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Abstract	24 

	25 

Population	genomic	data	has	revealed	patterns	of	genetic	variation	associated	with	26 

adaptation	in	many	taxa.	Yet	understanding	the	adaptive	process	that	drives	such	patterns	27 

is	challenging	-	it	requires	disentangling	the	ecological	agents	of	selection,	determining	the	28 

relevant	timescales	over	which	evolution	occurs,	and	elucidating	the	genetic	architecture	of	29 

adaptation.	Doing	so	for	the	adaptation	of	hosts	to	their	microbiome	is	of	particular	interest	30 

with	growing	recognition	of	the	importance	and	complexity	of	host-microbe	interactions.	31 

Here,	we	track	the	pace	and	genomic	architecture	of	adaptation	to	an	experimental	32 

microbiome	manipulation	in	replicate	populations	of	Drosophila	melanogaster	in	field	33 

mesocosms.	Manipulation	of	the	microbiome	altered	population	dynamics	and	increased	34 

divergence	between	treatments	in	allele	frequencies	genome-wide,	with	regions	showing	35 

strong	divergence	found	on	all	chromosomes.	Moreover,	at	divergent	loci	previously	36 

associated	with	adaptation	across	natural	populations,	we	found	that	the	more	common	37 

allele	in	fly	populations	experimentally	enriched	for	a	certain	microbial	group	was	also	38 

more	common	in	natural	populations	with	high	relative	abundance	of	that	microbial	group.	39 

These	results	suggest	that	microbiomes	may	be	an	agent	of	selection	that	shapes	the	40 

pattern	and	process	of	adaptation	and,	more	broadly,	that	variation	in	a	single	ecological	41 

factor	within	a	complex	environment	can	drive	rapid,	polygenic	adaptation	over	short	42 

timescales.		43 

	44 
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Significance	statement	55 

Natural	selection	can	drive	evolution	over	short	timescales.	However,	there	is	little	56 

understanding	of	which	ecological	factors	are	capable	of	driving	rapid	evolution	and	how	57 

this	rapid	evolution	alters	allele	frequencies	across	the	genome.	Here	we	combine	a	field	58 

experiment	with	population	genomic	data	from	natural	populations	across	a	latitudinal	59 

gradient	to	assess	whether	and	how	microbiome	composition	drives	rapid	genomic	60 

evolution	of	host	populations.	We	find	that	differences	in	microbiome	composition	cause	61 

divergence	in	allele	frequencies	genome-wide,	including	in	genes	previously	associated	62 

with	local	adaptation.	Moreover,	we	observed	concordance	between	experimental	and	63 

natural	populations	in	terms	of	the	direction	of	allele	frequency	change,	suggesting	that	64 

microbiome	composition	may	be	an	agent	of	selection	that	drives	adaptation	in	the	wild.		65 
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Introduction	86 

	87 
A	growing	number	of	studies	have	identified	genes	that	contribute	to	adaptation	(1–4),	but	88 

the	ecological	mechanisms	that	drive	evolution	are	rarely	identified	(5).	Ecological	factors	89 

often	co-vary	in	nature,	so	disentangling	the	effects	of	putative	agents	of	selection	on	90 

changes	in	allele	frequencies	requires	experimental	manipulation.	Patterns	of	intraspecific	91 

genomic	variation	in	nature	can	be	shaped	by	differences	in	founder	populations,	92 

connectance	between	population,	and	demography,	complicating	inferences	of	selection	93 

(6).	Replicated	selection	experiments	provide	a	way	to	test	whether	particular	ecological	94 

mechanisms	act	as	agents	of	selection	and	assess	the	genomic	architecture	of	adaptation,	95 

both	key	challenges	to	understanding	adaptation	(2,	6–8).	Yet,	using	selection	experiments	96 

to	identify	mechanisms	capable	of	driving	rapid	evolution	in	nature	also	presents	97 

methodological	challenges;	it	is	difficult	to	create	both	ecologically	realistic	(e.g.	complex	98 

selective	environment,	population	sizes	allowed	to	varying	across	treatments)	and	99 

evolutionarily	realistic	(e.g.	sufficient	standing	genetic	variation,	multiple	generations,	100 

selection	agents	similar	to	those	in	nature)	conditions	that	allow	experimental	results	to	101 

