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Abstract: 10 

Patterns of periodic voltage spikes elicited by a neuron help define its dynamical identity. 

Experimentally recorded spike trains from various neurons show qualitatively distinguishable 

features such as delayed spiking, spiking with/without frequency adaptation, and intrinsic 

bursting. Moreover, the input-dependent responses of a neuron not only show different 

quantitative features, such as higher spike frequency for a stronger input current injection, but 15 

can also exhibit qualitatively different responses, such as spiking and bursting under different 

input conditions, thus forming a complex phenotype of responses. In a previous work, 

Hippocampome.org, a comprehensive knowledgebase of hippocampal neuron types, 

systematically characterized various spike pattern phenotypes experimentally identified from 

120 neuron types/subtypes. In this paper, we present a comprehensive set of simple 20 

phenomenological models that quantitatively reproduce the diverse and complex phenotypes of 

hippocampal neurons. In addition to point-neuron models, we created compact multi-

compartment models with up to four compartments, which will allow spatial segregation of 

synaptic integration in network simulations. Electrotonic compartmentalization observed in our 

compact multi-compartment models is qualitatively consistent with experimental observations. 25 

Furthermore, we observed that adding dendritic compartments to point-neuron models, in 

general, allowed soma to reproduce features of bursting patterns and abrupt non-linearities in 

some frequency adapting patterns slightly more accurately. This work maps 120 neuron 

types/subtypes in the rodent hippocampus to a low-dimensional model space and adds another 

dimension to the knowledge accumulated in Hippocampome.org. Computationally efficient 30 

representations of intrinsic dynamics, along with other pieces of knowledge available in 

Hippocampome.org, provide a biologically realistic platform to explore the dynamical 

interactions of various types at the mesoscopic level. 
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Author Summary: 35 

The neurons in the hippocampus show enormous diversity in their intrinsic activity patterns. A 

comprehensive characterization of various intrinsic types using a neuronal modeling system is 

necessary to simulate biologically realistic networks of brain regions. Morphologically detailed 

neuronal modeling frameworks often limit the scalability of such network simulations due to the 

specification of hundreds of rules governing each neuron’s intrinsic dynamics. In this work, we 40 

have accomplished a comprehensive mapping of experimentally identified intrinsic dynamics in 

a simple modeling system with only two governing rules. We have created over a hundred point-

neuron models that reflect the intrinsic differences among the hippocampal neuron types both 

qualitatively and quantitatively. In addition, we compactly extended our point-neurons to include 

up to four compartments, which will allow anatomically finer-grained connections among the 45 

neurons in a network. Our compact model representations, which are freely available in 

Hippocampome.org, will allow future researchers to investigate dynamical interactions among 

various intrinsic types and emergent integrative properties using scalable, yet biologically 

realistic network simulations.  
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1. Introduction 50 

Complex interactions among a myriad of neurons make it challenging to study the functions of 

brain regions. Although each neuron is different, their landmark features such as the dendritic 

structure and patterns of somatic voltage spikes help define types of neurons, and, such 

grouping allows for a tractable description and investigation of complex interactions in a 

network. For instance, large-scale network models of brain regions can include precisely 55 

defined neuronal types to create a biologically realistic platform for hypothesis testing. While 

neurons differ in their morphological, biochemical and electrophysiological features, precisely 

what features are useful and relevant for neuronal grouping is a topic of great interest [1].  

A few studies have created large-scale network models of brain regions [2–5]. The major 

methodological difference among these studies is the level of biological details captured in the 60 

individual components of the network and there is often a tradeoff between such biological 

details and the scale of the network. For example, a microcircuit model of the rat somatosensory 

cortex [4] simulated ~31,000 neurons with ~37 million synapses, where each neuron was a 

biophysically detailed description of one of 207 morpho-electrical types identified 

experimentally. On the other hand, a large-scale description of thalamocortical systems [2], 65 

which used simplified phenomenological neuron models [6], simulated a network of much larger 

scale (one million neurons and half a billion synapses), but it only included 22 abstract types 

among the neurons. In current work, with a vision of creating a real-scale network model of the 

rodent hippocampus that nevertheless captures biological details at the mesoscopic level, we 

have created phenomenological models of 120 hippocampal neuron types and subtypes using 70 

their intrinsic dynamics identified experimentally. More recently, a large-scale effort [7] created a 

database of simple models for hundreds of neurons of various transgenic types in the mouse 

primary visual cortex with a similar vision. 
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A large-scale literature mining effort created Hippocampome.org [8], a comprehensive 

knowledgebase of neuron types in rodent hippocampal formation (dentate gyrus, CA3, CA2, 75 

CA1, subiculum, and entorhinal cortex). It provides information on morphology, 

electrophysiology, and molecular marker profiles of more than 100 neuron types, where the type 

of a neuron is primarily determined based on its neurite invasion pattern across hippocampal 

parcels. Latest enhancement to this knowledge base annotated 90 of these morphological types 

with their spike patterns and identified a total of 120 neuron types/subtypes [9]. Features of 80 

experimentally recorded spike patterns were extracted for a neuron type from relevant 

publications and a systematic characterization of spike pattern features revealed nine unique 

families of intrinsic dynamics such as delayed spiking, non-adapting spiking, simple adapting 

spiking, and persistent stuttering among hippocampal neurons. Furthermore, many neuron 

types exhibit different classes of spike patterns for different input currents resulting in complex 85 

spike pattern phenotypes.  

