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Abstract 

Massed synchronised neuronal firing is detrimental to information processing. When networks of task-

irrelevant neurons fire in unison, they mask the signal generated by task-critical neurons. On a macroscopic 

level, mass synchronisation of these neurons can contribute to the ubiquitous alpha/beta (8-30Hz) oscillations. 

Reductions in the amplitude of these oscillations, therefore, may reflect a boost in the processing of high-

fidelity information within the cortex. Here, we test this hypothesis. Twenty-one participants completed an 

associative memory task while undergoing simultaneous EEG-fMRI recordings. Using representational similarity 

analysis, we quantified the amount of stimulus-specific information represented within the BOLD signal on 

every trial. When correlating this metric with concurrently-recorded alpha/beta power, we found a significant 

negative correlation which indicated that as alpha/beta power decreased, our metric of stimulus-specific 

information increased. This effect generalised across cognitive tasks, as the negative relationship could be 

observed during visual perception and episodic memory retrieval. Further analysis revealed that this effect 

could be better explained by alpha/beta power decreases providing favourable conditions for information 

processing, rather than directly representing stimulus-specific information. Together, these results indicate that 

alpha/beta power decreases parametrically track the fidelity of both externally-presented and internally-

generated stimulus-specific information represented within the cortex.  

Introduction 

Neuronal activity fluctuates rhythmically over time. Often referred to as “neural oscillations”, these rhythmic 

fluctuations can be observed throughout the brain at frequencies ranging from 0.05Hz to 500Hz1. When 

recording from the human scalp, it is the alpha and beta frequencies (8-12Hz; 13-30Hz) that dominate. 

Alpha/beta activity displays an intimate link to behaviour; engaging in a cognitive task produces a large 

reduction in the alpha/beta power (amplitude squared). These task-induced power decreases are ubiquitous, 

and can be observed across species (including humans2, macaques3, rodents4 and cats5), sensory modalities 

(including visual2, auditory6, and somatosensory7 domains), and cognitive tasks (including perception2,6,7, 

memory formation/retrieval8–10, and language processing11). Given their ubiquity, it stands to reason that these 

decreases reflect a highly general brain process. While numerous domain-general processes have already been 

ascribed to alpha/beta oscillations (e.g. idling12; inhibition13,14), we provide empirical evidence in support of a 

new perspective: alpha/beta power decreases are a proxy for information processing. 

To successfully process information about a stimulus, the brain must be capable of elevating the signal of said 

stimulus above the noise generated by ongoing neuronal activity15. In situations where the ongoing spiking of a 

large population of neurons is correlated, this is problematic16. Mass synchronised spiking generates noise that 

conceals the comparatively small neuronal signal evoked by the stimulus (see figure 1a), rendering momentary 

changes in sensory input undetectable17 and responses to temporally-extended changes unreliable18. Reducing 

these neuronal “noise correlations”, therefore, can boost the signal-to-noise ratio of an evoked neuronal 

response to a stimulus. Indeed, numerous studies have demonstrated that the decorrelation of task-irrelevant 

neuronal firing accompanies engagement in cognitive tasks18–21. Given that these noise correlations show a 

strong positive correlation with the local field potential (LFP)22, one may speculate that task-related reductions 

in alpha/beta LFPe.g.3 are (to some degree) a marker of the reduction of noise correlations. Such a hypothesis 

would explain why reductions in alpha/beta power are associated with the successful execution of a wide range 

of cognitive tasks, from visual perception2 to memory retrieval23. 
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Here, we test the hypothesis that alpha/beta 

power decreases are a proxy for information 

processing24. Specifically, we predict that as the 

amount of stimulus-specific information within the 

cortex increases, concurrently-recorded measures 

of alpha/beta power will decrease. Twenty-one 

participants took part in an associative memory 

task whilst simultaneous EEG-fMRI recordings 

were obtained (see figure 1b). On each trial, 

participants were presented with one of four 

videos, followed by a noun, and asked to pair the 

two. Later, participants were presented with the 

noun and asked to recall the associated video 

(which would lead to the reinstatement of 

stimulus-specific information about the video25). 

We first conducted representational similarity 

analysis (RSA) on the acquired fMRI data to 

quantify the relative distance between neural 

patterns of matching and differing videos. This 

provides a data-driven and objective measure of 

stimulus-specific information present during a 

single trial. We then derived alpha/beta power 

from the concurrently recorded EEG and 

correlated the observed power with our measure 

of stimulus-specific information on a trial-by-trial 

basis. Foreshadowing the results reported below, 

we found that alpha/beta power decreases 

negatively correlated with the amount of stimulus-

specific information. Importantly, we find 

evidence for this during both the perception and 

retrieval of these videos, providing a conceptual 

replication of our results and supporting the 

domain-general nature of our hypothesis.  

Results 

Detecting stimulus-specific information in BOLD 

patterns 

Our first step was to derive a measure of stimulus-

specific information from the acquired fMRI data. 

To this end, we used searchlight-based 

representational similarity analysis (RSA) to 

quantify the overlap in BOLD patterns for matching videos, and contrasted this against the overlap between 

differing videos. We interpret the difference in overlap between matching and differing videos as the amount 

of stimulus-specific information present on a single trial, under the assumption that any similarity that can only 

be explained by matching stimuli represents information specific to that stimulus. To evaluate whether the 

quantity of stimulus-specific information was meaningful within a searchlight, the observed measure of 

Figure 1. Overview of hypotheses and paradigm. a) The brain is capable of 

representing stimulus-specific information through neural patterns that are 

consistent regardless of whether the stimulus is externally or internally 

generated (i.e. perceived or retrieved; top). On a neuronal level, 

populations that code for the stimulus (in red) need to generate signal 

greater than ongoing neuronal noise (in blue). When the neuronal noise 

correlates (i.e. arises at the same time; during the ‘interval’), the signal-to-

noise ratio is reduced and stimulus specific information is limited. These 

noise correlations may be reflected in macroscopic measures of 

electrophysiological activity, where periods of highly synchronised firing is 

accompanied by periods of high amplitude activity. Under this assumption, 

high amplitude activity would reflect an attenuation of the processing of 

stimulus-specific information. Stimulus-specific information can be 

measured using fMRI to look at pattern similarity during perception and 

pattern reinstatement during memory retrieval. b) Participants completed 

an associative memory task while undergoing simultaneous EEG-fMRI 

recordings. Participants were asked to vividly associate a video with a word, 

and then rate how plausible (i.e. believable) the imagined association was. 