translate	to	populations	in	nature	(5).	Combining	field	selection	experiments	with	102 

population	genomic	data	from	both	experimental	and	natural	populations	presents	a	103 

powerful	approach	to	determine	whether	and	how	particular	agents	of	selection	drive	104 

rapid	evolution	in	the	genome.		105 

	106 

Many	prominent	theories	in	evolution	suggest	that	species	interactions	are	the	primary	107 

mechanism	that	drives	evolution	and	diversification	(9–14).	Yet,	determining	which	108 

species	interactions	actually	drive	rapid	evolution	when	selective	landscapes	are	complex	109 

is	crucial	to	understanding	both	the	mechanisms	and	outcomes	of	adaptation	(15–17).	110 

Outdoor	experiments	that	manipulated	specific	species	interactions	have	provided	111 

convincing	evidence	that	competition	and	predation	can	act	as	agents	of	selection	capable	112 

of	driving	rapid	phenotypic	evolution	(18–21).	Host-microbe	interactions	can	be	strong	113 

and	there	is	evidence	they	can	drive	macroevolutionary	patterns	(22–26),	but	associated	114 

microorganisms	have	not	been	experimentally	investigated	as	an	agent	capable	of	driving	115 

rapid	host	evolution	(27,	28)	except	where	symbiont	evolution	is	tied	to	the	host	through	116 
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vertical	transmission	(29,	30).	Bacteria	play	a	crucial	role	in	the	physiology,	ecology,	and	117 

evolution	of	animals	even	if	they	are	not	transmitted	or	acquired	across	generations	(22,	118 

31–34)	and	the	composition	of	affiliated	microbial	communities	can	impact	host	119 

performance	and	relative	fitness	(35).	Moreover,	patterns	of	intraspecific	variation	in	120 

microbiome	composition	that	could	have	considerable	effects	on	host	physiology	and	121 

performance	have	been	described	in	a	growing	number	of	taxa	(36–39).	The	amount	of	122 

intraspecific	variation	in	microbiome	composition	and	its	effects	on	host	phenotypes	have	123 

led	to	considerable	speculation,	but	little	data,	on	the	important	role	the	microbiome	may	124 

play	in	host	evolution	(27,	28,	34,	40).		125 

	126 

Drosophila	melanogaster	presents	an	excellent	system	in	which	to	investigate	whether	127 

microbiome	composition	acts	as	an	agent	that	drives	rapid	host	genomic	adaptation.	D.	128 

melanogaster	populations	vary	in	their	microbiome	composition	in	eastern	North	America,	129 

driven	by	latitudinal	variation	in	the	relative	proportion	of	acetic	acid	bacteria	(AAB)	and	130 

lactic	acid	bacteria	(LAB)	(41).	Inoculation	experiments	in	the	lab	have	demonstrated	that	131 

LABs	and	AABs	directly	influence	the	functional	traits	of	D.	melanogaster	including	132 

development	rate,	lipid	storage,	and	starvation	tolerance	(42,	43).	D.	melanogaster	133 

populations	in	eastern	North	America	have	long	been	a	model	for	testing	hypotheses	of	134 

local	adaptation,	as	there	are	strong	patterns	of	both	phenotypic	and	genomic	evolution	135 

across	latitudes	that	covary	with	temperature	and	photoperiod	(44–48).	Extensive	genomic	136 

sequencing	of	natural	populations	has	revealed	thousands	of	independent	SNPs	that	vary	137 

clinally	and	hence	are	likely	involved	in	adaptation	(46,	48).	Finally,	large	D.	melanogaster	138 

populations	can	be	manipulated	in	replicated	field	mesocosms	providing	the	opportunity	139 

to	connect	the	wealth	of	genomic	information	about	this	species	with	an	understanding	of	140 

evolution	in	natural	contexts.		141 

	142 

To	test	whether	microbiome	composition	can	drive	rapid	evolution	we	introduced	outbred	143 

populations	of	D.	melanogaster	into	14	individual	2m	x	2m	x	2m	outdoor	experimental	144 

enclosures.	We	then	applied	three	treatments	to	these	populations	as	they	evolved	over	a	145 