In this article, we present a comprehensive set of point neuron models that quantitatively 

reproduce various spike pattern phenotypes of hippocampal neurons. We also created multi-

compartment models that are compact extensions of point neurons in order to allow spatial 

context for synaptic integration in a network. In addition, our compact multi-compartment models 90 

exhibit electrotonic properties consistent with experimental observations. We also report 

interesting relationships between the abstract model parameters and various biological 

properties. The models were created using an automated modeling framework [10], and they 

further enhance the existing accumulated knowledge in Hippocampome.org, where they are 

freely available to download. By identifying several possibilities for a quantitative phenotype in 95 

phenomenological space, current work comprehensively maps hippocampal neuron types to 

low-dimensional model subspaces, which can be used as sampling regions for biologically 

realistic large-scale network simulations of hippocampal circuits.  
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2.  Methods  

The class of a spike pattern is identified based on various transient and/or steady-state 100 

elements present in the pattern. Transient elements are Delay (D), if the first spike latency (fsl) 

is sufficiently long; Adapting Spiking (ASP), if the inter-spike intervals (ISIs) increase over time 

showing a spike frequency adaptation (sfa); Rapidly Adapting Spiking (RASP), if a strong sfa is 

only present in the first two or three ISIs, Transient Stuttering (TSTUT), if a quiescent period 

follows a cluster of high frequency spikes; and Transient Slow-Wave Bursting (TSWB), if a slow 105 

after-hyperpolarizing potential follows a cluster of high frequency spikes. Steady-state elements 

are Silence (SLN), if the post-spike silence (pss) (quiescence following the last spike) is 

sufficiently long; Non-Adapting Spiking (NASP), if no frequency adaptation is identified in a non-

interrupted spiking; Persistent Stuttering (PSTUT), if at least one sufficiently long quiescent 

period separates two clusters of high frequency spikes; and Persistent Slow-Wave Bursting 110 

(PSWB) if a slow after-hyperpolarizing potential is present in an otherwise PSTUT pattern. 

Thus, the key features are fsl, sfa, pss and the number of ISIs (nISIs) for a spiking pattern, and 

burst widths (bw), post-burst intervals (pbi), number of bursts (n_bursts) and nISIs within a burst 

(b-nISIs) for a stuttering/bursting pattern. Refer to [9] for more details on the criteria for various 

spike pattern classes. These temporal features identify the class of a single spike pattern, and 115 

all classes of patterns exhibited by a neuron under different input currents collectively define the 

spike pattern phenotype of that neuron. Thus, our approach emphasizes the temporal patterns 

in the periodic voltage spikes rather than the shape of the spike or subthreshold dynamics to 

define the intrinsic dynamics. 

We used a two-dimensional quadratic model (QM) [6,11] to reproduce the spike pattern 120 

phenotypes. This model is governed by the state variables membrane voltage (V) and 

membrane recovery variable (U): 
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𝐶 ⋅
𝑑𝑣

𝑑𝑡
= 𝑘 ⋅ (𝑉 − 𝑉𝑟) ⋅ (𝑉 − 𝑉𝑡) − 𝑈 + 𝐼 (1) 

𝑑𝑈

𝑑𝑡
= 𝑎 ⋅ {𝑏 ⋅ (𝑉 − 𝑉𝑟) − 𝑈} (2) 

𝑖𝑓 𝑉 = 𝑉𝑝𝑒𝑎𝑘 𝑡ℎ𝑒𝑛 𝑉 = 𝑉𝑚𝑖𝑛, 𝑈 = 𝑈 + 𝑑 125 

where 𝑉𝑟 and 𝑉𝑡 are the resting and threshold voltages respectively. 𝑉𝑝𝑒𝑎𝑘 is the spike cutoff 

value, 𝑉𝑚𝑖𝑛 is the post-spike reset value for the voltage and 𝐶 is the cell capacitance. The 

parameters 𝑘, 𝑎, 𝑏 and 𝑑affect the model’s intrinsic dynamics both qualitatively (e.g. the type of 

bifurcation revealed by fast-spiking and non-fast-spiking behaviors) and quantitatively (e.g. 

excitability level and magnitude of sfa). Compact multi-compartment models with up to four 130 

compartments were modeled using an asymmetric coupling mechanism by calculating coupling 

currents in somatic (𝐼𝑠𝑜𝑚𝑎) and dendritic (𝐼𝑑𝑒𝑛𝑑)compartments as follows: 

𝐼𝑠𝑜𝑚𝑎 = 𝐺 ⋅ 𝑃 ⋅ (𝑉𝑠𝑜𝑚𝑎 − 𝑉𝑑𝑒𝑛𝑑) (3) 

𝐼𝑑𝑒𝑛𝑑 = 𝐺 ⋅ (1 − 𝑃) ⋅ (𝑉𝑑𝑒𝑛𝑑 − 𝑉𝑠𝑜𝑚𝑎) (4) 

Where 𝐺 is the coupling strength and 𝑃denotes the degree of coupling asymmetry, which 135 

determines the influence of a compartment on the overall model dynamics [12]. As reported 

before [10], most of our compact multi-compartment models specify a much weaker coupling 

toward the soma than away from it, making the somatic compartment dominate the overall 

model intrinsic dynamics. Compact multi-compartment models were also constrained to exhibit 

appropriate relative excitabilities and input resistances between soma and dendrites, and sub- 140 

and supra-threshold signal propagation properties. 

