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Abstract 

The cellular and synaptic architecture of the rodent hippocampus has been described in 

thousands of peer-reviewed publications. However, no human- or machine-readable public 

catalog of synaptic electrophysiology data exists for this or any other neural system. 

Harnessing state of the art information technology, we have developed a cloud-based toolset 

for identifying empirical evidence from the scientific literature pertaining to synaptic 

electrophysiology, for extracting the experimental data of interest, and for linking each entry 

to relevant text or figure excerpts. Mining more than 1,200 published journal articles, we have 

identified eight different signal modalities quantified by 68 different methods to measure 

synaptic amplitude, kinetics, and plasticity in hippocampal neurons. We have designed a data 

structure that both reflects these variabilities and maintains the existing relations among 

experimental modalities. Moreover, we mapped every annotated experiment to identified 

“synapse types,” i.e. specific pairs of presynaptic and postsynaptic neuron types. To this aim, 

we leveraged Hippocampome.org, an open-access knowledge base of morphologically, 

electrophysiologically, and molecularly characterized neuron types in the rodent hippocampal 

formation. Specifically, we have implemented a computational pipeline to systematically 

translate neuron type properties into formal queries in order to find all compatible synapse 

types. With this system, we have collected nearly 40,000 synaptic data entities covering 88% 

of the 3,120 potential connections in Hippocampome.org. Correcting membrane potentials 

with respect to liquid junction potentials significantly reduced the difference between 

theoretical and experimental reversal potentials, thereby enabling the accurate conversion of 

all synaptic amplitudes to conductance. This dataset allows for large-scale hypothesis testing 

of the general rules governing synaptic signals. To illustrate these applications, we confirmed 

several expected correlations between synaptic measurements and their covariates while 

suggesting previously unreported ones. We release all data open source at 

Hippocampome.org in order to further research across disciplines. 
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Introduction 

Synaptic communication is essential for understanding the genesis, dynamics, and 

function of neuronal ensembles. The electrophysiology of synapses is often characterized in 

terms of signal amplitude, kinetics (delay and duration or rise and decay time), and short- or 

long-term plasticity. Each of these characteristics depends on the combined properties of the 

pre- and post-synaptic neurons and varies widely across and within neural systems. The rodent 

hippocampus has long served as a discovery sandbox for synaptic biophysics (Buzsaki, 1984; 

Freund & Buzsaki, 1996; Nicoll, 2017; Pelkey et al., 2017). Both excitatory and inhibitory 

synapses in the hippocampal formation exhibit tremendous diversity in a number of 

mechanisms including synchronous or asynchronous release (Daw, Tricoire, Erdelyi, Szabo, & 

McBain, 2009; Szabo, Holderith, Gulyas, Freund, & Hajos, 2010; Szabo, Papp, Mate, Szabo, & 

Hajos, 2014), failure rate (Losonczy, Biro, & Nusser, 2004; Maccaferri, Roberts, Szucs, 

Cottingham, & Somogyi, 2000), and potentiation or depression (Alle, Jonas, & Geiger, 2001; 

Jappy, Valiullina, Draguhn, & Rozov, 2016).  

Despite the rich publication history in this field, no systematic data mining study has so 

far catalogued the properties of these synapses. Thus, a consistent synaptic inventory of 

different electrophysiological variants has yet to be made available online for the rodent 

hippocampus or any other neural circuit. Quantitative information about synapses is valuable 

for experimental scientists to ensure proper replicability of results, to identify knowledge gaps, 

and to enable congruent comparison of data. Detailed knowledge of synaptic properties allows 

computational neuroscientists to constrain and validate increasingly predictive simulations 

(Markram et al., 2015). A systematic and consistent knowledge base may also produce new 

discovery opportunities for data scientists in the spirit of ongoing large-scale, collaborative, 

and multinational efforts such as the BRAIN initiative and the Human Brain Project (Kandel, 

Markram, Matthews, Yuste, & Koch, 2013). Moreover, in light of recent progress in biologically 

inspired artificial intelligence (Ullman, 2019) and the design of neuromorphic chips 

empowered with artificial synapses (Wan, 2018; L. Q. Zhu, Wan, Guo, Shi, & Wan, 2014), both 

the scientific community and different industries have a growing interest in synaptic data to 

fuel data-driven modeling endeavors and the incubation of new technologies.  

The Hippocampome.org project effectively organized a vast amount of information on 

the rodent hippocampal microcircuit at the cell type level (Wheeler et al., 2015). This 

knowledge base identifies 122 neuron types across the dentate gyrus, areas CA3, CA2, CA1, 

subiculum, and entorhinal cortex based on their main neurotransmitter released (glutamate or 

GABA), the laminar distribution of axons and dendrites, and converging molecular and 

electrophysiological evidence. This framework conveniently extends to the notion of “synapse 
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type,” defined as a directional potential connection in a unique pair of presynaptic and 

postsynaptic neuron types (Rees et al., 2016). Based on available evidence regarding neuronal 

morphology and known targeting specificities (Rees, Moradi, & Ascoli, 2017), we estimate the 

existence of at least 3,120 potential connections in the hippocampal formation 

(Hippocampome.org/connectivity). For how many of these synapse types are any 

experimental measurements available concerning at a minimum signal strength, time course, 

and plasticity? 

Conducting a methodical data mining study for synaptic electrophysiology constitutes a 

formidable challenge. On the one hand, inconsistent terminology of neuron names and 

properties (Hamilton et al., 2017) renders fully automated text-mining approaches unreliable. 

On the other, purely manual data extraction and annotation from the scientific literature are 

excruciatingly labor intensive, time consuming, and error prone, because of the difficulties of 

unambiguously determining cell type based on morphological features and of detecting 

synaptic signal in published figures. In particular, most electrophysiological studies adopt their 

own custom definition of neuron types, often based on pragmatic requirements or limitations 

of the experimental design. Therefore, neuron groups from each research report can be 

typically mapped onto multiple distinct Hippocampome.org types. Furthermore, the 

definitions of data modalities and of measured values are also often inconsistent in peer-

reviewed publications. 

In order to tackle the above challenges we have recently devised a systematic workflow 

combining state-of-the-art information technology with carefully vetted domain expertise 

(Moradi & Ascoli, 2019). We split each relevant scientific article into several unique 

experiments delimiting finite sets of synapse types. We then translate the morphology, 

molecular markers, membrane electrophysiology, and firing patterns of the possible pre- and 

post-synaptic neurons into machine-readable queries. We have built a search engine to 

translate each query into a dynamic list of potential connections. In parallel, the synaptic 

electrophysiology data, either in the body or the figures of each paper, are semi-automatically 

annotated, extracted, digitized, and linked to proper references and comprehensive metadata 

using a custom-designed cloud-based data mining toolset. 

Here we present quantitative synaptic electrophysiology results using the above 

described data processing pipeline. Specifically, with this work we publicly release over 8,000 

pieces of annotated experimental evidence from more than 1,200 journal articles, accounting 

for nearly 90% of synapse types in the rodent hippocampal formation. We demonstrate the 

richness of these data by reconciling the observed and theoretical reversal potential values for 

the main excitatory and inhibitory ionotropic receptors (AMPA and GABAA) after correction for 

liquid junction potential, by quantifying known interactions between recorded synaptic 
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parameters and common experimental covariates, and by reporting several novel correlations 

for unitary GABAergic currents. 