45	day	period:	1)	addition	of	the	AAB	species	Acetobacter	tropicalis	to	the	food	resource	(At	146 

treatment)	2)	addition	of	the	LAB	species	Lactobacillus	brevis	to	the	food	resource	(Lb	147 
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treatment)	3)	no	microbial	inoculation	(No-Ad	treatment).	We	used	16s	rRNA	sequencing	148 

and	microbial	culture	to	ascertain	the	efficacy	of	the	treatments	and	tracked	host	149 

population	size	in	each	replicate	to	determine	whether	treatments	altered	host	population	150 

dynamics.	We	tested	for	rapid	evolution	in	response	to	microbiome	treatments	by	coupling	151 

whole	genome	data	for	each	replicate	with	previously	identified	lists	of	putatively	adaptive	152 

loci	and	examining	whether	microbiome	treatments	led	to	enhanced	genomic	divergence	153 

relative	to	control	populations.	In	addition,	we	compared	the	direction	of	allele	frequency	154 

change	to	determine	whether	differences	between	experimental	treatments	were	similar	to	155 

those	observed	in	natural	populations	as	a	way	of	assessing	the	importance	of	microbial	156 

variation	in	driving	adaptation	across	natural	populations.		157 

	158 

Results	and	Discussion		159 

	160 

Efficacy	of	shifting	the	microbiome	in	an	outdoor	experiment	161 

	 	 	 	 	 	 	162 

Microbial	addition	treatments	shifted	the	overall	microbiome	composition	of	D.	163 

melanogaster	populations	(Bray	Curtis	F1,29=	15.8,	p<0.001,	Fig.	1A,	Unifrac	metrics	in	Fig.	164 

S1)	and	the	relative	abundance	of	individual	operational	taxonomic	units	(OTUs)	and	the	165 

abundance	of	colony	forming	units	(CFUs)	(Figures	S2,	S3,	and	S4).	While	the	different	166 

treatments	displayed	substantial	variation	in	the	relative	abundance	of	AAB	and	LAB,	both	167 

microbial	groups	were	present	in	the	microbiome	of	all	experimental	populations	(Fig.	S3).	168 

Sequencing	the	V4	region	of	the	16S	rRNA	gene	demonstrated	that	microbiomes	of	D.	169 

melanogaster	in	At-	and	Lb-	treated	cages	were	enriched	for	OTUs	with	perfect	identity	to	170 

the	16s	rRNA	gene	of	At	and	Lb,	respectively.	In	addition,	whole	genome	sequencing	of	171 

randomly	selected	microbial	colonies	isolated	from	one	At-treatment	cage	revealed	AAB	172 

with	>99.9%	whole-genome	similarity	to	the	added	At	strain	(Fig.	S4).	Overall,	the	173 

differences	in	microbiome	composition	between	the	At	and	Lb	treatments	are	modest	174 

compared	to	population-level	differences	in	microbiome	composition	found	across	175 

latitudes,	where	high-latitude	locations	have	microbiomes	dominated	by	LAB	and	176 

microbiomes	in	low-latitude	populations	are	dominated	by	AAB	(41).		177 

	178 
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The	influences	of	distinct	AAB	and	LAB	on	various	D.	melanogaster	phenotypes	are	well	179 

characterized	(42,	49–53).	To	test	whether	previously	reported	phenotypic	effects	are	also	180 

detectable	in	outbred	D.	melanogaster	populations	we	compared	the	larval	development	of	181 

individuals	from	the	No-Ad	experimental	cages	when	monoassociated	with	At	and	Lb.	182 

Consistent	with	previous	work,	bacterial	treatment	significantly	influenced	larval	183 

development	time:	At	led	to	~10%	higher	development	rate	than	Lb	(Z=-15.9,	P<0.001).	184 

The	effects	of	microbiome	composition	on	host	ecology	presents	a	general	mechanism	by	185 

which	microbiomes	may	shape	rapid	evolution	of	host	populations.		186 

	187 

Influences	of	microbiota	treatments	on	host	ecology	188 

To	determine	whether	microbiome	communities	alter	the	ecological	characteristics	of	host	189 

populations	in	outdoor	mesocosms,	and	hence	could	plausibly	shape	host	evolution,	we	190 

measured	two	key	ecological	characteristics	in	field	mesocosms:	fly	body	mass	and	191 

population	size.	Individuals	collected	directly	from	At	treatment	populations	had	28%	192 

higher	mass	than	those	from	Lb	treated	populations	(F2,19=13.81,	p=0.0002)	(Fig.	2A).	We	193 