Later, they were cued with the word and tasked with recalling the 

associated video. After selecting the associated video, they were asked to 

judge how confident they felt about their decision. 
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information was contrasted against the null hypothesis (i.e. that BOLD pattern overlap for matching videos is 

the same as BOLD pattern overlap for differing videos) in a one-sample, group-level t-test. 

For the perceptual task, stimulus-specific information was quantified by computing the representational 

distance between every pair of perceptual trials. Searchlight analysis revealed a significant increase in stimulus-

specific information relative to chance bilaterally in the occipital lobe (pFWE < 0.001, k = 9911, peak MNI: [x = -

30, y = -57, z = -2], Cohen’s dz = 1.79) [see figure 2a-b]. A frontal central cluster (pFWE < 0.001, k = 113, peak 

MNI: [x = 12, y = -16, z = 50], Cohen’s dz = 0.28) and a left temporal cluster (pFWE = 0.003, k = 64, peak MNI: [x = 

-48, y = -1, z = 18], Cohen’s dz = 0.81) also demonstrated a significant increase in stimulus-specific information. 

These results demonstrate that stimulus-specific information is represented within the cortex during visual 

perception, and provide a region of interest that yields a meaningful measure of stimulus-specific information 

for our central analysis.  

For the retrieval task, stimulus-specific information was quantified by comparing every retrieval pattern with 

every perceptual pattern. This approach is sensitive to the reinstatement of veridical information about a 

successfully recalled stimulus25. As we would not anticipate that any stimulus-specific information is present in 

the BOLD signal when the correct stimulus is not recalled, this analysis was restricted to trials where the paired 

associate was successfully recalled. Searchlight analysis revealed a significant increase in reinstated stimulus-

specific information relative to chance in the right fusiform gyrus (pFWE < 0.001, k = 313, peak MNI: [x = 30, y = -

46, z = -14], Cohen’s dz = 1.07) and left fusiform gyrus (pFWE < 0.001, k = 456, peak MNI: [x = -45, y = -37, z = -6], 

Cohen’s dz = 0.69) [see figure 2c-d]. These results demonstrate that stimulus-specific information is reinstated 

during the retrieval of a video, and provide a region of interest that yields a meaningful measure of stimulus-

specific information for the central analysis of the memory task. 

Alpha/beta power decreases accompany task engagement 

We then measured the degree to which alpha/beta power drops during task engagement. As such an effect is 

perhaps the most ubiquitous effect in studies of task-related scalp EEG activity, it provides a strong benchmark 

for the quality of our EEG data (which has the potential for distortion by MRI-related artifacts26). For both the 

perceptual and retrieval trials, the time-series of every source-reconstructed virtual EEG electrode was 

decomposed into alpha/beta power using 6-cycle Morlet wavelets and baseline-corrected using z-

transformation. In the first instance, post-stimulus power (500 to 1500ms) was contrasted against pre-stimulus 

power (-1000 to 0ms) in a cluster-based, permutation t-test (for perceptual and retrieval trials separately). 

Unsurprisingly, we found a significant decrease in alpha/beta power following stimulus presentation in both the 

Figure 2. fMRI RSA searchlight analysis. a) raincloud plot depicting the degree to which matching and differing stimuli could be distinguished from 

one another during visual perception, per participant (single dots), within the three significant clusters (p < 0.05). b) brain map depicting the cluster 

where matching and differing stimuli could be distinguished from one another during visual perception. c) raincloud plot depicting the degree to 

which matching and differing stimuli could be distinguished from one another between encoding and retrieval, per participant (single dots), within 

the two significant clusters (p < 0.001). d) brain map depicting the cluster where matching and differing stimuli could be distinguished from one 

another during visual memory retrieval. 
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perceptual (p < 0.001, Cohen’s dz = 0.99; see figure 

3a-c) and retrieval (p < 0.001, Cohen’s dz = 0.87; not 

visualised) tasks. No region exhibited an increase in 

alpha/beta power during this window. 

We then asked whether alpha/beta power decreases 

are not only predictive of task engagement, but also 

task success. In other words, is the reduction in 

alpha/beta power greater when memories are 

successfully recalled? As in the above paragraph, this 

is not a novel idea and has been demonstrated many 

times prior23. Nevertheless, we wanted to further 

demonstrate the robustness of our acquired EEG 

data. To this end, the post-stimulus alpha/beta power 

(500-1500ms; 8-30Hz; matching previously-reported 

windows of retrieval-related memory effect23) for 

remembered trials was contrasted with that of 

forgotten trials in a cluster-based, permutation t-test. 

Matching earlier reports, we found a significant 

reduction in alpha/beta power for recalled pairs, 

relative to forgotten pairs (p = 0.013, Cohen’s dz = 

0.57; see figures 3d-g). These power decreases were 

localised to the late visual ventral stream (including 

the region within the fusiform gyrus where stimulus-

specific information could be identified), as well as 

other parts of the memory network27 (including the 

medial temporal lobe and medial prefrontal cortex). 

No region exhibited an increase in alpha/beta power 

during this window. In sum, these results 

demonstrate that alpha/beta power decreases 

accompany the engagement in, and successful 

execution of, cognitive tasks.  