Methods 

Inclusion criteria and literature search methodology 

The scope of this work concerns the monosynaptic electrophysiology of non-cultured, healthy, 

adult or young adult (>P12) rodent hippocampal formation: dentate gyrus, CA3, CA2, CA1, 

subiculum, and entorhinal cortex. The data sources included all peer-reviewed original articles 

containing direct experimental evidence pertaining to synaptic signals (i.e., excluding reviews 

and book chapters). The relevant corpus was collated in three steps. We started by mining the 

476 papers already included in the bibliography of Hippocampome.org v1.3 that met these 

criteria. Next, we searched all references of and citations to those papers through 2018. We 

assessed each new article for the presence of measurements of synaptic signals accompanied 

by relevant information to identify the corresponding neuron types, including morphology, 

molecular expression, and intrinsic electrophysiology. We annotated every article with 

pertinent content, lack thereof or the reason for exclusion. Lastly, we performed literature 

searches specifically targeted at all potential connections still devoid of synaptic information. 

We also set a PubMed alert for the query ‘interneuron AND (hippocampus OR CA1 OR CA2 OR 

CA3 OR "dentate gyrus" OR subiculum OR "entorhinal cortex") AND (IPSP OR IPSC OR EPSP OR 

EPSC)’ to maintain the knowledge base updated with forthcoming publications. 

Data mining procedures 

We have implemented a set of cloud-based tools to assist with the critical aspects of data 

mining. We used Google Apps Script cloud computing framework to develop the backend and 

CSS, HTML5, and JavaScript to design the frontend. To encourage collaboration and data re-

usage, we freely release with this study all mined data, tools, source codes, and users’ manuals 

via Hippocampome.org/synaptome. 

Text analysis. The central elements of interest in each relevant article are the reported 

synaptic signals in the form of either recorded traces or quantitative measurements of 

amplitude, kinetics, and plasticity. Besides synaptic signals, we also identified in every article 

any figure or text excerpt corresponding to three distinct types of additional content: 

properties that may define neuron types, experimental metadata, and other useful 

information. Pertinent neuron type properties include anatomy (e.g. somatic location and 

laminar distribution of axons), molecular biomarkers (e.g. expression of parvalbumin and lack 

of somatostatin), membrane electrophysiology (e.g. input resistance and time constant), and 

firing patterns (e.g. rapidly adapting or persistent bursting). Each of these characteristics may 

refer to, and are separately annotated for, presynaptic or postsynaptic neurons. Metadata 

consists of any covariates that may change the properties of synaptic signals, such as animal 
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age and strain, drugs, solutions, temperature, and recording conditions and settings. Other 

useful information includes, among many others, numerical ratios of different neuron types, 

evidence of synaptic specificity, and connection probabilities. 

Informatics tools. In order to make the systematic extraction of the above details less error-

prone, time-consuming, and labor-intensive, we have custom designed a dedicated graphical 

user interface (“Review” function at Hippocampome.org/synaptome). This tool is 

ergonomically optimized to assist in metadata annotation and automatically highlights 

potential areas of interest in the text excerpts. An accompanying “Text Cleaner” tool prepares 

the excerpts for editing and labeling by autonomously standardizing and correcting all 

frequent formatting inconsistencies (special characters, Greek letters, symbols, etc.). The 

“data extraction” tool dynamically presents to the user a series of fillable forms with fields 

relevant to the identified measurement methods after pre-compiling any suitable entry with 

information already recognized in the text annotation phase. Lastly, a “Check Query” tool 

maps each experiment to its appropriate subset of Hippocampome.org potential connections 

(Hippocampome.org/connectivity). This is achieved by translating the neuron type properties 

of each experiment into a custom machine-readable query (Hippocampome.org/query) and by 

calling via web API a PHP search engine to match those properties to the corresponding 

potential connections. 

Data quantification 

In order to assess quantitatively the amount of the knowledge base diverse content, we 

adopt and extend the terminology utilized by Hippocampome.org (Wheeler et al., 2015). For 

the purpose of this study, a piece of evidence (PoE) is a numerical or categorical data entity 

that describes a synaptic signal. While categorical data are typically extracted directly from 

papers, numerical data can also be obtained by quantifying digitized synaptic traces. Any 

independent measurement or observation generally constitutes a distinct PoE. For example, 

two recordings of the same neuron pair at different extracellular calcium concentrations will 

produce two PoEs. All numerical or categorical data entities that describe experimental 

conditions and covariates rather than synaptic signals are considered metadata (Table 1). 

Numerical data are typically expressed as combinations of central tendency (mean or median) 

and variance (standard error, standard deviation or interquartile range) or else a range (lower 

and upper limits), plus a sample size. In other words, a single numerical PoE or covariate may 

consist of up to five values to describe a sample distribution, plus eventual text comments. 

A piece of knowledge (PoK) is a conceptualized value or range of values for a specific 

synaptic property of a given synapse type: in other words, a parameter describing amplitude, 

kinetics, or plasticity for a unique pair or presynaptic and postsynaptic neurons that is 

supported by at least one PoE. For a particular neuron pair, different signal modalities and/or 

different measurements of the same specific synaptic property (e.g. 10-90% and 20-80% rise 
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times) contribute to one and the same PoK (in this case, rise time for that synapse type). 

However, if the same PoE can be mapped onto six synapse types (e.g. any combination of two 

presynaptic neuron types and three postsynaptic neuron types), it will produce six PoKs.  

Data normalization and analysis 

We implemented a reversal potential (Erev) and recording pipette liquid junction 

potential calculator in JavaScript running on the Google Cloud.  

 Reversal potential calculation. The code first calculates the intracellular ionic 

concentrations from the pipette solution content based on recording method. For whole-cell 

and outside-out modalities, the intracellular concentrations are set to be equal to the pipette 

concentrations. For cell-attached experiments, in contrast, the following standard textbook 

(Hille, 2001) ionic concentrations are assumed (in mM): [Na
+
]i=10, [K

+
]i=140, [Cl

-
]i=4, [Ca

2+
]i=10

-

4
, [Mg

2+
]i=0.8, and [HCO3

-
]i=12. For sharp-electrode recordings, we empirically assume 1% ion 

exchange relative to the concentration difference at the start of the experiment,  

����  �  ����,� � 0.01 
 ����������� � ����,� 

where X is the ion, [X]pipette is the ionic concentration in the pipette, and [X]i,0 is the intracellular 

concentration before cell impalement. The same 1% ionic exchange also applied to the 

perforated-patch method, but only for permeable monovalent cations (Finkelstein & 

Andersen, 1981). Next, the algorithm corrects the concentrations by considering the effect of 

weak acids like HEPES and polyvalent chelating agents like EGTA that do not fully ionize in 

solution, and converts all resulting values to ionic activities (Davies, 1938). Finally, the 

calculator derives the reversal potential from ionic activities solving numerically the Goldman-

Hodgkin-Katz current equation for channels permeable to ions with any number of valences 

(Hille, 2001). Since ionic valences for synaptic channels in the scope of this study are limited to 

+1, -1, or +2, we employed Lewis’ voltage equation (Lewis, 1979) for efficient initialization of 

the numerical solver (Loisel, 2012). 