also	observed	increased	sexual	dimorphism	in	At	treatments	in	body	size	relative	to	the	Lb-	194 

and	No-Ad	treatments	(F2,19=5.73,	p=0.0113).	In	contrast,	Lb	replicates	had	significantly	195 

higher	population	sizes	than	At	replicates	(chisq=14.86,	df=1,	p=0.0001,	Fig.	2B)	suggesting	196 

that	microbiome	treatments	influence	the	tradeoff	between	somatic	and	reproductive	197 

investment.	The	difference	in	population	size	demonstrates	that	shifts	in	the	relative	198 

abundance	of	the	D.	melanogaster	microbiota	can	significantly	alter	host	population	199 

dynamics.	Differences	in	population	size	associated	with	microbiome	composition	provides	200 

clear	evidence	to	support	previous	assertions	that	natural	population-level	variation	in	the	201 

microbiota	that	has	been	observed	across	the	animal	kingdom	(39,	41,	54,	55)	may	202 

influence	the	population	ecology	of	hosts	bearing	diverse	communities	of	partners	(28,	34,	203 

56).	Such	patterns	are	established	for	hosts	bearing	obligate	partners	(57–59)	or	infected	204 

with	microbial	symbionts	(60),	but	our	data	demonstrate	that	changes	in	the	relative	205 

abundance	of	microbial	taxa	can	shape	host	populations.	These	differences	in	body	size	and	206 

population	dynamics,	due	to	a	presumed	combination	of	ecological	and	evolutionary	forces,	207 

demonstrate	that	modest	shifts	in	microbiomes	can	alter	host	populations	in	natural	208 

settings	which	bolsters	the	hypothesis	that	microbiomes	could	drive	rapid	evolution.		209 
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	210 

	 	 	 	 	211 

Microbiome	composition	shapes	host	genomic	evolution	212 

	 	 	 	 	 	 	213 

We	assessed	whether	differences	in	microbiome	composition	across	At	and	Lb	treatments	214 

shaped	D.	melanogaster	evolution	over	the	course	of	five	host	generations.	Using	a	whole	215 

genome	pool-seq	approach	(61),	we	generated	data	on	allele	frequencies	at	1,988,853	216 

biallelic	segregating	sites	after	filtering	(see	Methods)	for	the	founder	population	and	from	217 

each	experimental	replicate	after	45	days	of	microbiome	treatment.	Given	that	our	218 

experiment	was	founded	with	a	genetically	diverse	population	with	little	linkage	219 

disequilibrium	(62)	and	any	divergent	selection	between	treatments	was	limited	to	5	220 

overlapping	generations,	we	did	not	expect	substantial	genome-wide	divergence	(63,	64).	221 

To	assess	any	genome-wide	divergence,	we	calculated	the	mean	FST	statistic	between	the	222 

founder	population	and	the	three	treatment	populations,	for	subsets	of	1,000	sites	sampled	223 

randomly	from	across	the	genome	(Fig.	S6).	We	also	conducted	a	principal	component	224 

analysis	of	allele	frequencies	from	all	sampled	populations	to	visualize	divergence	genome-225 

wide	(Fig.	S7).	In	both	analyses	we	observe	a	trend	that	microbial	treatment	(both	At	and	226 

Lb)	prompts	greater	genome-wide	divergence	from	the	founder	population	than	No-Ad	227 

over	the	relatively	short	duration	of	the	experiment.	We	also	assessed	divergence	between	228 

treatments	in	smaller	overlapping	windows	of	the	genome	and	found	significantly	229 

enhanced	divergence	between	pairs	of	At	and	Lb	treated	cages	compared	to	pairs	of	No-Ad	230 

cages	(p<2.2e-16,	Welch’s	two-sample	t-test)	(Fig.	3).	Signatures	of	this	enhanced	231 

divergence	across	microbial	treatments	were	observed	across	the	genome	and	on	all	232 

chromosomes.	This	pattern	of	enhanced	divergence	due	to	microbial	differences	233 

demonstrates	that	modest	variation	in	microbiome	composition	can	drive	genomic	234 

divergence	of	host	populations	over	short	and	ecologically	relevant	timescales.			235 