Alpha/beta power decreases track the fidelity of 

stimulus-specific information 

We then addressed our central question: do 

Figure 3. Alpha/beta power decreases during visual perception and memory retrieval. a) Raincloud plot displaying the difference in pre- (-1000ms-0ms) 

and post-stimulus alpha/beta power (500-1500ms; 8-30Hz) during visual perception, each dot represents a single participant (p < 0.001). b) brain map 

of the post-stimulus > pre-stimulus difference in alpha/beta power during visual perception (non-significant virtual electrodes are masked). c) the time 

course of the mean alpha/beta power during perception (left; across participants; 8-30Hz; shaded error bar represents standard error of the mean) 

and difference in frequency spectrum for post-stimulus > pre-stimulus power during perception (right; across participants; shaded error bar represents 

standard error of the mean; averaged across all virtual electrodes within significant cluster). d) Raincloud plot displaying the difference post-stimulus 

alpha/beta power (500-1500ms; 8-30Hz) for successfully recalled pairs relative to forgotten pairs, each dot represents a single subject (p < 0.05). e) 

brain map of the memory-related difference in alpha/beta power (non-significant virtual electrodes are masked). f) the time course of the mean 

alpha/beta power (left; across participants; 8-30Hz; shaded error bar represents standard error of the mean) and frequency spectrum (right; across 

participants; shaded error bar represents standard error of the mean) for remembered and forgotten (in blue and grey respectively; averaged across 

all virtual electrodes within significant cluster). g) the time course of the mean difference in alpha/beta power (left; across participants; 8-30Hz; shaded 

error bar represents standard error of the mean) and difference in frequency spectrum (right; across participants; shaded error bar represents 

standard error of the mean) for remembered relative to forgotten pairs (averaged across all virtual electrodes within significant cluster). 
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alpha/beta power decreases parametrically track the fidelity of stimulus-specific information? For each subject, 

a single trial measure of stimulus-specific information was computed by comparing the trial pattern within the 

region of interest (i.e. the significant clusters identified in the fMRI searchlight analysis; see figure 2b) to 

patterns of matching and differing videos. For the perceptual data, this approach involved computing the 

representational distance for every pair of perceptual trials. These distances were then correlated with a 

unique model for each trial that stated representational distance for stimuli matching the stimulus presented 

would be zero and representational distance for stimuli differing from the stimulus presented on this trial 

would be one. The resulting  correlation coefficient was Fisher z-transformed to provide a normally-distributed 

metric of stimulus-specific information for each trial. Alpha/beta power within the region that housed stimulus-

specific information was calculated and averaged over virtual electrodes, frequency and time. The metric of 

stimulus-specific information was then correlated with alpha/beta power across trials (see figure 4a). The 

resulting correlation coefficient was then Fisher z-transformed (to approximate a normal distribution). These 

Fisher z-values were contrasted against the null hypothesis (there is no correlation; z = 0) across participants in 

a one-sample t-test. We found a significant negative correlation (p = 0.044, Cohen’s dz = 0.37), where a 

reduction in alpha/beta power was accompanied by an increase in stimulus-specific information (see figure 4b). 

When examining which virtual EEG electrodes showed the greatest negative correlation, we found evidence to 

suggest this effect was primarily localised to the occipital alpha/beta power (p = 0.046, Cohen’s dz = 0.50; see 

figure 4c), overlapping with the regions where stimulus-specific information was detected (see figure 2b). This 

result demonstrates that alpha/beta power tracks the fidelity of stimulus-specific information during visual 

perception.  

We then aimed to replicate this effect in the retrieval task, working on the assumption that if alpha/beta power 

decreases are a proxy for information processing, the phenomenon should generalise across cognitive tasks. 

The correlation analysis was conducted separately for remembered and forgotten pairs to avoid a spurious 

correlation driven by memory-related differences in the decreases of alpha/beta power and increases of 

stimulus-specific information for remembered compared to forgotten trials. Representational distance was 

calculated between each single trial at retrieval and all trials at perception within the region of interest (i.e. the 

significant clusters identified in the fMRI searchlight analysis; see figure 2d), and then correlated with a model 

that stated that representational distance for perceived stimuli matching the retrieved stimulus on this trial 

would be zero and representational distance for perceived stimuli differing from the retrieved stimulus on this 

trial would be one. The remainder of the analysis is the same as described above. In line with the previous 

result, we found a significant negative correlation for remembered trials (p = 0.004, Cohen’s dz = 0.61), where a 

Figure 4. Alpha/beta power decreases track the fidelity of stimulus-specific information. (a) infographic depicting hypotheses and analytical 

approach. We anticipated that the more a pattern represented matching stimuli relative to differing stimuli, the greater the post-stimulus 

decrease in alpha/beta power would be. (b) Raincloud plot displaying the correlation between alpha/beta power and stimulus-specific information 

during visual perception and memory retrieval (each dot represents a single participant; p < 0.05. cf. null hypothesis). (c) brain map of the 

correlation between alpha/beta power at each virtual electrode with the measure of stimulus-specific information during visual perception (non-

significant virtual electrodes are masked (d) brain map of the correlation between alpha/beta power at each virtual electrode with the measure of 

stimulus-specific information during memory retrieval (non-significant virtual electrodes are masked).  
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reduction in alpha/beta power was accompanied by an increase in stimulus-specific information (see figure 4b). 

When examining which virtual EEG electrodes showed the greatest negative correlation, the largest cluster was 

localised to alpha/beta power in the late visual ventral stream and medial temporal/frontal regions (see figure 

4d), overlapping with the regions where memory-related decreases in alpha/beta power was observed (see 

figure 2d). No effect was observed when conducting this analysis on forgotten trials (p = 0.213, Cohen’s dz = 

0.18), perhaps because little stimulus-specific information will be represented when the memory cannot be 

retrieved. These results support the earlier conclusion that alpha/beta power decreases parametrically track 

the fidelity of stimulus-specific information.  

Notably, alpha/beta power and BOLD signal have previously been shown to correlate negatively28 (also see 

supplementary materials). To rule out the possibility that the link between alpha/beta power and stimulus-

specific information is driven simply by a change in BOLD signal, we ran a partial correlation controlling for the 

confound of BOLD intensity. In line with our earlier findings, we found a significant negative correlation 

between alpha/beta power and stimulus-specific information during perception (p = 0.028, Cohen’s dz = 0.44) 

and memory retrieval (p = 0.011, Cohen’s dz = 0.56), indicating that the observed correlation cannot be 

explained by BOLD intensity alone. 

