15,16. AIC estimates the quality of each model, given 
a collection of models for the data, which emerges for example 
by changing and simplifying the payoff table (4). Parameter 
estimation was performed in Julia using the 
DifferentialEquations, Optim, PenaltyFunctions, and Stats 
packages17-19. 

 
  

A. Eco-evolutionary T cell dynamics
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D. Stochastic dynamics (single realization)
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