	236 

In	addition	to	whole	genome	and	window-based	analyses	we	also	assessed	patterns	of	237 

divergent	selection	between	At	and	Lb	populations	at	individual	sites.	Linkage	238 

disequilibrium	decays	over	~200bp	in	most	regions	of	the	the	D.	melanogaster	genome	239 

(62)	and	our	founding	populations	contained	substantial	standing	genetic	variation,	giving	240 
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us	considerable	genomic	resolution	with	which	to	detect	selection.	To	assess	divergent	241 

selection	between	treatments	at	each	segregating	site	we	fit	a	generalized	linear	model	to	242 

allele	frequencies	as	a	function	of	microbiome	treatment,	accounting	for	replicate	cage	as	243 

an	independent	factor.	We	found	297	sites	diverged	significantly	between	At	and	Lb	244 

treatments	with	FDR<.05	and	minimum	effect	size	of	2%	(Table	S1).	These	sites	were	245 

located	on	all	chromosomes	and	were	found	in	or	near	281	genes,	indicating	little	linkage	246 

between	significant	sites.	The	D.	melanogaster	genome	contains	several	inversions	that	247 

vary	in	frequency	across	populations	in	a	way	that	is	suggestive	of	adaptation	(65),	but	we	248 

observed	no	enrichment	for	divergence	of	inversion	frequencies	associated	with	microbial	249 

treatment	(based	on	marker	sites,	Table	S2),	meaning	overall	patterns	of	divergence	were	250 

not	driven	by	shifts	in	inversion	frequencies.	The	pattern	of	divergence	we	observed	across	251 

resolutions,	both	at	individual	sites	and	in	an	analysis	based	on	small	windows,	252 

demonstrates	that	the	genomic	response	to	microbiome	treatments	has	a	complex	genetic	253 

architecture,	with	signatures	of	selection	at	many	independent	regions	of	the	genome.	254 

These	results	fit	with	a	polygenic	model	of	adaptation,	in	which	many	genes	contribute	to	255 

adaptation	(66),	and	suggest	that	the	genomic	basis	of	adaptation	over	very	short	256 

timescales	can	be	polygenic.				257 

	 	258 

Links	between	microbiome	manipulation	and	changes	in	allele	frequency	in	nature		259 

	 	 	260 

Combining	our	experiment	with	population	genomic	data	from	nature	allows	us	to	test	261 

whether	differences	in	microbiome	composition	alone	are	capable	of	driving	divergence	in	262 

allele	frequencies	at	SNPs	that	vary	across	natural	populations.	Along	the	east	coast	of	263 

North	America,	high-latitude	populations	of	D.	melanogaster	have	LAB-enriched	264 

microbiomes	and	populations	from	lower	latitudes	have	AAB-enriched	microbiomes	(41).	265 

Comparative	genomics	work	has	identified	sites	that	are	likely	adaptive	along	this	cline	266 

(67),	15,399	of	which	varied	in	our	experimental	populations.	We	tested	whether	the	allele	267 

that	was	more	common	in	populations	experimentally	enriched	for	a	microbial	group	was	268 

also	more	common	in	the	natural	clinal	population	that	has	a	high	relative	abundance	of	269 

the	same	microbial	group.	We	labeled	sites	as	‘directionally	concordant’	if	the	allele	that	270 

was	at	higher	frequencies	in	high-latitude	populations	compared	to	low-latitude	271 
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populations	was	also	the	allele	that	was	at	higher	frequencies	in	Lb	populations	compared	272 

to	At	populations.	When	we	considered	all	~2	million	variant	sites,	the	percent	of	273 

directionally	concordant	sites	was	50.3%,	indistinguishable	from	a	null	expectation.	274 

However,	concordance	rose	significantly	in	subsets	of	sites	with	both	strong	divergence	275 

between	microbial	treatments	and	strong	clinal	variation	(Fig.	4).	For	example,	70.7%	were	276 

concordant	among	the	945	SNPs	with	At-Lb	divergence	pval<.05,	effect	size>2%,	and	clinal	277 

p-value<10-5,	while	80.0%	were	concordant	among	the	35	SNPs	with	At-Lb	divergence	278 

pval<.01,	effect	size>2%,	clinal	p-value<10-8.	1,000	rounds	of	randomly	sampling	sites	279 

matched	to	observed	data	for	chromosome	and	allele	frequency	demonstrated	that	these	280 