Additionally, alpha/beta power decreases correlate with the participant’s confidence of recalling the video-

word association (see supplementary materials). To rule out the possibility that alpha/beta power decreases 

are a confidence signal that increases as more stimulus-specific information is recalled about an association, we 

ran a partial correlation probing the link between alpha/beta power and similarity during memory retrieval 

while controlling for confidence. Matching the previous result, we found a significant negative correlation (p = 

0.006, Cohen’s dz = 0.59), indicating that the observed correlation between alpha/beta power decrease and 

stimulus-specific memory reinstatement cannot be explained by confidence alone.  

In sum, these results suggest that alpha/beta power parametrically decreases as the amount of stimulus-

specific information represented within the cortex increases. While the chance of uncovering these two central 

effects were not much smaller than the threshold for significance (α = 0.05; where observed p values were 

0.044 and 0.004), it is worth noting that the joint probability of finding both effects in support of our hypothesis 

was substantially smaller (p < 0.001).  

Alpha/beta power decreases do not represent perceived or retrieved information 

Lastly, we asked whether the observed negative correlation between alpha/beta power and stimulus-specific 

information could be explained by the fact that alpha/beta power, rather than providing favourable conditions 

for the brain to represent activity, actually represents information itself. To test this hypothesis, we conducted 

spatiotemporal representational similarity analysis (i.e. across virtual electrodes, time windows [500 to 

1500ms, in steps of 100ms] and frequency bins [8 to 30Hz, in steps of 1Hz]) within the regions where stimulus-

specific information was identified in the BOLD signal during perception and memory retrieval. By restricting 

analysis to regions where we had previously detected stimulus-specific information, we maximise our chance of 

finding an effect. Despite this extremely liberal approach, a cluster-based, permutation t-test found no 

evidence to suggest that alpha/beta power represents stimulus-specific information during perception (p = 

0.548, Cohen’s dz = 0.03) or retrieval (p = 0.579, Cohen’s dz = 0.04). Notably, the frequentist nature of this test 

means we cannot conclude that alpha/beta power does not represent information, but rather that there is 

insufficient evidence to conclude that alpha/beta power represents information. To address this limitation, we 

ran a Bayesian one-sample t-test to probe the nature of the evidence in favour of the null hypothesis. The 

continued use of the region of interest switches the test from a liberal test of the alternative hypothesis 

(alpha/beta represents information) to a conservative test of the null hypothesis (alpha/beta does not 

represent information). Bayesian one-sample t-tests revealed moderate evidence in favour of the null 
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hypothesis for the perceptual (BF10 = 0.230) and retrieval tasks (BF10 = 0.232). These results suggest that the 

observed relationship between alpha/beta power decreases and stimulus-specific information cannot be 

explained by the hypothesis that alpha/beta power itself represents information. Rather these results suggest 

that alpha/beta power decreases are a marker of the fidelity of stimulus-specific information.  

Discussion 

Here, we provide the first empirical evidence that alpha/beta power decreases track the fidelity of stimulus-

specific information represented within the cortex. We correlated simultaneously-recorded alpha/beta power 

(as measured using scalp EEG) with a metric of stimulus-specific information (as quantified using 

representational similarity analysis [RSA] on fMRI data) on a trial-by-trial level. As stimulus-specific information 

increased, alpha/beta power decreased, regardless of whether the information was externally presented or 

internally generated. Further analysis revealed that this effect is not driven by the fact that alpha/beta power 

decreases represent information, suggesting instead that they provide conditions which are beneficial for 

information processing.  

Our central finding demonstrates that as alpha/beta power decreases, the fidelity of stimulus-specific 

information within the cortex increases. Task-related decreases in alpha/beta power are observable across 

tasks2,6–11, sensory modalities2,6,7, and species2–5. Given their ubiquity, it stands to reason that they reflect a 

highly general cognitive process. While others have attributed similar results to idling12 or inhibition13, we 

provide evidence that these alpha/beta power decreases are a proxy for information processing. This supports 

the idea that a reduction of neuronal noise correlations (which map onto local field potential; LFP22) can 

facilitate the representation of information16. Numerous studies have demonstrated that task-irrelevant 

correlated activity between pairs of neurons is detrimental to stimulus processing15,29 – particularly for large 

networks of correlated neurons16 that, incidentally, are more likely to be detected in the LFP. As our conclusion 

works on the assumption that a reduction in LFP equates to a reduction in noise correlations, we open up an 

interesting new question: do measures of noise correlations directly map onto an objective and parametric 

measure of stimulus-specific information? Addressing this question would further strengthen the view that 

reducing underlying noise can boost the information processing capabilities of the cortex.  

Following the hypothesis that alpha/beta power decreases are a proxy for reductions in noise correlations, one 

would predict that alpha/beta power decreases do not carry representational information about a stimulus. 

Rather, they provide favourable (i.e. reduced noise) conditions in which another mechanism can allow the 

internal representation of said stimulus to come forth. In line with this hypothesis, we found moderate 

evidence to suggest that alpha/beta power decreases do not carry any stimulus-specific information during the 

perception or retrieval of the visual stimuli. As such, one would view alpha/beta power decreases as a marker 

for the potential for information processing, rather than representing information. 

The central results can also be explained by information theory30. Information theory proposes that little 

information can be gathered from a highly predictable input (e.g. a network of highly correlated, spiking 

neurons) – if you can predict an upcoming event, you must already know details about the event. In contrast, a 

lot of information can be gathered from unpredictable inputs (e.g. uncorrelated spiking neurons) – you learn a 

lot from a completely novel experience. It has been theorised that desynchronisation of alpha and beta 

oscillations reduces the predictability of neuronal firing and hence boosts information processing abilities24. For 

example, earlier work has demonstrated that tasks which involve greater semantic elaboration (i.e. greater 

information processing) produce greater alpha/beta power decreases9. Our key result fits neatly within this 

framework as we find that alpha/beta power decreases parametrically increase with the presence of stimulus-

specific information. Moreover, our finding that alpha/beta power does not directly represent stimulus-specific 

information fits with this idea, as these power decreases are theorised to allow complex neuronal patterns to 
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emerge rather than generate the complex patterns themselves. Taken together, one could speculate that 

alpha/beta power decreases allow for the rich representation of stimulus-specific information by reducing the 

predictability of neural firing patterns. Notably, the information theoretic interpretation (i.e. predictable firing 

is bad for information processing) is highly similar to the idea that correlated firing (i.e. noise correlations) is 

bad for information processing because correlations are inherently predictable. This opens an exciting new line 

of questions which ask whether metrics of information are benefitted from the indiscriminate attenuation of 

synchronised neuronal firing (i.e. reducing redundancy) or from the selective attenuation of neurons that 

contribute to noise correlations (i.e. boosting signal-to-noise). 