Our modeling framework [10] uses evolutionary algorithms (EA) and employs a feature-

based error function. By incorporating spike pattern features (fsl, sfa etc.) and qualitative class 

criteria (delay factor, number of piecewise linear fit parameters of ISIs etc.) [9] in the error 
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landscape, our approach enforces a fine level of granularity in the key quantitative features of 145 

various spike pattern classes. The operators of the EA (mutation, crossover etc.) were 

configured by taking into account the features of error landscape created by the QM parameters 

[13]. In order for a model found by the EA to be accepted, the classes of its spike patterns must 

match those of experimental traces. There is, however, one exception: Without additional 

dendritic dynamics, the QM failed to reproduce RASP.ASP. class of patterns, which show a 150 

strong and rapid adaptation (in the first 2 or 3 ISIs) followed by a very weak and sustained 

adaptation. Therefore, single-compartment models of seven neuron types, which experimentally 

showed this complex transient pattern, were accepted with RASP.NASP patterns instead (see 

results). 

Pairwise correlations were performed to explore the relationships between QM 155 

parameters and various pieces of knowledge such as biomarker expression that have been 

accumulated in Hippocampome.org. Continuous QM parameters were converted into 

categorical variables appropriately by marking positive and negative or by labelling top- and 

bottom- one-third ranges respectively as high and low. Correlations between the categorical 

variables were evaluated using Barnard’s exact test for 2x2 contingency tables. This test 160 

provides the greatest statistical power when row and column totals are free to vary [14].  

3. Results 

3.1. Single-compartment models of diverse intrinsic spike pattern phenotypes 

The intrinsic dynamics of a neuron is identified in experiments typically by injecting step input 

currents of various magnitudes. A neuron’s responses to these inputs typically fall into one of 165 

two phenotype super-families: (1) spiking phenotype, where the neuron only exhibits continuous 

spike pattern classes such as ASP.SLN, NASP, and D.NASP for different input currents (Fig 

1A-D), and (2) stuttering/bursting phenotype, where the neuron exhibits an interrupted spike 
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pattern class such as TSWB.SLN, TSTUT.NASP, and PSTUT for at least one input current (Fig 

2A-D). A spiking or stuttering phenotype could be formed by various combinations of spike 170 

pattern classes, and models for four exemplar cases in each of these two phenotype super-

families are reported in this article (visit Hippocampome.org for a comprehensive list of 

phenotypes and their models). 

Fig 1. Exemplar models of continuous spiking phenotypes. In each panel, 

experimentally recorded voltage traces are given in top-left, and their morphological 175 

identity and magnitudes of somatic current injections are given in bottom-left. The traces 

were digitized by Hippocampome.org. Morphological abbreviations: SO - stratum oriens, 

SP - stratum pyramidale, SR - stratum radiatum, SO - stratum oriens, SG - stratum 

granulosum, H – hilus. Model responses for similar input currents (±0.01nA from 

experimental input) are given in top-right and the goodness of fit is given for key features 180 

as the ratio between simulated and experimentally recorded values in bottom-right. The 

traces are highlighted in different colors to visually compare experimental and model 

responses and to identify the input current and key features for each trace. Calibration 

bars denote 200ms and 20mV in all panels. (A) Simple phenotype of a dentate gyrus 

(DG) Total Molecular Layer neuron that elicits patterns of class ASP. under three 185 

different input currents [15]. Digitally reconstructed morphology was reproduced from 

Neuromorpho.org [16]. (B) Simple phenotype of a CA1 Basket neuron that elicits 

patterns of class NASP for +0.15nA and +0.31nA [17]. Note that sfa in red trace is not 

statistically significant to qualify this pattern as ASP. (C) The phenotype of a CA1 

Trilaminar neuron shows different classes of patterns for +0.025nA and +0.05nA [17]. In 190 

addition, this neuron elicits rebound spikes (RBS) for a hyperpolarizing input of -0.1nA. 

(D) The phenotype of a medial-entorhinal cortex (MEC) neuron shows different classes 
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of patterns for +0.2nA and an unknown input (denoted by ‘*’) near its excitability level 

[18]. 

Fig 2. Exemplar models of stuttering/bursting phenotypes. (A) Complex phenotype 195 

of a Bistratified neuron in CA1. This neuron elicits a stuttering pattern for +0.4nA (red) 

and a spiking pattern for +0.6nA (grey) [19]. Digitally reconstructed morphology [20] was 

reproduced from Neuromorpho.org [16]. (B) The voltage trace recorded from an 

entorhinal layer-5 neuron shows both bursting and spiking features for +0.4nA [21]. (C) A 

DG granule neuron transiently bursts for both +0.2nA and +0.4nA with quantitative 200 

difference [22]. Digitally reconstructed morphology was reproduced from 

Neuromorpho.org [16]. (D) A dentate gyrus neuron that transiently bursts near its 

excitability level (red) elicits a spiking pattern with a strong sfa (grey) for a higher input 

current [23]. ‘*’ indicates the unknown magnitude of the input current near excitability. All 

voltage traces were digitized by Hippocampome.org. Experimental spike amplitudes are 205 

truncated. Calibration bars denote 200ms and 20mV in all panels.  