For the relative ionic permeability parameters in the Goldman-Hodgkin-Katz equation, 

we used available experimentally estimates for AMPA, NMDA, GABAA and GABAB channels 

(Farrant & Kaila, 2007; Jatzke, Watanabe, & Wollmuth, 2002; Traynelis et al., 2010). The GABAA 

channel is considered permeable to Cl
-
, HCO3

-
, Br

-
, and F

-
, as well as to gluconate if explicitly 

noted. For GABAB, we included both K
+
 and Na

+
 with an empirically determined ratio PNa/PK= 

0.02, compatible with earlier research (Hille, 1973; Sah, Gibb, & Gage, 1988). Calcium-

impermeable AMPA channel were presumed to be permeable to Na
+
, K

+
, and Cs

+
. Calcium-

permeable AMPA and NMDA channels included the same ionic species plus Ca
2+

. The relative 

calcium permeability of AMPA depends on membrane potential, increasing from 0.6 at -60 mV 

to 0.92 at -20 mV (Jatzke et al., 2002) and we assumed a linear function. 
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Junction potential calculation. The junction potential (Vj) is observed at the tip of the 

recording electrode, where ion exchange occurs between the pipette solution and the bath or 

the intracellular solutions. Faster moving ions leave behind slower ions that may have 

opposite charge. These ionic mobility differences lead to an electric field at the interface, or 

junction, between the two liquids. The generalized Henderson equation derives Vj from ionic 

activities and experimentally determined ion mobilities (Barry, 1994; Barry & Lynch, 1991; 

Marino, Misuri, & Brogioli, 2014; Morf, 2012). We correct Vj between the extracellular and 

pipette solutions for all recording methods, except for the sharp-electrode, for which we 

additionally correct for the difference of Vj between the pipette and intracellular solutions. 

The calculator automatically chooses the appropriate Vj sign for current- or voltage-clamp 

recordings. If an article reports the experimental Vj measurement, we use the value, but 

choose the sign based on the calculated Vj. 

Statistics and illustrations. For correlation analysis and figure plotting we used publicly 

available R packages including R Markdown, Tidyverse, ggpubr, Venneuler, and UpSetR 

(Baumer, Cetinkaya-Rundel, Bray, Loi, & Horton, 2014; Lex, Gehlenborg, Strobelt, Vuillemot, & 

Pfister, 2014; Wickham, 2016, 2017; Wilkinson & Urbanek, 2011). We used Pearson and 

Spearman coefficients as measures of linear and nonlinear correlations, respectively. We 

assessed statistical differences with Wilcoxon non-parametric test and considered results 

significant when P < 0.05 after “False Discovery Rate” multiple-testing correction (Benjamini & 

Hochberg, 1995). 

Results 

Mapping Experiments to Synapse Types 

Any unique combination of potentially connected presynaptic and postsynaptic neuron 

types produces a specific synapse type. Consider as an example a simple case of inhibitory 

convergence on the principal cells of the dentate gyrus (Fig. 1). This minimalist circuit consists 

of three different neuron types: granule as postsynaptic cell and two GABAergic interneurons 

as presynaptic cells, for instance hilar commissural pathway associated (HICAP) and basket 

neurons. The potential connection between HICAP (a dendritic-targeting, non-fast-spiking 

interneuron type) and granule cells is produced by the co-localization of the pre-synaptic axon 

and postsynaptic dendrites in the inner molecular layer (Fig. 1A). Similarly, the synapse type 

between (perisomatic-targeting, fast-spiking) basket and granule cells is consistent with the 

spatial overlap of the presynaptic axon with the postsynaptic soma and proximal dendrites in 

the granular layer. Even though individual synaptic traces might not represent the population 

averages, the signals recorded from these two pairs display evidently distinct amplitudes and 

kinetics (Fig. 1B). Conversely, granule cells also elicit diversified synaptic responses in different 

postsynaptic interneuron types (Toth, Suares, Lawrence, Philips-Tansey, & McBain, 2000).  
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The magnitude of the problem begins to become apparent when considering that the 

122 known neuron types in the rodent hippocampal formation generate as many as 3,120 

distinct synapse types (Fig. 1C). This intrinsic circuit complexity is cumulated with another 

challenge: the uncertain identification of synapse types in available experimental reports. The 

above example clearly pinpoints individual presynaptic as well as postsynaptic neuron types 

and therefore unique synapse types, but this is hardly typical. More often studies do not 

report the reconstructed morphologies of the stimulated or recorded neurons, but instead 

simply describe the common properties of different neuron types. If multiple neuron types 

share these properties, mapping the reported data to a single synapse type becomes 

impossible. Even the most accurate paired-recording experiments, in which all cell types are 

adequately reconstructed, may suffer from result pooling. Nonetheless, it is usually possible to 

map a given experimental description to a limited set of synapse types.  

Different data entities from the same publication may map to distinct sets of synapse 

types. The same study illustrated above, for example, also grouped many stimulated neuron 

types with diverse morphologies based on their spiking frequencies and soma location. Thus, 

our data mining process parses each paper into separate sections or “experiment” based on 

the common sets of identifiable neuron types (Fig. 2). For instance, a change in the stimulation 

region of the slice produces a distinct mapping, but a change in the extracellular calcium 

concentration does not. As described in the Methods, the properties of presynaptic and 

postsynaptic neurons are then mapped onto a specific group of synapse types. We consider a 

mapping as “proper” only if the corresponding experiment matches a single synapse type. For 

all other “fuzzy” mappings that involve multiple synapse types, we assign high and low 

confidence to the more and less likely neuron type pair(s), respectively. This determination 

relies on cell-type ratios, connection selectivity, or explicit assumptions of the original authors. 

In the experiment reported in Fig. 2, for instance, the HICAP-granule mapping is high-

confidence due to the largest reported HICAP ratio among possible presynaptic types. Note 

that, although this work defines synapse types based on potential rather than established 

contacts, proper mappings are especially valuable because they also demonstrate the 

existence of (i.e. they “validate”) the corresponding connection. 