As alluded to earlier, high-amplitude alpha oscillations have previously been interpreted as a marker for 

inhibition12–14. One may wonder then, how can the current results and theory be reconciled with these 

established accounts? Quite simply, we view our account and the existing inhibition accounts as two sides of 

the same coin. Earlier accounts focus upon how alpha power increases reflect inhibition, our framework 

focuses on the complementary idea that alpha power decreases boost information representation through 

disinhibited networks. Importantly, we expand on these earlier accounts by demonstrating that alpha/beta 

power does not simply reflect a binary division between inhibition and disinhibition. Rather, alpha/beta power 

can parametrically track the degree to which a network can represent information. 

Both the causality and directionality of the central result remains open to debate. Perhaps the most critical 

question is whether alpha/beta power decreases are a prerequisite for information processing. We speculate 

that this is not the case. Our theoretical interpretation of the results views these power decreases as a means 

to boost a stimulus’s signal-to-noise ratio by reducing noise correlations. Arguably however, the stimulus’s 

signal-to-noise ratio can also be boosted by increasing the stimulus’s signal intensity31. This would lead us to 

hypothesise that alpha/beta power decreases are sufficient, though not necessary, for information processing. 

This hypothesis would explain the size of the per-subject correlation values observed here and in previous 

studies that linked noise correlations and information processing29,32 – if other processes contribute to 

information processing, the correlation will not be perfect. Indeed, this hypothesis is supported by a study 

where task-related alpha/beta power decreases were disrupted by transcranial magnetic stimulation10 (TMS). 

In this study, TMS reduced behavioural performance (suggesting that task-related alpha/beta power decreases 

facilitate information processing), but did not render participants completely incapable of recalling information 

(suggesting other processes also contribute to information processing). This reasoning generates an interesting 

question: does brain stimulation impair measures of stimulus-specific information in the BOLD signal by 

entraining alpha/beta activity? Addressing this question would help to clarify the extent to which alpha/beta 

activity influences the representation of stimulus-specific information within the cortex. 

Our results focused upon visual information processing in humans, which begs the question: does this 

phenomenon generalise across species and/or sensory modalities? Alpha/beta power decreases are a 

ubiquitous phenomenon that transcends species2–5 and sensory modalities2,6,7. Under the assumption that 

these decreases reflect a common process, we would speculate that alpha/beta power decreases track 

information processing across species/modalities in the same manner as observed here for visual information 

in humans. Indeed, previous work has demonstrated that the alpha/beta power decreases that accompany 

successful retrieval of auditory memories arise in the same region as where temporal patterns of auditory 

information are decodable23, indicating that the principle generalises across modalities. To our knowledge 

however, no study has attempted to test the idea that information processing in other species is facilitated by 

alpha/beta power decreases. Perhaps this is an avenue of very fruitful future research. 

In this experiment, we focused on the alpha/beta frequencies (8-30Hz) for both theoretical24 and pragmatic 

reasons26. This focus does ask however: do the theta and gamma frequencies (3-7Hz; 40-100Hz) relate to 
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information in a similar manner? Both the perception and retrieval of stimuli typically induce power increases 

in the theta and gamma bandse.g.33. These power increases are not overtly congruent with the theories of 

information processing via neuronal decoupling15,16,29 or neuronal unpredictability24. As alpha/beta power 

decreases are proposed to facilitate information processing by reducing noise, however, these theta or gamma 

power increases could theoretically facilitate information processing through the complementary means of 

increasing signal strength. For example, the “communication through coherence” hypothesis proposes that 

neuronal representations of a stimulus are enhanced by an increase in gamma synchronicity31. Given that 

alpha/beta power decreases frequently co-occur with gamma power increasese.g.34, one could speculate that 

these two mechanisms interact such that the former reduces noise while the latter boosts signal to further 

optimise the efficiency of information processing. As recordings of the theta and gamma frequencies are 

impaired by the MRI-induced artifacts26, a direct test of this theory here is impossible. Nevertheless, future 

studies can ask whether alpha/beta power decreases interact with other processes or frequencies to enhance 

the representation of stimulus-specific information in the cortex. 

In conclusion, we find evidence to suggest that alpha/beta power decreases track the fidelity of stimulus-

specific information represented within the cortex. Given that these alpha/beta power decreases are observed 

across tasks2,6–11, sensory modalities2,6,7, and species2–5, it stands to reason that they reflect a highly general 

cognitive process. While earlier theories have linked this phenomenon with idling12 and inhibition13, our 

findings suggest they reflect information processing. These power decreases may act as a proxy for information 

processing either through their link to reduced neuronal noise correlations15,16,22 or by reducing the 

predictability of neuronal activity24. These results open numerous avenues for future research, such as how 

these decreases interact with other neural processes to facilitate the representation of stimulus-specific 

information, and whether brain stimulation can be used to manipulate the fidelity of information represented 

within the cortex. Ultimately, these results further illuminate how the ubiquitous phenomenon of task-related 

alpha/beta power decreases relate to the processing and comprehending of our physical and mental worlds. 

Method  

Participants 

Thirty-three participants were recruited. All participants were Native English speakers with normal or corrected-to-normal 

vision. In return for their participation, they received course credit or financial reimbursement. Twelve of these 

participants were excluded from analysis: one participant was excluded due to recording issues relating to the MRI 

scanner, three participants were excluded due to recording issues relating to the EEG system, five participants had 

insufficient recalled pairs (n<10) following EEG artifact rejection, and three participants had insufficient forgotten pairs 

(n<10) following EEG artifact rejection. Ethical approval was granted by the Research Ethics Committee at the University of 

Birmingham, complying with the Declaration of Helsinki. 