In the simplest case, a neuron exhibits spike patterns of the same class regardless of 

the input current strength. For example, the three spike patterns recorded under different input 

currents from a DG Total Molecular Layer neuron were identified as ASP. (Fig 1A), and the two 

patterns recorded from a CA1 Basket neuron were identified as NASP. (Fig 1B). Such simple-210 

behavior neurons typically show different quantitative features among different patterns of the 

same class. In the former example, the three ASP. traces were experimentally recorded under 

+0.075nA (red), +0.100nA (black), and +0.200nA (grey) [15]. The ISI counts (nISIs) are 5, 9, 

and 19, and sfa magnitudes are 0.142, 0.114, and 0.056 respectively for the red, black and grey 

traces. The model of this neuron type was constrained to quantitatively reproduce the spike 215 

pattern features for similar input currents: nISIs of 5, 9 and 19, and sfa magnitudes of 0.142, 

0.082, and 0.032 respectively for +0.073nA, +0.102nA and +0.205nA. Note that a minimum of 
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two spikes are required in order to identify a class, hence, single-spike traces are not assigned 

a class label. However, such single-spike traces help capture the excitability levels in the 

models more precisely. 220 

Additionally, a neuron can show more complex behaviors by eliciting patterns of different 

classes under different input currents (Fig 1C-D). Both CA1 Trilaminar, and MEC LV-VI 

Pyramidal-Polymorphic neurons include ASP. in their phenotypes (grey traces), but they show 

different dynamics close to their respective excitability levels. Whereas the former quickly fired a 

few spikes before going into a silence mode (ASP.SLN), the latter showed delayed-spiking 225 

(D.NASP). The model quantitatively reproduces the characterizing features of these different 

classes (see pss for ASP.SLN and fsl for D.NASP). Also, note that the model reproduces the 

rebound-spiking behavior for a hyperpolarizing input current, a known feature of CA1 Trilaminar 

neurons [17]. 

Another level of complexity in spike pattern phenotypes is when the intrinsic dynamics 230 

show sharply distinguishable spike pattern classes under different input conditions. For 

example, a CA1 bistratified neuron stutters (PSTUT) for +0.4nA, and spikes for +0.6nA (ASP.) 

(Fig 2A). A few neuron types and subtypes in the hippocampus exhibit such a complex 

phenotype, where PSTUT is typically observed near the excitability level of a neuron. (e.g. CA1 

neurogliaform [24], DG Total Molecular Layer subtype [15] etc.). Our simple models capture the 235 

characterizing features of both PSTUT and ASP. (Fig 2A) under the right input conditions. It is 

worth mentioning that all PSTUT neurons are inhibitory neurons and CA1 region has a 

proportionately larger number of these phenotypes [9,25]. In many cases, however, the 

characteristic features of interrupted spiking can be only transiently present (Fig 2B). Here, a 

single pattern presents features of both bursting and spiking, where a relatively longer interval 240 

separates a few high frequency spikes (burst) from a train of regular spikes. In another set of 

examples, Granule cells and Hilar Ectopic Granule in the dentate gyrus (DG) show only 
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transient bursting near excitability (Fig 2C and 2D). However, for an increased input current, 

Granule cells still showed the same class of TSWB.SLN with quantitative differences such as 

increased number of spikes, whereas Hilar Ectopic Granule transitioned to ASP.  These 245 

constrained representations of two different DG neurons fall under the same family of non-

persistent bursting, but they reflect finer quantitative differences in the input-dependent 

responses between these two neuron types. Thus, our simple models do not only qualitatively 

capture the rich diversity of dynamical classes defined systematically, but they are also 

quantitatively constrained representations of experimentally recorded patterns from the 250 

hippocampal neuron types.  

3.2. Multi-compartment models as compact extensions of point-neuron models 

The point-neurons presented in the last section would tremendously reduce the computational 

cost of simulating large-scale networks of hippocampal circuits. However, since they lack spatial 

dimension, they do not differentiate synaptic inputs from different layers, unlike their biological 255 

counterparts. For example, the hippocampal pyramidal neurons receive entorhinal projections 

on the apical dendrites in stratum lacunosum moleculare (SLM), and intra-hippocampal 

connections in stratum radiatum (SR), thereby compartmentalizing synaptic integration of 

distinct laminar inputs. While it is not possible to spatially segregate synaptic integration in a 

network of point-neurons, it is of interest to see the effects of such segregated synaptic 260 

integration mechanisms in a network. Hippocampome.org (ver 1.4) identifies 87 neuron types 

with their dendrites invading at least two layers. Therefore, for these neuron types, in addition to 

point neuron models, we created compact multi-compartment models with up to four 

compartments. Here, each compartment corresponds to a hippocampal layer, and this allows 

layer-level connectivity specifications for a neuron type.  265 
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One example for each of the four out of five possible multi-compartment layouts are 

illustrated here, and the fifth layout is discussed in detail in Section 3.3. The somatic 

compartment of a compact multi-compartment model quantitatively reproduces the spike 

patterns experimentally recorded from the soma of the respective neuron type for similar input 

currents (Fig 3 and Fig 4A). The number and layout of the coupled compartments is determined 270 

by the layers of dendritic invasion and known/possible soma locations of real neurons as 

illustrated by various examples in Fig 3. The dendritic compartments in a compact multi-

compartment model are less excitable and have higher input resistances than the somatic 

compartment (Supplementary Fig S1B) [26,27].  