Dense Coverage of Synaptic Knowledge 
Starting from 1,203 publications, we have extracted, annotated, and mapped the 

properties of 2,746 synapse types, or 88% of the 3,120 potential connections in the rodent 

hippocampal formation (Fig. 3). This proportion is remarkably stable across all major sub-

regions of the hippocampal formation: 85.3% in dentate gyrus, 84.6% in CA3, 92.7% in CA1, 

87.0% in entorhinal cortex, and 86.9% for projection synapses between sub-regions. Despite 

the richness of the hippocampus literature, only a minority (10.9%) of synapse types had at 

least one proper (n=71) or high-confidence fuzzy (n=229) mapping. Again, this proportion was 

essentially constant across CA3 (11.5%), CA1 (10.8%), and sub-region projections (10.9%), but 
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was higher in dentate gyrus (17.7%) and lower in entorhinal cortex (5.6%). Out of over 3,000 

potential connections, available experimental evidence can firmly validate merely 194 synapse 

types (Fig. 3A, grid pattern), including 123 based on electron microscopy (69 high-confidence 

fuzzy, 52 low-confidence fuzzy, 2 with no synaptic electrophysiology). Most synapse types with 

proper mapping also had high-confidence fuzzy mappings, and low-confidence fuzzy evidence 

was available for all of the high-confidence or properly-mapped types (Fig. 3B). The available 

data allow the determination of the amplitude and kinetics of most synapse types; plasticity 

information is available for slightly more than half of the cases, while other measurements, 

such as transmission failure and quantal release, for less than one third (Fig. 3C).  

The extracted signals encompass four mechanism of synaptic activation: (i) “unitary,” 

resulting from the stimulation of an individual presynaptic neuron, as in paired-recordings; (ii) 

“evoked,” resulting from the stimulation of a population of presynaptic neurons, as in 

extracellular electro-, photo- or chemo-stimulation; (iii) “spontaneous,” reflecting background 

synaptic activity in the absence of stimulations controlled by the experimenter; and (iv) 

“miniature,” corresponding to unprompted neurotransmitter release while blocking action 

potentials. The choice of stimulation method greatly impacts mapping resolution: half of 

paired recordings but only 24% of all experiments are mapped to just one or two synapse 

types; due to the higher mapping degeneracy of evoked stimulation and (especially) 

spontaneous or miniature activity, the overall median number of synapse types per 

experiment is eight (Fig. 3D). 

Recording Modalities, Measurement Methods, and User Access 

Postsynaptic signals are recorded as either potentials in current-clamp or currents in 

voltage-clamp, yielding eight different combinations with the four above-described stimulation 

methods (Fig. 4A). The most common modality is evoked current, but different modalities are 

often related in the same experiments, for instance when an investigator tests different 

stimulation methods and recording modes while clamping a postsynaptic neuron. Preserving 

the link between these data is particularly useful to integrate disparate data sources into a 

consistent analysis framework. The most common relation is between evoked currents and 

potentials (Fig. 4B), but a substantial number (>30) of experiments also offers valuable 

relations among three data modalities. 

Besides the data modality distinction, the measurement methods and definitions to 

quantify the main properties of synaptic signals constitute another major source of data 

diversity compounding two distinct challenges. On the one hand, researchers characterize 

distinct aspects of amplitude, kinetics, and plasticity with complementary measures that are 

inherently incomparable. On the other, the terminology used to describe these measurements 

in scientific reports is itself ambiguous. As a result, even a relatively clear concept as 

“amplitude” may become difficult to relate between two studies of the same synapse type, 
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because, when averaging signal traces, some researchers include all events, while others omit 

transmission failures. Some, but not all, reports refer to the latter case as “synaptic potency;” 

we adopt this nomenclature in the knowledge base to minimize confusion, but we always pay 

special attention to the correct identification of different measures by the reported definitions 

rather than the chosen name.  

The situation is substantially more complex when extracting data pertaining to other 

synaptic features. Kinetics, for instance, can be characterized in terms of latency, rise, and 

decay time. Rise time can be reported as an exponential constant or as the temporal interval 

elapsed from 20% to 80% of the amplitude value among several other possibilities. Often rise 

and decay are combined as when reporting half-height signal width. With respect to plasticity, 

even if solely focusing on short-term dynamics and foregoing long-term changes, different 

experimental protocols may induce facilitation or depression and changes can refer to signal 

slope or amplitude, just to mention two of the many dimensions to consider. Since the 

terminology is here, too, inconsistent across studies, we have adopted the naming convention 

used by most studies, but employed prefixes and suffixes to differentiate conflicting names. 

Overall, besides synonymy, we have identified 68 actually distinct synaptic property measures 

(Fig. 5). 

Altogether, we have extracted 39,522 data entities: 8,486 (21%) constituting PoEs and 

31,036 (79%) metadata (Table 2). Although paired recordings constituted approximately one 

quarter of mined experiments, they generated nearly 45% of the quantifiable synaptic 

evidence. Considering the diversity of stimulation protocols, recording modalities, and 

measurement types, the synaptic data are distributed across 619 columns in the master table 

of the knowledge base. The entire data collection is publicly released at 

Hippocampome.org/synaptome (Fig. 6). Users can search or sort synapse types based on the 

properties of pre- and post-synaptic neuron types. Each synapse type is linked to a list of 

experiment IDs. By following the experiment IDs on the “Evidence” tab, the user can access 

experiment summaries, annotated excerpts, and digitized traces. The same experiment IDs on 

the “Synaptic Data” tab provide access to the corresponding extracted values for amplitude, 

kinetics, plasticity, and other available properties. 

Data Integration and Usage Examples  

 The multiple sources and diverse settings of mined data make data normalization a 

necessity for meaningful comparisons. The junction potential Vj, for instance, adds a 

systematic error that is usually not considered when reporting synaptic signal values. We have 

corrected all synaptic measurements based on the ionic composition of the interfacing 

solutions using our liquid-junction potential calculator, which is uniquely custom-designed to 

properly handle all recording methods and modes. Even after Vj correction, synaptic amplitude 

strongly depends on failure rate as well as on the difference between membrane and reversal 
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potentials. To account for failure rate, we convert amplitude to potency by dividing the 

reported value by the success probability. Because electrophysiological studies are performed 

at widely different membrane potentials, data must be further normalized to conductance 

using Ohm’s law. This conversion, however, also requires a suitable Erev value, which is not 

always measured or reported. The broad ranges of solution compositions used experimentally 

impose substantial differences in reversal potential. Thus, we calculate Erev from the ionic 

composition of the bath and pipette solutions, recording method, and temperature. 

With this normalization process in place, we used the subset of experimentally 

measured Erev data to test the hypothesis that correcting for liquid junction potential would 

reduce the difference between experimental and theoretical reversal potentials. Remarkably, 

the Vj correction improved the agreement between calculated and measured Erev for the vast 

majority of experiments (Fig. 7). Specifically, the average mismatch became statistically nil for 

both excitatory and inhibitory synapses in whole cell recordings as well as for GABAA synapses 

recorded with sharp electrodes. For the limited sample of sharp-recorded AMPA synapses, the 

correction was neutral, possibly due to a larger margin of non-systematic error in this 

modality. 

 Integrating reported synaptic data for thousands of synapse types provides a unique 

meta-analysis opportunity to confirm earlier observations and foster new discoveries. To this 

aim, we measured the correlation between specific properties of unitary GABAergic currents 

and different covariates (Table 3). In accordance with previous hippocampal studies, 

increasing the temperature reduces synaptic latency, decay kinetics, and paired-pulse ratio, 

making synapses faster, shorter, and more prone to show short-term depression than to short-

term facilitation. Moreover, rising intracellular chloride concentration increases synaptic 

conductance and adding extracellular calcium or removing extracellular magnesium abates the 

synaptic failure rate. However, other previously suggested interactions did not reach statistical 

significance, such as the effects of holding potential or intracellular chloride concentration on 

decay time.  