Behavioural paradigm 

Each participant completed a paired associates task
23,35

 (see fig. 1b). During encoding, participants were presented with a 

3 second video or sound, followed by a noun. There was a total of four videos and four sounds, repeated throughout each 

block. All four videos had a focus on scenery that had a temporal dynamic, while the four sounds were melodies 

performed on 4 distinct musical instruments. Participants were asked to “vividly associate” a link between every dynamic 

and verbal stimulus pairing. For each pairing, participants were asked to rate how plausible (1 for very implausible and 4 

for very plausible) the association they created was between the two stimuli (the plausibility judgement was used to keep 

participants on task rather than to yield a meaningful metric, and to ensure that motion in perceptual and retrieval blocks 

was consistent to aid comparability between tasks). The following trial began immediately after participants provided a 

judgement. If a judgement was not recorded within 4 seconds, the next trial began. This stopped participants from 

elaborating further on imagined association they had just created. After encoding, participants completed a 2-minute 

distractor task which involved making odd/even judgements for random integers ranging from 1 to 99. Feedback was 

given after every trial. During retrieval, participants were presented with every word that was presented in the earlier 
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encoding stage and, 3 seconds later, asked to identify the associated video/sound from a list of all four videos/sounds 

shown during the previous encoding block. The order in which the four videos/sounds were presented was randomised 

across trials to avoid any stimulus-specific preparatory motor signals contaminating the epoch. Following selection, 

participants were asked to rate how confident they felt about their choice (1 for guess and 4 for certain). Each block 

consisted solely of video-word pairs or solely of sound-word pairs – there were no multimodal blocks. Each block consisted 

of 48 pairs, with each dynamic stimulus being presented an equal number of times (i.e. 12 repetitions of each dynamic 

stimulus). There were 4 blocks in total. After the second block, the structural T1-weight image was acquired, giving 

participants a chance to rest. Any participant that had fewer than 10 “remembered” or 10 “forgotten” trials after EEG pre-

processing were excluded from further analysis. All participants completed the task in the MRI scanner, with fMRI and EEG 

data acquisition occurring at both encoding and retrieval. Responses were logged using NATA response boxes.  

A note on the auditory variant of paradigm 

As mentioned above, all participants completed a variant of the task where the videos were replaced with sounds (as in 
23

) 

with the aim of replicating the central results in auditory domain. We were unable to dissociate the spatial BOLD patterns 

of the four melodies, however, meaning we could not derive a measure of stimulus-specific information to test our central 

hypothesis with. As a result, this aspect of the experiment was discarded. 

Behavioural analysis 

Trials were characterised as ‘remembered’ or ‘forgotten’. Remembered trials corresponded to those in which the 

participant could link the verbal cue to the correct video, and indicated that their decision was not a guess (i.e. confidence 

rating > 1). Forgotten trials corresponded to those in which the participant could not link the verbal cue to the correct 

video, or indicated that their decision was a guess (i.e. confidence rating = 1). While earlier studies using this paradigm 
23,35

 

have only considered ‘highly confident’ memories (i.e. max confidence rating), we chose a more lax confidence threshold 

to ensure that sufficient trials of each dynamic stimulus available for the fMRI representational similarity analysis. Under 

these criteria, participants (on average) correctly recalled 63.4% of the video-word pairs (s.d. 7.5%; range: 47.6-74.5%).  

fMRI acquisition 

The magnetic resonance imaging data was acquired using a 3T Philips scanner with a 32-channel SENSE receiver coil at the 

Birmingham University Imaging Centre (BUIC). Participants were instructed to avoid moving as much as they could, and 

motion was further restricted by placing foam pads inside the RF coil. Functional volumes consisted of 32 axial slices (4mm 

thickness) with 3x3mm voxels, providing full head coverage (field of view: 192x192x128mm), acquired through an echo-

planar imaging (EPI) pulse sequence (TR=2s, TE=40ms, flip angle of 80°). Four dummy scans were acquired immediately 

prior to the beginning of each run to allow for magnetic field stabilisation. Eight runs were obtained (4 encoding runs and 

4 retrieval runs), each of which acquired 255 volumes plus four dummy scans. A T1-weighted structural image (1x1x1mm 

voxels; TR = 7.4ms; TE = 3.5ms; flip angle = 7°, field of view = 256 x 256 x 176mm) was acquired after the second block.  

fMRI pre-processing 

Pre-processing of the fMRI data was conducted in SPM 12. The functional images first underwent slice time correction, 

followed by spatial realignment to the first volume of each run. The structural T1-weighted image was then co-registered 

to the mean image of the functional MRI data. The co-registered T1-weighted image was then segmented. For the 

univariate analysis (see supplementary materials), the functional and structural images were normalised to MNI space, and 

then smoothed using a 8x8x8mm full-width at half-maximum (FWHM) Gaussian kernel.  

fMRI representational similarity analysis 

Searchlight-based representational similarity analysis (RSA) was conducted using a combination of the MRC CBU RSA 

toolbox (http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/) and custom scripts 

(https://github.com/benjaminGriffiths/reinstatement_fidelity). Representational distance was quantified as the cross-

validated Mahalanobis (CVM) distance
36,37

, which provides an unbiased measure of pattern dissimilarity
37

. The CVM 

approach takes a training dataset and finds weights that maximises the Euclidean distance between two stimuli. These 

weights are then applied to a testing dataset, and the weighted Euclidean (i.e. cross-validated Mahalanobis) distance is 

calculated between stimuli. For the analysis of the perceptual task, the time-corrected and spatially-realigned fMRI data 

was demeaned and then split into two partitions, with the first partition containing data from the first block and the 

second partition containing data from the second block. The first partition served as training data for calculating CVM 

distance on the second partition, and the second partition served as training data for calculating distance on the first 
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partition. CVM distance was computed between every stimulus pattern at encoding. The derived CVM distance was then 

correlated with a hypothesised model, which stated that (i) there would be a perfect correlation (r = 1) between the 

representation of each repetition of the same video, and (ii) there would be no correlation (r = 0) between the 

representation of differing videos. Spearman’s correlation was used based on the ordinal nature of the hypothesised 

model. The resulting correlation co-efficient was then corrected using the Fisher z-transform to approximate a normal 

distribution. This analysis was conducted across the whole brain using searchlights with a radius of 10mm (i.e. 121 voxels). 