Fig 3. Multi-compartment models compactly extend point neurons to allow layer-275 

level spatial context. (A) Experimentally recorded voltage traces (left) are given for four 

different morphological types (right). Dendritic invasion (darker) of layers and relative 

soma location determine the number and layout of compartments. (B) Layout of 

compartments coupled asymmetrically (left) correspond to the layers of dendritic 

invasion shown in A. Filled circles denote soma.  Compartment responses for somatic 280 

input currents that are ±0.01nA from experimental input are given in right. See Fig 4 for 

quantitative comparison of spike pattern features, Supplementary Fig S1 for dendritic 

features, and Fig 5 for another possible 4-compartment layout. Experimental traces were 

digitized by Hippocampome.org from the following sources (from top to bottom):  [28], 

[15], [18] and [29]. Morphological abbreviations: SMi and SMo – inner one-third and 285 

outer two-third of stratum moleculare. Experimental spike amplitudes are truncated. 

Calibration bars denote 200ms, 20mV. 

Fig 4. Accuracy of compact multi-compartment models in reproducing spike 

pattern features. (A) The quality of fit is given for key features as the ratio between 

simulated and experimental values for each of the four examples from Fig 3. (B) 290 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/632430doi: bioRxiv preprint 

https://doi.org/10.1101/632430
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

Pairwise comparisons of accuracy between single- (blue) and compact multi-

compartment (orange) models for spiking features (top) and bursting features (bottom). 

While single-compartment models, in general, showed smaller errors for spiking 

features, they did not satisfy statistical criteria for RASP.ASP. patterns (denoted by 

circles in top panel). See Supplementary Fig S2 for an example for RASP.ASP. pattern. 295 

On the other hand, compact multi-compartment models generally improved the accuracy 

of bursting features (bottom) with a significant improvement in bw (p<0.005 for paired-

sample t-test). 

Furthermore, forward-coupling (from dendrite to soma) between compartments is just 

strong enough to evoke a somatic excitatory postsynaptic potential (EPSP) with an amplitude in 300 

the range [0.1, 0.9] mV for a single synaptic stimulation at a dendritic compartment and to 

achieve a forward-spike propagation (from dendrite to soma) ratio in the range [0.5, 1.0]. 

(Supplementary Fig S1C-D). As mentioned in methods, the backward-coupling (from soma to 

dendrite) is much stronger than the forward-coupling in most of our compact multi-compartment 

models, consistent with the electrotonic profiles reported for various neuron types [30–32]. Such 305 

an asymmetric design for coupling enables the somatic compartment to dominantly define the 

model’s overall intrinsic dynamics, while still preserving forward propagation properties for sub- 

and supra- threshold signals from dendrites. Thus, our multi-compartment models are compact 

extensions of point neuron models, which allow spatial contexts for synaptic integration (Fig S2). 

Although the major motivation for creating compact multi-compartment models is to 310 

allow synaptic segregation in a network model, we also investigated if additional dendritic 

mechanisms implemented in our compact multi-compartment models could help achieve a 

better fitting of somatic spike patterns than their point-neuron counterparts. Therefore, we 

performed pairwise comparisons between the somatic spike pattern features of single-

compartment and compact multi-compartment models. In general, implementing additional 315 
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dendritic mechanisms in the models only improved the accuracy of bursting features (Fig 4B). 

Interestingly, fsl and pss errors were higher in the models due to the addition of dendritic 

compartments. However, it should be noted that each additional compartment not only adds two 

state variables, which require more computations for numerical simulation, but also adds ten 

open parameters (including coupling parameters) making it a more-challenging optimization 320 

task. It has been shown that adequate dendritic influence is necessary for bursting to exist in a 

2-compartment model [12]. Although our single-compartment models were able to reproduce 

quantitatively comparable experimental bursting/stuttering patterns (Fig 2) (see [10] for two 

exceptions), compact multi-compartment models significantly improved the accuracy of bw, a 

key feature of bursting/stuttering patterns (Fig 4B).  325 

Furthermore, while the single-compartment models quantitatively captured various 

classes of adapting spike pattern phenotype such as ASP., ASP.SLN, ASP.NASP and 

RASP.NASP, they failed to reproduce RASP.ASP. patterns. These patterns exhibit a strong and 

rapid adaptation in the first few ISIs, which is then followed by a very weak and sustained 

adaptation. Interestingly, we found that such a combination was not possible in the QM (red 330 

circles in Fig 4B), unless additional dendritic compartments were included. Two different time 

constants (parameter ‘𝑎’) for the adaptation variable (state variable 𝑈) were required for the 

somatic- and dendritic- compartments respectively in order to capture such complex transients 

in the soma. In our single-compartment models, RASP.ASP. is represented by RASP.NASP, 

since the adaptation followed by RASP. is usually very weak. See Supplementary Fig S2 for an 335 

example.  

3.3. Electrotonic compartmentalization in a 4-compartment model of CA1 pyramidal 

neurons 
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In addition to the features discussed in the last section, our compact multi-compartment models 

show electrotonic structures and interplay between different compartments that are similar to 340 

those experimentally observed in the pyramidal neurons of CA1. To illustrate this, here we 

present a 4-compartment model of CA1 pyramidal neurons and discuss the voltage attenuation 

and spike propagation properties of apical compartments. First of all, the somatic compartment 

captures the frequency adaptation (Fig 5B), the characterizing feature of the experimentally 

recorded spike pattern from a CA1 pyramidal neuron (Fig 5A), quantitatively (Fig 5C - left). 345 

Secondly, the dendritic compartments (SR, SLM and SO) are less excitable and have higher 

input resistances than the somatic compartment (Fig 5C - right).  