We have also identified several relations that, to the best of our knowledge, had not 

been proposed before in the hippocampus literature. In particular, the paired-pulse ratio 

increases with postsynaptic membrane depolarization, but decreases with the extracellular 

concentration ratio between calcium and magnesium. Furthermore, synapses with higher 

failure rate tend to have smaller synaptic conductance potency. Last but not least, we checked 

whether faster GABAergic synapses also tend to be stronger and vice versa. The available data 

from unitary response indeed support a negative correlation between conductance potency 

and temporal decay (Fig. 8). Splitting the signals by decay time constant median accordingly 

results in a significant group difference in synaptic strength. Both the linear dependence and 

the effect size are more demarcated at physiological temperature than at room temperature. 
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Discussion 
Synapses play a crucial role in neural computation. Constraining large-scale biologically 

realistic simulations of brain circuits require detailed estimations of quantitative synaptic 

electrophysiology parameters (Bezaire, Raikov, Burk, Vyas, & Soltesz, 2016; Markram et al., 

2015). Brain-wide catalogs of synaptic information may allow for data mining and systematic 

hypothesis testing. A recent high-throuput genetic imaging study in the mouse, for instance, 

ascribed a high degree of synaptic diversity to the hippocampal formation, possibly associated 

with its specific cognitive functions (F. Zhu et al., 2018). However, efforts in this direction have 

so far largely focused on molecular features (O'Rourke, Weiler, Micheva, & Smith, 2012; Paul 

et al., 2017; Zhang et al., 2007). The electrophysiological knowledge base of synapse types we 

have introduced and released with this report is the first of its kind for the rodent 

hippocampus or, to the best of our knowledge, any other neural system. Mining the data of 

more than 1,200 papers, we have extracted synaptic measures (amplitude and kinetics almost 

always, but also plasticity or other characteristics in most cases) or traces for 88% of synapse 

types, with substantially uniform coverage within and across the main sub-regions: dentate 

gyrus, CA3, CA1, and entorhinal cortex. Based on our comprehensive and methodical literature 

coverage, we surmise that the remaining synapse types have not yet been experimentally 

investigated and more research is therefore needed to ascertain their properties. 

Continuing and extending the Hippocampome.org standard, we have associated all 

mined information to publication excerpts at the data-entity level. Therefore, anyone can 

immediately inspect the experimental context online and critically verify synapse type 

assignments, extracted data, and any corresponding assumptions or interpretations. We hope 

that such high level of transparency and provenance tracking will encourage constructive user 

feedback, allowing refinements and improvements in future releases. Importantly, this public 

resource also integrates experimental data produced with different methods, linking them 

together at the synapse-type level. Explicitly annotating experimental settings, recording 

modalities and covariates greatly facilitates the review of earlier works at single neuron-type 

detail, a feature no current search engine or automated text-mining approach provide. In 

addition, since we distinguish specific measurement types on the basis of their reported 

definitions (as opposed to adopted terminology), all data we group under one column of the 

accompanying database are guaranteed to be uniform, ensuring meaningful comparability 

across studies. 

This opens the prospect of complete data normalization to enable quantitative data 

analysis by accounting for the effect of different covariates like temperature and other 

experimental metadata (Tebaykin et al., 2018). In theory, computational modeling should 

allow one to reduce the (at least) 68 distinct measures the hippocampal literature offers to 

quantify the eight possible recording and stimulation combinations into a handful of  
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phenomenological parameters:  one for amplitude, one for kinetics, and two or three for 

short-term plasticity (Tsodyks & Markram, 1997). As a start, we have calculated the reversal 

potential and corrected the systematic liquid junction error for all experiments. In the future, 

the correlations we have identified among specific synaptic measures and different covariates 

may also become useful for data normalization. 

The majority of synaptic signals are recorded in slices. Extrapolating these in vitro 

manipulations to in vivo brain function is especially challenging because severed neuronal 

processes during sectioning alter connection probability and neuronal reconstruction integrity. 

For instance, one half of CA1 stratum oriens or stratum pyramidale neurons are partially 

axotomized in typical electrophysiological preparations, which affects morphological 

identification (Halasy, Buhl, Lorinczi, Tamas, & Somogyi, 1996; Kogo et al., 2004) and synaptic 

activity (Gulyas et al., 2010) differentially in longitudinal and transverse slices (Couey et al., 

2013; Surmeli et al., 2015; Xiong, Metheny, Johnson, & Cohen, 2017). Homeostatic 

mechanisms also change synaptic strength after slicing in order to compensate for axonal loss 

(Dumas et al., 2018; Kirov, Sorra, & Harris, 1999), implying that the time elapsed since slice 

preparation (which is hardly ever reported in peer-reviewed publications) may be a key 

determinant of synaptic amplitude. 

The choice of experimental method may even mask physiologically important synaptic 

properties. For instance, Cajal-Retzius cells’ unique cytosolic chemistry makes GABAergic input 

excitatory in these neuron types (Marchionni et al., 2010). Whole-cell recording not only 

changes intracellular ionic concentrations immediately after establishment, but also washes 

the signaling molecules responsible for synaptic plasticity (Bauer & LeDoux, 2004; Kato, 

Clifford, & Zorumski, 1993; Lamsa, Heeroma, & Kullmann, 2005; Maccaferri & McBain, 1996), 

an effect likely depending on cell size and synaptic distance from soma. Moreover, common 

use of gluconate in the pipette solution may change membrane electrophysiology, firing 

pattern, and even synaptic potentials in recorded neurons (Bullis, Jones, & Poolos, 2007; 

Fatima-Shad & Barry, 1993; Velumian, Zhang, Pennefather, & Carlen, 1997). Comprehensive 

data normalization and meaningful computer simulations will require a careful accounting of 

these effects. 

In order to place this knowledge base content in appropriate circuit context, it is 

humbling to recognize the relatively low mapping resolution relayed through traditional 

literature reporting, with about 50% of experiments assigned to eight or more synapse types. 

Part of this degeneracy may be attributed to the existence of multiple morphological variants 

for certain neuron types; for example, while the canonical form of CA1 oriens/lacunosum-

moleculare interneurons is characterized by an axonal tree ascending to lacunosum-

moleculare, certain sub-types also branch off in radiatum or collateralize in oriens (Wheeler et 

al., 2015). Depending on the available experimental details, in many cases the ambiguity in 
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neuron type identification is more consequential, as when equating all parvalbumin-expressing 

neurons to fast-spiking basket cells. To address these issues, our neuroinformatics pipeline 

translates all experiments in each study into machine-readable search queries, in order to find 

all corresponding potential connections automatically and in an unbiased way. Given the 

continuous evolution of modern technology (and of the very notion of neuron types in the 

neuroscience community), it is predictable that new cell types will be found and agreed upon, 

thus refining our understanding of hippocampal circuitry. Likewise, ongoing connectomics 

research will progressively validate and refute an increasing number of potential connections. 