Searchlights that contained less than 60% of these 121 voxels (e.g. searchlights in the most lateral areas of the neocortex) 

were discarded from analysis. The Fisher z-value of each searchlight was placed in a brain map, at the centre voxel of the 

searchlight. For statistical inference, the resulting brain maps of each subject were analysed in a second-level one-sample 

t-test. The resulting group-level brain map was thresholded in SPM using puncorr. < 0.001 and a cluster extent of k = 10. 

For the retrieval task, this analysis was adapted slightly. The cross-validation method used above assumes that each 

representation of the same video is identical, and while this is true for perception (participants always viewed one of the 

four identical video clips), the same is not true for retrieval (each memory consists of a unique word-video pair). To 

address this concern, trials that contained the same video were averaged together to maximise the video-stimulus “signal” 

and minimise the word-stimulus “noise”. These mean patterns were then subjected to the same analysis as above. 

Weights maximising the Euclidean distance between each mean pattern were calculated on a training dataset, and applied 

to the testing dataset to allow the calculation of the CVM distance. This was conducted between every pattern at both 

perception and retrieval. The observed distances were then correlated with a hypothesised model, which stated that (i) 

there would be a perfect correlation (r = 1) between the mean representation of a video at retrieval and the mean 

representation of the same video at perception, and (ii) there would be no correlation (r = 0) between the mean 

representation of a video at retrieval and the mean representations of differing videos at perception. Any cases of 

perception-perception or retrieval-retrieval similarity were excluded from this model, meaning this model isolates the 

effects of memory reinstatement. The approaches to searchlight analysis and statistical inference were identical to those 

described in the previous paragraph. 

EEG acquisition 

The EEG was recorded using a MR compatible Brain Products system (Brain Products, Munich, Germany) and a 64-

electrode cap with a custom layout (including an EOG and ECG channel). As movement within the scanner has been shown 

to profoundly impair EEG data quality 
26

, motion sensors were attached to the EEG cap to assist in the attenuation of 

movement-related EEG artifacts 
38

. Briefly, this method involves placing plastic tape under four electrodes (10-10 positions 

F5, F6, T7 and T8) to insulate these electrodes from the scalp, then adding an external wire to complete the circuit 

between the channel and the reference. Consequently, the activity recorded on these channels is the product of changes 

in magnetic flux. The EEG sampling rate was set to 5 kHz. Impedances were kept below 20 kΩ. All electrode positions, 

together with the nasion and left and right pre-auricular areas were digitised using a Polhemus Fasttrack system 

(Polhemus, Colchester, VT) for use in the creation of headmodels for source localisation. 

EEG preprocessing 

All EEG analysis was carried out using MATLAB (MathWorks, Natwick, MA), the Fieldtrip
39

 and fmrib
40,41

 toolboxes, and 

custom scripts. The raw data was first high-pass filtered (1Hz; FIR). Following this, the gradient artifact was corrected using 

the FASTR algorithm implemented in the fmrib toolbox
40,41

. The gradient template for each TR was modelled on the 

average gradient artifact of the 60 nearest TRs. The data was then down-sampled to 500Hz and the ballistocardiogram 

(BCG) artifact was corrected using optimal basis set, again implemented in the fmrib toolbox. Heartbeat onsets were taken 

from the MR scanner’s physiological recordings. The continuous data was then inspected for large periods of movement 

which were marked and the associated MR scanner triggers deleted. Subsequently, the gradient and BCG corrections were 

repeated on the continuous data with the periods of movement excluded. This helped improve the accuracy of the 

gradient and BCG templates that were subtracted from the data. After gradient and pulse artefact correction the data 

from the motion sensors were used in a multi-channel recursive least squares algorithm to regress out the remaining 

movement-related artifacts
42,43

 (while retaining brain signal
44

) using custom scripts previously implemented by Jorge and 

colleagues
38

.  

All subsequent EEG pre-processing was conducted using the Fieldtrip toolbox 
39

. First, the data was epoched into trials 

beginning 2 seconds before the onset of the video at perception/cue at retrieval and ending 4 seconds after the onset of 

the cue. Second, independent component analysis was used to remove blinks, saccades and any residual spatially-
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stationary noise that appeared to be linked to the cardiac artifact. Third, the data was demeaned, low-pass filtered (100Hz; 

Butterworth IIR) and re-referenced to the average of all channels. Fourth, the data was visually inspected to identify and 

reject any trials and/or channels containing residual artifacts (mean percentage of trials rejected: 23.1%; range: 10.4% to 

39.1%). Fifth, the data was demeaned and re-referenced again to the average of all good channels (note that as any noise 

introduced by noisy channels in the earlier step will be shared by all good channels and therefore subtracted out during 

this re-referencing). Lastly, the scalp level data was reconstructed in source space to attenuate residual muscle artifacts 

(for details, see below). 

EEG source analysis 

The preprocessed data was reconstructed in source space using individual head models, structural (T1-weighted) MRI 

scans and 4-layer boundary element models (BEM; using the dipoli method implemented in Fieldtrip). Electrode positions 

(as digitised via the Polhemus Fasttrack system) were mapped onto the surface of the scalp using fiducial points for 

reference. The timelocked EEG data was reconstructed using a Linearly Constrained Minimum Variance (LCMV) 

beamformer
45

. The lambda regularisation parameter was set to 5%. 

EEG time-frequency analysis 

First, the source-reconstructed EEG data was convolved with a 6-cycle wavelet (-1 to 3 seconds, in steps of 25ms; 8 to 

30Hz; in steps of 0.5Hz). Second, the resulting data was z-transformed using the mean and standard deviation of power 

across time and trials
8
. Third, the data was restricted to two time/frequency windows of interest (-1000-0ms and 500-

1500ms post-stimulus; both 8-30Hz
23

) and then averaged across these windows, resulting in two alpha/beta power values 

per trial for each virtual electrode. To probe whether alpha/beta power decreased following stimulus onset these two 

values were contrasted in a one-tailed, non-parametric, cluster-based permutation-based t-test
46

 with 2000 

randomisations. To investigate whether alpha/beta power decreased for remembered relative to forgotten trials, the data 

for the post-stimulus window was split by condition and contrasted using the same statistical approach.  