Fig 5. A 4-compartment model of CA1 Pyramidal neurons. (A) Experimentally 

recorded voltage trace from a CA1 Pyramidal neuron [33] digitized by 

Hippocampome.org, and digitally reconstructed morphology of the same type [34] 350 

reproduced from Neuromorpho.org [16]. (B) Layout of the compartments (left) and their 

responses to somatic input current with a magnitude of +0.14nA. (C) Somatic 

compartment reproduces key features that are quantitatively comparable to the 

experimental features (left). Minimum depolarizing input required to elicit a spike (I-rheo) 

and steady-state voltage deflection (V-def) for a hyperpolarizing input are higher in 355 

dendritic compartments than the somatic compartment. (D) Voltage attenuation from 

SLM to soma is much higher than the attenuation from SR in the model. (E1) A spike 

initiated at the compartment SR (denoted by ‘*’) successfully propagates to soma. (E2) A 

spike initiated at SLM failed to initiate a spike at soma (left-bottom), and additional 

depolarization level at SR using a small step current facilitates propagation of spike 360 

initiated at SLM (right).  

In real neurons, integration of an EPSP is influenced by the location of the synapse, 

because the voltage attenuates more from a distal dendritic location to the soma, than from a 
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proximal location. This is due to the higher input resistances of more distal dendrites with 

smaller diameters. However, it has been shown in some CA1 pyramidal neurons that the 365 

synapses might be able to compensate for their distance by scaling their conductances in order 

to sufficiently influence somatic voltage [35,36]. In our model, compared to a synapse stimulated 

at SR to evoke a somatic (SP) EPSP with an amplitude of 0.2mV, a 12-fold increase in synaptic 

weight was required at SLM in order to evoke an EPSP with the same amplitude at SP (Fig 5D).  

Furthermore, the distal compartments in our 3- and 4-compartment models rarely 370 

initiated a spike that successfully propagated to the soma. While the spike initiated at SR 

successfully triggered a somatic spike (Fig 5E1), the spike initiated at SLM failed to do so (Fig 

5E2 - bottom in left). The same scenario, however, triggered a somatic spike, when SR was 

slightly depolarized further by a step current of small magnitude and duration (Fig 5E2 - right. 

Also see top in left). This is consistent with the experimental observation that the activation of 375 

CA1 neurons by the perforant path, which projects to SLM, is limited, and, modest activation of 

Schaffer-collateral synapses at SR facilitates forward propagation of distal spikes [37]. It has 

been suggested that Schaffer-collateral evoked EPSPs “gate” perforant path spikes in CA1 

pyramidal neurons, and pyramidal neurons, in general, have functionally different dendritic 

domains [26]. To what extent these differences influence the emergent network properties, 380 

however, remains to be answered, and our models allow one to explore such questions. 

3.4. Online repository of models: An enhancement to hippocampome.org  

A comprehensive list of models of 68 types and 52 subtypes of neurons is freely available at 

Hippocampome.org. Mapping the intrinsic dynamics of each neuron type in a low-dimensional 

model space enhances the existing knowledge accumulated in this comprehensive knowledge 385 

base of hippocampal neuron types.  
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All the single-compartment and compact multi-compartment model parameters are 

presented in a matrix on the main page to enable easy browsing (Fig 6A). Within a neuron 

page, models for all subtypes (if any) for the given morphological type are available for 

download. This page includes both the experimentally recorded voltage traces and simulated 390 

ones for all subtypes (Fig 6B). Simulated spike patterns are also annotated with their class 

labels. Each type/subtype presents three downloadable files for the user (Fig 6C). A Fit-file 

includes both the experimental and simulated values for spike pattern features such as fsl and 

sfa for each available pattern in a JSON format. In addition, an XPP [38] script for single 

compartment models, and a csv input file that includes both single-compartment and compact 395 

multi-compartment models to be simulated using CARLsim [39], a high performance GPU-

based simulator, are provided for each type. Links to help pages are provided under section 

“Simulation of Firing patterns” on http://hippocampome.org for model and feature description 

and instructions to run the scripts. 

Fig 6. Hippocampome.org provides a comprehensive list of models and ready-to-400 

run scripts. (A) Single- and multi- compartment model parameters for all neuron types 

are presented in a matrix form on the main page. Each row is linked to a neuron page 

(B) The neuron page for each neuron type has been enhanced to include model 

parameters and simulated traces for all types and subtypes (if any). (C) The neuron 

page provides the user with three downloadable files for each subtype: a Fit-file that lists 405 

both experimental and simulated features for each pattern, an XPP script to simulate 

single-compartment models, and a CARLsim input file for single- and multi- 

compartment models. 

3.5. Relationship between model parameters and biological features 
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A limitation of the phenomenological model such as the QM used here is the lack of biological 410 

interpretability of its parameters. One advantage of current modeling work, which densely 

covers the diversity among neuron types, is that it allows one to explore relationships between 

the mathematical parameters of the QM and various known biological features. Our analysis 

revealed some interesting trends and correlations between the QM parameters and biological 

features, which are presented below. 415 

In general, the parameters of the QM collectively determine its spike pattern phenotype. 