Yet, the experimental information already reported in the scientific literature is not affected 

by these future changes and thus the resulting machine-readable queries will remain valid. 

Simply updating the neuron type definitions in Hippocampome.org will yield a revised 

mapping and, with additional neuron type properties identified, improved mapping resolution. 

In the current experimental landscape, classic paired recordings produce the best 

mapping resolution and thus remains the most useful method to study synapses. In this 

method, both presynaptic and postsynaptic neuron types can be morphologically 

reconstructed while simultaneously measuring their molecular expression, membrane 

biophysics, and firing patterns. Furthermore, all eight different synaptic modalities are 

potentially recordable from the same neuron pair in one experimental setting. Although 

paired recordings can validate potential connections, it remains challenging to firmly refute 

potential connections electrophysiologically. Even with a large enough sample size to avoid 

sampling bias, most stimulation protocols may be unsuitable to rule out synaptic connectivity. 

For instance, the low initial release probability of certain hippocampal synapses requires 10 to 

20 stimuli to trigger a detectable signal (Szabadics & Soltesz, 2009). An ideal experiment needs 

an adequate number of presynaptic stimuli at different frequencies. Optimizing the 

stimulation paradigm may be useful to conduct the maximum number of informative synaptic 

experiments in a short time neuron remain viable.  

Increasing the number of electrodes, the connectivity of examinable neuronal pairs 

grows quadratically (Perin & Markram, 2013). For instance, octuple whole-cell recording 

enables the parallel investigation of up to 56 (8x7) neuron pairs, while examining evoked and 

background synaptic activity, morphology, electrophysiology, and biochemistry of eight 

neurons (Jiang et al., 2015). Automated robotic patch clamp can further augment the data 

yield (Bruggemann, Stoelzle, George, Behrends, & Fertig, 2006; Kodandaramaiah, Franzesi, 

Chow, Boyden, & Forest, 2012; Lepple-Wienhues, Ferlinz, Seeger, & Schafer, 2003; Vasilyev, 

Merrill, Iwanow, Dunlop, & Bowlby, 2006). Combining optogenetically-enabled 

photostimulation (Kim, Adhikari, & Deisseroth, 2017) or single-neuron genetic profiling by 

patch-seq (Cadwell et al., 2016) may eventually enable the compilation of a whole-brain, high-

resolution functional and multimodal map of brain synapses. 
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Although effective for statistical analysis and widespread in reporting practice, data 

pooling lowers the mapping resolution of experiments (as illustrated in Fig. 2). To alleviate this 

problem and increase the impact of studies, we recommend the release of experimental data, 

at least in the form of supplemental tables, thus allowing meta-analysis and data re-usage. 

Each synaptic measure should be linked to the morphology, biomarkers, electrophysiology, 

and firing patterns of the corresponding neuron pair. Researchers can also use our framework 

to organize their data, which optimizes the mapping, usage, and visibility of their data and 

prevents the information loss inherent in within-study data pooling. 

In contrast, collating datasets across laboratories, experimental techniques, 

geographical locations, publication years, and animal subjects may be a powerful approach for 

discovering general trends, anomalous results or interesting covariates. For example, our 

meta-analysis revealed several new correlations that would have been impossible to detect 

from a single source and a uniform set of metadata. These findings are valuable and robust 

because of both larger sample size and data source diversity, allowing the discovery of truly 

invariant synaptic properties. Moreover, having collected and organized all available 

electrophysiology data concerning hippocampal synapses will facilitate the construction of 

better computational models of this important neural system while helping researchers find 

gaps in scientific knowledge and compare new data with existing ones. We also hope this 

public resource will encourage multidisciplinary approaches to complex multimodal 

neurobiological data interpretation. 
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Figure captions 
Figure 1. From neuron types to synapse types. (A) Red, the axons of the dentate gyrus (DG) 

basket neuron type innervate SG (stratum granulare), and those of the HICAP type invade SMi 

(stratum moleculare – inner). Blue and green, the dendrites of both neuron types span all four 

DG layers. The local axons of granule cells innervate the hilus (H) while its dendrites span SMi 

and SMo (stratum moleculare – outer). HICAP axons and granule dendrites are co-located, as 

are the basket axons and the granule perisomatic region; therefore, these neurons give rise to 

two distinct inhibitory synapse types. Morphologies rendered with neuTube (Feng, Zhao, & 

Kim, 2015) using data from the Bausch and Lien archives (Bausch, He, Petrova, Wang, & 

McNamara, 2006; Liu, Cheng, & Lien, 2014) of NeuroMorpho.Org (Ascoli, Donohue, & Halavi, 

2007). (B) The presynaptic spikes (upper traces) generate postsynaptic signals (lower traces) 

digitized and plotted from pair recording (Liu et al., 2014), from which we identified “Fast-

Spiking” as DG basket and “Non-Fast-Spiking” as DG HICAP (IN: interneuron). (C) The 122 

known neuron types in the rodent hippocampal formation (presynaptic: rows; postsynaptic: 

columns) form 3,120 synapse types. The heat map (SUB: subiculum; EC: entorhinal cortex) 

represents the number of distinct layers in which excitatory and inhibitory axons co-localize 

with relevant postsynaptic elements. For instance, the inhibitory synapse types in (A) have 

only one co-location each (in SMi and SG, respectively), corresponding to a -1 value in the 

directional connectivity matrix.  

 

Figure 2. Literature mining and knowledge extraction. For every experiment, we provide (i) a 

summary; (ii) connectivity ratios, cell-types counts, and any other relevant notes; (iii) bath and 

pipette solutions; (iv) recorded modalities and pertinent data such as postsynaptic potential 

(Vm), liquid junction correction (Vj), and measured or calculated reversal potentials (Erev), each 

tagged with a reference ID; (v) needed assumptions for neuron identification; (vi) a machine-

readable query; and (vii) mapped synapse types and related confidences (blue border: high 

confidence; others: low confidence), along with identifiers for the publication (PMID), 

experiment (eID), and extracted data IDs (dIDs). The data in this example is from (Liu et al., 

2014). 

 

Figure 3. Mapping summary. (A) Integrated knowledge mapping (clockwise from top): 

“proper” (blue), “high-confidence fuzzy” (green), and “low-confidence fuzzy” (purple). Grid 

patterns indicate validated (as opposed to potential) connections. (B) An individual synapse 

type may be linked to multiple experiments with variable mapping confidence. (C) Amplitude 

and kinetics are the most prevalently reported synaptic electrophysiology properties. (D) 

Mapping degeneracy by stimulation method: unitary signals (mostly paired recording), evoked 

(extracellular) and spontaneous. Filled circles represent all methods together. 

 

Figure 4. Data modalities. (A) Synaptic signals can be generated in eight different modalities 

depending on stimulation methods (e, u, s, and m) and response type (C or P). (B) The most 
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prevalent modality among all extracted data (upper chart) is eC and the most prevalent 

combination of multiple modalities in the same experiment (right chart) is between eC and eP. 