Combined EEG-fMRI analysis 

An adjusted CVM approach outlined in fMRI representational similarity analysis was used to quantify information for this 

analysis. Rather than use a searchlight, CVM distance was computed in a region of interest (ROI) defined by the searchlight 

analysis. Specifically, this ROI consisted of all voxels included in any significant cluster revealed in the earlier analysis plus 

all neighbouring voxels that would have been included in the searchlight that contributed to the cluster. This approach 

maximised signal-to-noise for the measure of stimulus-specific information by only focusing on voxels where stimulus-

specific information could be detected (see below for a note on circularity). As before, a training dataset was used to find 

weights that maximally discriminates two stimuli (per trial for encoding; averaged across repetitions for retrieval). In the 

case of retrieval data however, rather than project these weights onto stimulus-averaged testing dataset, these weights 

were projected onto the trial-level dataset. This change in approach provides a measure of stimulus-specific information 

for every trial within the specified ROI.  

Similarly, an adjusted approach was used to quantify EEG power per trial. Whereas the prior section measured EEG power 

across all virtual electrodes, this analysis was restricted to virtual electrodes included in regions that coded for stimulus-

specific information (as determined by the fMRI searchlight analysis). This approach ensured that the analysed EEG signal 

originated from the same region as the fMRI similarity index. Moreover, a ‘task-evoked’ decrease in alpha/beta power was 

calculated for each trial by subtracting the pre-stimulus alpha/beta power (-1000 to 0ms) from the post-stimulus 

alpha/beta power (500-1500ms). This reduced the influence of an increase in global alpha/beta power that typically occurs 

during the course of an experiment
47

. 

These approaches yield a single measure of fMRI-derived stimulus-specific information and EEG-derived alpha/beta power 

for every trial. These fMRI and EEG measures were correlated across trials (separately for hits and misses in the case of the 

retrieval task). Given that the nature of the data of both variables is ratio, Pearson’s correlation was used. This returned an 

r-value for every participant, which underwent Fisher Z transform to approximate a normal distribution. Group-level 

statistical analysis saw these z-values being contrasted against the null hypothesis (z = 0; there is no correlation) in a one-

tailed, non-parametric, permutation-based t-test
46

 with 2000 randomisations where the observed data and null hypothesis 

were permuted (again, separately for hits and misses in the case of the retrieval task). To test the spatial specificity of the 

effect, the correlation analyses above were re-run for each virtual electrode and then subjected to a one-tailed, non-

parametric, cluster-based permutation-based t-test
46

.  
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We also addressed the spectral specificity of the effect. However, one should note that these results are difficult to 

interpret as both theta (3-7Hz) and gamma (40-50Hz) bands are much more susceptible to distortion by the MRI scanner 

than the alpha/beta band
26

. Aside from changes to the frequencies of interest, the analysis matched that which is 

described above. We considered both tails of the t-test, testing two differing hypotheses: 1) a reduction in power reflects 

an increase in information (mirroring the central hypothesis of the paper), and 2) as theta/gamma power typically 

increases during cognitive engagement
e.g.31

, an increase in power reflects an increase in information. This effect did not 

generalise to the theta (perception p = 0.228, retrieval p > 0.5) or gamma bands (perception p = 0.087, retrieval p = 0.097).  

To address the confound of confidence, a partial correlation was run on the recalled trials of retrieval task where 

confidence rating was included as a variable of no interest. The same partial correlation was not run on the perception 

data as we did not obtain a measure of confidence following the presentation of the video clip at perception. Similarly, a 

partial correlation was not run on the forgotten trials of the retrieval task as there was very little variation in the 

confidence measure (the majority of confidence ratings for forgotten trials equalled 1 [i.e. guess]) and hence would not 

prove to be a meaningful measure. To address the confound of BOLD activation, a partial correlation was run on all 

variants of the EEG * RSA correlation. The variable of no interest was BOLD activation of each trial, calculated by averaging 

the BOLD signal across voxels within the specified region of interest.  

A note on circularity 

The use of data-driven regions of interest (ROIs) can, in some cases, introduce circularity into the analysis
48

. As a result, 

this can overestimate the size of an effect. However, we contend that our use of data-driven ROIs does not fall foul to this 

analytical flaw. Explicitly stated, the concern here is that by selecting the ROI that carries stimulus-specific information in 

the BOLD signal, we inflate the chance of finding a correlation between BOLD-derived stimulus-specific information and 

alpha/beta power in the same ROI. This concern is only valid when alpha/beta power also carries stimulus-specific 

information. In such an instance, we would essentially be limiting our correlation between two metrics of stimulus-specific 

information to a ROI where we know that (in this dataset) stimulus-specific information is represented. However, a 

Bayesian inference of RSA conducted on alpha/beta power (see results and section below) demonstrated that there is 

moderate evidence in favour of the null hypothesis that alpha/beta power does not carry stimulus-specific information. In 

light of this, we can infer that the use of data-driven ROIs in this instance does not introduce circularity into our analysis. 

EEG representational similarity analysis 

To identify whether alpha/beta power carried stimulus-specific information, representational similarity analysis was 

conducted on the EEG time-frequency data (for perception and successful retrieval separately). The time-frequency data 

was derived in the same manner as described in the earlier section, but rather than average over time/frequency (as 

described in the third step), the individual time and frequency bins were retained. Representational similarity was 

quantified using Spearman’s correlation across all features (i.e. time, frequency and location) of every pair of trials. The 

resulting value underwent Fisher-z transformation to approximate a normal distribution. The observed similarity was then 

contrasted against the same models used in the earlier RSA approaches. This resulted in a single value describing stimulus-

specific information for each subject, which was tested against the null hypothesis (there is no stimulus-specific 

information in alpha/beta power) in a one-tailed, non-parametric, permutation-based t-test
46

.  

As we found insignificant evidence to support the alternative hypothesis, we then took a Bayesian approach to the 

statistical analysis. The same values used in above were analysed in a Bayesian one-sample t-test (as implemented in JASP, 

version 0.9 
49

). We interpreted the resulting Bayes factor in line with the rule of thumb
50

.  
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