However, the parameter ‘b’, which determines if the model is an integrator (b<0) or a resonator 

(b>0), sufficiently distinguishes two families of phenotypes. Most of the models that show 

delayed spiking near their depolarizing excitability levels were found in the negative regions of 

‘b’, whereas models that show rebound spiking for hyperpolarized input currents were strictly 420 

restricted to the positive regions (Fig 7A). Our results confirm the fact that all rebound spikers 

are resonators [11], and find that most delayed spikers are integrators with the exception of the 

ones found in the narrow range 0<b<20. Thus, rebound (Fig 1C) and delayed (Fig 1D) spiking 

are, in general, instances of two qualitatively very different types of intrinsic dynamics.  

Fig 7. Relationship between model parameters and biological features. (A) 425 

Distribution of parameter ‘b’ for the models that show rebound spiking (red), delayed 

spiking (blue) and neither (grey). Rebound spiking types were strictly restricted to the 

positive region of ‘b’. In contrast, delayed spiking types were mostly found in the 

negative region (p<0.001 for two-sample t-test). (B) Mean and SEM of delay factors and 

rebound excitabilities of the models from the blue and red histogram bins respectively 430 

from A. Delay factor is the ratio between fsl and average of first two ISIs. Rebound 

excitability is the minimum magnitude hyperpolarizing current required to elicit rebound 

spikes. (C) Graphical representation of categorical correlations between model 

parameters and biological properties of neuron types (see BOX-1 for details). Green and 
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red indicate the presence and absence respectively of a feature. (D) Separation of spike 435 

pattern phenotypes in the space of first two principal components. ‘x’ denotes the best 

model for each type. Vectors denote the principal component coefficients of the 

respective parameters. 

Next, we studied how much the parameter ‘b’ quantitatively influences the respective 

features in delayed and rebound spiking types. We used delay factors for the former and 440 

measured rebound excitability levels for the latter. Increasing ‘b’ makes the model more 

rebound excitable until ‘b’ reached a value of +50, beyond which there was no noticeable effect 

(Fig 7B). Furthermore, there was no clear trend in the relationship between ‘b’ and delay factor. 

Thus, while ‘b’ alone can define a sharp qualitative change in the intrinsic dynamics, its 

interaction with other parameters such as ‘a’ determine precise quantitative features. 445 

In addition, several interesting trends between the model parameters and 

electrophysiological and molecular properties of neuron types were revealed in pairwise 

correlations. For instance, stuttering phenotype (PSTUT) was never found with low values 

(bottom-third) of ‘k’, and high values (top-third) of input resistance was never found with high 

values (top-third) of ‘k’. This is consistent with a correlation reported previously that all PSTUT 450 

neuron types have either low or intermediate input resistances [9]. See Box-1 for more of such 

relationships and Fig 7C for a graphical representation. 

Finally, our modeling framework represents each neuron type as a cloud of possibilities 

in the model parameter space (Fig 7D). Spike patterns produced by all the models in a cloud 

strictly adhere to the criteria for the respective target qualitative class, but small errors in the 455 

quantitative features were accepted to allow variabilities in the spike pattern features (not shown 

here). See [10] for more details on the optimization framework design that allows such 

variabilities and some examples of ranges of quantitative features. At present, these clouds are 
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only identified for single-compartment models due to the computational cost of exploring higher 

dimensional parameter spaces of multi-compartment models. 460 

4. Discussion 

The simple models presented in this work are aimed at creating large-scale network models of 

hippocampal circuits that are biologically realistic, yet computationally efficient. We first discuss 

biological realism in the context of variability in the intrinsic dynamics and then discuss how one 

can take advantage of the computational efficiency of these models in creating network models.  465 

Hippocampal neurons show diverse features in their morphological, electrical and 

molecular properties. Hippocampome.org (ver 1.4) identifies 122 types of neurons defined 

primarily based on their neurite invasion patterns in the hippocampal parcels [8]. Their intrinsic 

spike pattern features were extracted from relevant publications, and systematic 

characterization of such features revealed diverse and complex spike pattern phenotypes 470 

among the 122 morphological types [9]. Current work presents a comprehensive set of simple 

models that are accurate quantitative representations of such spike pattern phenotypes. 

However, it is worth discussing their accuracy in a broader context. The intrinsic property of a 

neuron revealed in its spike patterns is determined by the types and precise distribution of the 

underlying ion channel conductances such as sodium, potassium, and calcium. However, it has 475 

been shown that similar dynamics can arise from a broad range of combinations of these 

conductances [40–42]. Consistent with this notion, our modeling framework represents a spike 

pattern phenotype as a cloud of possibilities in the parameter space (Fig 7D). Two closely 

related issues motivate such representation. 

First issue is the existence of intrinsic variabilities in the spike pattern features among 480 

different neurons of the same type. For example, all the models representing CA1 Trilaminar 

type (Fig 7D) were obtained using the features of voltage traces recorded from a single neuron 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/632430doi: bioRxiv preprint 

https://doi.org/10.1101/632430
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

(Fig 1C). While this particular neuron elicited 22 spikes with an sfa magnitude of 0.038 for 

0.05nA, a different CA1 Trilaminar neuron might show slightly different values for these features 

under the same input conditions due to intrinsic variability. Furthermore, the recorded intrinsic 485 

spike pattern features might be influenced by the conditions such as the type of recording 

electrode and difference in the species. However, current knowledge about the intrinsic 

dynamics of these neuron types is limited to the representative traces that the researchers who 

studied these neuron types chose to publish. Therefore, we allowed a small range in the spike 

pattern features of a model as long as these features strictly adhere to the definitions of the 490 

respective target qualitative class. While the cloud boundaries defining such ranges are 

currently arbitrary, one could easily enhance our modeling framework to include more realistic 

ranges, when such ranges are experimentally obtained for all neuron types. 