 

Figure 5. Measurement methods diversity. Synaptic conductance is the most prevalent 

measure for amplitude, single-exponential decay time constant (τ_Decay) for kinetics, paired-

pulse ratio of 2nd synaptic signal to the 1st (2/1 Amplitude Ratio) for plasticity, and failure rate 

of the 1st signal for other features. 

 

Figure 6. Data access. The described knowledge base of synaptic electrophysiology is freely 

available online. (A) Synapse types are searchable by the properties of the presynaptic and 

postsynaptic neuron types. (B) They are linked to experiment IDs categorized by mapping 

confidence. (C) The details and summaries of any experiment (for example, experiment with 

eID 331) can be reviewed while checking excerpts as evidence and (D) the extracted data is 

directly accessible. This example is from (Struber, Jonas, & Bartos, 2015). 

 

Figure 7. Correcting the liquid junction potential reduces the measured synaptic reversal 

potential error. After correcting the experimentally measured synaptic reversal potential (E) 

for liquid junction potential (Vj), the difference between Etheoretical and Eexperimental becomes close 

to zero on average. All data needed to calculate a pair (each grey line) come from one 

experiment with different solutions and temperature, which lead to different Vj and E. 

 

Figure 8. Faster GABAergic synapses are stronger. (A) GABAergic unitary synaptic potency 

significantly correlates with decay, both at temperatures ≥31℃ or <31℃. (B) The conductance 

of slower synapses (decay time constant above median) is significantly smaller than that of 

faster ones. Each data point is the average or single result of a separate experiment. 
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Table 1: Metadata list. 

Type Metadata Examples 

S
y
n
a
p
se
 

Synaptic Response Glutamatergic, GABAergic, Mixed 

Slow component In addition to fast component, Discoverable but were absent 

Calcium-Permeable AMPA High-Density, Low-Density, No, Untested 

Erev 
Fast component: 0.07±0.6 mV (n=3) with [Cl⁻]i=149 mM 

Slow component: -87.39 mV calculated by Hippocampome.org 

Other Background Synaptic Frequency: 32.7 Hz, Q10: 2.1 

M
. Membrane Potentials RMP: [>-65.87] mV, Vh: 25.87 mV, Vss: -66.2 mV, Iss: 0.2 nA 

Membrane Properties Input Resistance: 449.2 MΩ, Time Constant: 47.8 ms, Capacitance: 110 pF 

S
ta
t Measures Mean ± SEM (n=100) 

Trace Statistics Averaged (5 traces), Single 

S
ti
m
u
la
ti
o
n
 Method Electrostimulation (DC), Electrostimulation (AC), Photostimulation, GABA Puff 

Photostimulation Region: CA1:SLM non-focal, Wave-length: 470 nm 

Electrostimulation 
Region: CA1:SR, Strength: [200 to 400] nA, Frequency: 100 Hz repeated 5 times 

Distance with recorded neuron: [700 to 900] µm 

Electrode Resistance: [80 to 175] MΩ, Type: Bipolar, Tip Diameter: 20 µm 

T
is
su
e
 Biodiversity Species: Mice, Strain: Gad2-PASM 

Animal Size Postnatal Age: P18-24, Weight: [600 to 900] g, Sex: Male 

Slicing Region: Hippocampal Dorsal/Rostral, Orientation: Coronal, Thickness: 250 µm 

R
e
c.
 Method Patch: Whole-cell, [Monoamines]i Preservation: No, Section: Soma & Dendrites 

Resistances Pipette: [3 to 5] MΩ, Seal: [>1000] MΩ, Series: [8 to 35] MΩ with 70% compensation 

Junction Potential 10 mV K-gluconate solution, 20 mV Cs-methylsulfonate solution 

S
o
lu
ti
o
n
s 

Bath (mM) 125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 2 Na-pyruvate, 2 CaCl2, 1 MgCl2 

Pipette (mM) 
135 K-gluconate, 5 KCl, 0.1 Na-EGTA, 10 HEPES, 2 NaCl, 5 Mg-ATP, 0.4 Na2GTP,  

10 Na2-phosphocreatine 

Osmolarity and Acidity pH: Bath 7.4, Pipette 7.2, Osmolarity: Bath 297 mOsm, Pipette [280 to 290] mOsm 

Temperature [30 to 32] °C 

Drugs 
GABA or Glutamate: Picrotoxin (100 µM), CGP52432 (1 µM), DL–AP5 (50 µM),  

Anesthesia Pentobarbital (140 mg/kg IP), Other: Atropine (10 µM), TTX (1 µM) 

Abbreviations: M., membrane, Erev, reversal potential, RMP, resting membrane potential, Vh, holding 

potential, Vss steady state membrane potential resulting from constant current injection (Iss). 
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Table 2: Pieces of evidence. 

 Amplitude Kinetics Plasticity Other Total 

Parameter  Latency Rise time Decay time ST-P LT-P Failure 

rates 

Quantal 

PoE 2,474 

(29%) 

365 

(4%) 

437  

(5%) 

1,719  

(20%) 

2,686 

(32%) 

332 

(4%) 

312  

(4%) 

114  

(1%) 

8,439 

(100%) 
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Table 3: Covariates significantly correlate with unitary GABAergic postsynaptic currents properties 

Parameters              Spearman p n Reference 

Temperature vs τDecay -0.53 2e-05 71 (Guzman, Schlogl, Frotscher, & Jonas, 2016) 

Temperature vs PPR -0.35 0.02 61 

Temperature vs Latency
℗

 -0.65 7e-08 65 

Vh vs Conductance Amplitude
℗

 -0.26 0.03 107 New 

Vh vs τDecay  0.26 >0.05 71 (Otis & Mody, 1992) 

Vh vs PPR  0.37 0.01 61 New 

Failure vs Conductance Potency
℗

 -0.50 2e-05 79 New 

Failure vs Conductance Amplitude
℗

 -0.65 2e-09 79 New 

[Cl
-
]i vs Conductance Potency  0.26 0.04 93 (Nasrallah, Piskorowski, & Chevaleyre, 2015; 

Zhao, Choi, Obrietan, & Dudek, 2007) [Cl
-
]i vs Conductance Amplitude

℗
  0.32 0.004 107 

[Cl
-
]i vs τDecay -0.23 >0.05 71 (Houston, Bright, Sivilotti, Beato, & Smart, 2009) 

[Ca
2+

]o/[Mg
2+

]o vs Failure -0.28 0.04 79 (Kraushaar & Jonas, 2000) 

[Ca
2+

]o/[Mg
2+

]o vs PPR
℗

 -0.49 3e-04 61 New 

τDecay is single-exponential decay time constant in � · �����Δ	/������� model, Vh is holding potential 

and PPR is 2
nd

/1
st
 paired-pulse amplitude ratio. Spearman method detects linear or nonlinear 

correlations, while correlations proved to be linear with Pearson method are marked with ℗. P-values 

are adjusted for multiple comparisons (Benjamini & Hochberg, 1995). Significance level is <0.05. 
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In transverse hippocampal slices, paired recording is done from non-Fast-Spiking neurons (max frequency = 
25±4 Hz (n=14)) within DG:SG and DG:H border so-called non-FS IN to DG Granule cells in voltage-clamp 
mode. Non-FS INs had CB1R+ INs (Axons:DG:?1?0 & DSI+), HICAP (Axons:DG:?1?0 & DSI-), HIPP 
(Axons:DG:1?00 AND Dendrites:DG:0002) and HIPP-like (Axons:DG:1?00 AND Dendrites:DG:2222) 
subtypes. One presynaptic instance had DG HIPP-CAP (-)1102 morphology . Authors have grouped all the 
presynaptic non-FS IN neuron types when analyzing the synaptic electrophysiology data. 

Su
m

m
ar

y 

Connectivity: 151:391 pairs were connected. 
Types: 6:39 neurons in DG:SG and DG:H 
border were so-called FS IN (DG Basket PV+), 
6:39 CB1+ IN (probably DG Basket CCK+), 
14:39 DG HICAP, and 9:39 DG HIPP (probably 
DG HIPP or DG HIPP-CAP) or 4:39 HIPP-like 
(DG MOLAX). Ra

tio
s 

an
d 

N
ot

es
 

Bath: 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 
2.5 KCl, 2 CaCl2, 1 MgCl2. 
Whole-cell pipette: 15 K-gluconate, 140 KCl, 
0.1 EGTA, 2 MgCl2, 4 Na2ATP, 10 HEPES So

lu
tio

ns
 

Recorded Modality: uPSC 
Vm = -80 {without Vj correction};  
-84.91 {with Vj correction}@3300073 {Vh} 
Calculated Erev:  
-0.09 {GABA-A}; 0.21 {GABA-A-gluconate 
Permeable}; -85.92 {GABA-B} 
 

Sy
na

pt
ic

 S
ig

na
l 

Any non-Fast-Spiking neuron (max_fr:<50) 
with soma in DG:SG and DG:H border and 
most of their axons in DG:SM is a potential 
presynaptic cell type. DG HICAP is the main 
presynaptic population based on cell type 
ratios reported in this paper. 

As
su

m
pt

io
ns

 

Connection:( 
  Presynaptic:( 
   (Neurotransmitter:Inhibitory AND 
    Morphology:(  
       Dendrites:DG:???2              AND 
       Axons:DG:???0                    AND  
      (Soma:DG:??1?                      OR  
       Soma:DG:???1)) 
    )                                              NOT  
    Electrophysiology:max_fr:>50,       
    Include:(1046) 
  ),  
  Postsynaptic:(  
    Morphology:(  
       Axons:DG:0001                  AND  
       Dendrites:DG:2200) 
  ) 
) 

M
ac

hi
ne

-r
ea

da
bl

e 
Se

ar
ch

 Q
ue

ry
 

Presynaptic Postsynaptic 
DG Basket CCK+ DG Granule 
DG HICAP  DG Granule 
DG HIPP-CAP  DG Granule 
DG MOLAX DG Granule 
DG Outer Molecular Layer DG Granule 
DG HIPP  DG Granule 
PMID: 24453325 eID: 67 dID: 73; 74 Se

ar
ch

 E
ng

in
e 

Re
su

lts
 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/632760doi: bioRxiv preprint 

https://doi.org/10.1101/632760
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/632760doi: bioRxiv preprint 

https://doi.org/10.1101/632760
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/632760doi: bioRxiv preprint 

https://doi.org/10.1101/632760
http://creativecommons.org/licenses/by-nd/4.0/


1
3

8

1
2

3

11
4

7
9

1
6

2
2

6

3
7

4
2

4
4

4
2

1
0

1
9

5
9

2
5

1
8

1
3

1
2

2
2

6
8

2
3

2
1

1
5

1
5

1
5

1
2

7
8

5
6

11 1
9

A
m

p
litu

d
e

K
in

e
tics

P
la

sticity
O

th
e

r

0 100 200 300 400

Amplitude

Decay Time

Rise Time

Latency

LT-P

ST-P

Quantal

Failure

Number of Studies (n)

Legend (n)
Conductance Amplitude (138)
Conductance Potency (123)
Average Amplitude (114)
Average Potency (79)
Other Amplitudes (16)

Latency (59)
S�mula�on to Onset (11)
Other Latencies (7)
20-80% Rise Time (44)
10-90% Rise Time (42)
0-100% Rise Time (10)
Other Rise Times (19)
τ_Decay (226)
50-50% Rise-to-Decay Time (37)
Other Decay Times (42)

2/1 Paired-Pulse Amplitude Ra�o (68)
Post-Tetanic Poten�a�on (23)
3/1 Paired-Pulse Amplitude Ra�o (21)
PTP Amplitude Change (15)
5/1 Paired-Pulse Amplitude Ra�o (15)
4/1 Paired-Pulse Amplitude Ra�o (15)
10/1 Paired-Pulse Amplitude Ra�o (12)
Other ST-Ps (78)
LTP Amplitude Change (25)
LTP Conductance Change (18)
LTP 2/1 Paired-Pulse Amplitude Ra�o Change (13)
LTP Slope Change (12)
Other LT-Ps (22)

1st Failure Rate (56)
2nd Failure Rate (11)
Other Failures (19)
Quantal Release Sites [n] (9)
Quantal Release Probability [p] (6)
Quantal Current [q] (6)
Other Quantal (13)9 6 1

3

11 11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/632760doi: bioRxiv preprint 

https://doi.org/10.1101/632760
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/632760doi: bioRxiv preprint 

https://doi.org/10.1101/632760
http://creativecommons.org/licenses/by-nd/4.0/


-20

-10

0

10

20

measured  Vj-corrected   measured  Vj-corrected

 whole-cell sharp-electrode
measured  Vj-corrected   measured  Vj-corrected

p = 0.00072                   p = 0.00032
n = 15                            n = 12

       AMPA                GABA-A        AMPA                 GABA-A

E
e
x
p

e
ri

m
e
n
ta

l
- 

E
th

e
o
re

ti
ca

l (
m

V
) p = 0.79                           p = 0.0032

n = 5                                n = 12

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/632760doi: bioRxiv preprint 

https://doi.org/10.1101/632760
http://creativecommons.org/licenses/by-nd/4.0/


0 2 4 6 8 0 2 4 6 8

3

10

30

unitary GABAergic Conductance Potency (nS)

S
in

gl
e-

ex
po

ne
nt

ia
l

D
ec

ay
 T

im
e 

C
on

st
an

t (
m

s)
 lo

g
sc

al
e

Wilcoxon

p = 0.015

Wilcoxon

p = 0.0031

0

2

4

6

8

Single-exponential Decay Time Constant (ms)

un
ita

ry
 G

A
B

A
er

gi
c

C
on

du
ct

an
ce

 P
ot

en
cy

 (
n

S
)

R = −0.54                      R = −0.49
p = 0.015, n=20               p = 0.0015, n=40

Slow (n=9)    Fast (n=11)         Slow (n=19)   Fast (n=21)

Temperature < 31°C Temperature ≥ 31°C

Temperature < 31°C Temperature ≥ 31°C

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/632760doi: bioRxiv preprint 

https://doi.org/10.1101/632760
http://creativecommons.org/licenses/by-nd/4.0/