Secondly, neurons have intrinsic plasticity and undergo homeostatic regulations to 

maintain some constancy in the network activity [42–46]. In cell cultures, intrinsic homeostasis 495 

has been shown to modify pharmacologically isolated neurons’ non-synaptic ion channel 

conductances. Such modifications shift the input-dependency of a neuron’s responses based on 

the history of activity. For example, activity deprived neurons showed higher firing rates than 

control group for the same magnitude current injections [46]. In another study, chronic isolation 

from normal inputs switched a neuron’s response from tonic spiking to intrinsic bursting and this 500 

transition was reversed by applying a rhythmic inhibitory drive [43]. While these results suggest 

that each neuron has a working range that flexibly defines its input-dependent responses, such 

ranges likely preserve the overall qualitative spike pattern phenotypes [45]. Our EA search for a 

cloud of models not only included the space of intrinsic QM parameters that define a phenotype, 

but also included a small range for input current (a 20pA range symmetrically encompassing 505 

experimental input current magnitude), allowing a little flexibility for its input-dependency.  
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Considering the issues discussed above, an approach to modeling biological circuits 

should assume a flexible range for its components. While Hebbian plasticity rules can enable 

flexible ranges in synaptic conductances, the rules governing a neuron’s intrinsic plasticity 

remain largely unknown. Although cell-autonomous regulatory rules have been proposed [47], 510 

from a network perspective, intrinsic homeostasis have been shown to synergistically result 

from multiple interacting components in a circuit [48,49]. Exhaustively reductionist approaches 

to modeling brain regions specify precise descriptions at the level of ion channel conductances. 

While data gathered from different experimental conditions or inevitably from different animals 

drive such intrinsic descriptions, there is no guarantee that they specify dynamically compatible 515 

critical ranges necessary for a higher-level integrative property [50].  

A large-scale approach to modeling a brain region, rather than being purely reductionist, 

should attempt to complement the descriptions of individual components with syntactically 

relevant descriptions at integrative level. For example, temporal sequences of activity in 

ensembles of hippocampal neurons are correlated with the locations of an animal during spatial 520 

navigation [51–53]. Such self-organizing ensembles of neurons, in general, have been 

suggested to form neural syntax [54]. Complex periodic structures in these ensembles such as 

theta-modulated gamma activity patterns should be enforced in a network model as sparse 

higher-level descriptions.  

Future studies should aim to identify a family of models for an experimentally known 525 

network-level property within the anatomical constraints of connectivity among hippocampal 

neuron types [55] using the sampling regions for those types created in this study. Then, the 

identified family of models should be evaluated for their predictive power, or one could 

investigate how the predictive abilities increase by scaling up the network, or by adding more 

mechanisms such as synaptic plasticity and spatial context for synaptic integration. This 530 
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approach emphasizes the goal of creating the simplest model with the most predictive power 

iteratively.  

Finally, it is important to identify recurring patterns of self-organization in biological 

complex systems and translate such patterns into mathematical descriptions that could be 

enforced on a meta-level using self-adaptive techniques such as an evolutionary algorithm that 535 

heuristically explores the given parameter space. If a biological complex system can indeed 

allow a little flexibility and compensation among multi-level components, then it suggests that a 

certain property could emerge from multiple, similar configurations in a network parameter 

space, which a metaheuristic approach can take advantage of. While this might be a 

computationally expensive task, our simple models with only two state variables per neuron as 540 

opposed to hundreds in a biophysically detailed multi-compartment model allow one to 

approach this problem much more efficiently. Future releases of Hippocampome.org are aimed 

at approximating the counts of different neuron types and mapping synaptic properties to 

potential connections. These enhancements will further narrow down the space of biological 

possibilities to create realistic large-scale models of hippocampal circuits. 545 
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Box 1. Categorical correlations between model parameters and 

electrophysiological and molecular properties in hippocampal neurons 
 

1. None of the neuron types that show PSTUT has a low value for ‘k’ (p<0.005, 
n=55). In contrast, none of the neuron types that show ASP.NASP has a high value 
for ‘k’ (p<0.005, n=55). Moreover, no neuron types with high input resistance 
(𝑹𝒊𝒏) has a high value for ‘k’ (p<0.001, n=23). 
 

2. None of the 26 neuron types except CA3 Lucidum ORAX has narrow spikes and a 
low value for ‘a’ (p<0.005). Moreover, clearly positive expressions of somatostatin 
(SOM) or parvalbumin (PV) tend to co-occur with high values of ‘a’ (p<0.01, n=24 
and p<0.05, n=44 respectively).  
 

3. Neuron types with wide spikes tend to have negative values for ‘b’ (p<0.001, 
n=37). In contrast, positive expression of serotonin (5HT-3) co-occurs with 
positive values for ‘b’ (p<0.05, n=31). 
 

4. Low values of resting voltage (𝑽𝒓𝒆𝒔𝒕) tend to co-occur with high values of ‘d’ 
(p<0.01, n=27). In contrast, no neuron type with positive expression of serotonin 
(5HT-3) has a high value for ‘d’ (p<0.05, n=23).  

 
The p values and sample sizes (n) pertain to Barnard’s exact test for 2 x 2 contingency tables (see 
‘Materials and methods’). 
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