concordance	values	are	both	significantly	higher	than	expected	by	chance	(p<0.001	in	both	281 

cases).	In	the	latter	case,	the	majority	of	the	35	SNPs	are	on	chromosome	arm	3R,	yet	are	282 

located	in	or	near	32	different	genes,	several	of	which	are	known	to	play	a	role	in	local	283 

adaptation	(67–69)	(Table	S3).	Though	these	high	levels	of	concordance	at	top	divergence	284 

sites	may	suggest	long-range	linkage	disequilibrium,	we	did	not	find	significantly	elevated	285 

concordance	in	any	of	7	large	chromosomal	inversions	(Table	S2).	The	surprising	286 

concordance	of	the	identity	of	AAB-associated	and	LAB-associated	alleles	in	experimentally287 

-treated	populations	and	natural	clinal	populations	suggests	microbiome	composition	may	288 

be	a	significant	component	of	the	fitness	landscape,	and	hence	adaptation,	in	natural	289 

populations.		290 

	291 

Conclusion	292 

	 	 	 	 	 	 	293 

Moving	from	documenting	cases	of	rapid	evolution	to	studying	the	driving	mechanisms	is	294 

crucial	to	understanding	adaptation	in	natural	populations	(16).	Microbiomes	can	influence	295 

nearly	all	aspects	of	host	biology	(27,	40,	70)	and	it	has	long	been	assumed	that	296 

microbiomes	are	also	an	important	factor	at	the	population-level	(28,	71).	Our	297 

manipulative	experiment	demonstrates	that	changes	in	the	relative	abundance	of	298 

individual	members	of	the	D.	melanogaster	microbiome	are	sufficient	to	enhance	genomic	299 

divergence	of	host	populations	over	only	5	generations.	The	magnitude	of	divergence	was	300 

heterogeneous	across	the	genome,	but	we	uncovered	regions	of	strong	divergence	on	all	301 

chromosomes.	Genomic	patterns	also	illustrate	that	variation	in	microbiome	composition	is	302 
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a	sufficiently	strong	agent	of	selection	to	drive	evolution	at	loci	that	exhibit	putatively	303 

adaptive	patterns	across	populations	in	nature.	We	detected	concordance	in	the	304 

directionality	of	allelic	change	at	these	sites	between	our	experiment	and	natural	305 

populations,	which	provides	evidence	that	variation	in	microbiome	composition	is	a	306 

substantial	component	of	the	fitness	landscape.	Overall,	our	results	demonstrate	that	shifts	307 

in	microbiome	composition	can	be	important	drivers	of	ecological	and	evolutionary	308 

processes	at	the	population	level	and	that	a	single	ecological	factor	within	a	complex	309 

environment	can	drive	polygenic	adaptation	over	short	timescales.		310 

	311 

	312 

	 	 	 	 	 	313 
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	321 

	322 

Materials	and	Methods	323 

	324 

Experimental	setup		325 

We	constructed	the	founding	Drosophila	melanogaster	population	for	this	experiment	by	326 

crossing	150	wild-collected	isofemale	lines	from	Pennsylvania.	10	males	and	10	females	327 

were	taken	from	each	line	and	combined	into	a	single	breeding	cage.	After	3	generations	of	328 

mating	and	density	controlled	rearing	in	favorable	lab	conditions	we	introduced	500	329 

females	and	500	males	of	a	single	age	cohort	into	each	experimental	cage	on	June	15th,	330 

2017.	Subsamples	of	the	founding	population	were	collected	on	June	15th	for	initial	331 

genomic	sequencing.	Flies	were	in	enclosures	from	June	15th	to	August	3rd	2017,	which,	332 

based	on	larval	development	rates	in	outdoor	cages	allowed	for	~five	overlapping	333 
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generations.	Outdoor	cages	are	2m	x	2m	x	2m	enclosures	constructed	of	fine	mesh	built	334 

around	metal	frames	(BioQuip	PO	1406C)	(72,	73).	Inside	of	these	enclosures	we	planted	1	335 

peach	tree	and	vegetative	ground	cover	to	provide	shading	and	physically	mimic	the	336 

natural	environment.	Peaches	were	removed	before	ripening	to	prevent	flies	from	feeding	337 

on	them.	Photographs	of	eight	quadrats	within	each	cage	were	taken	and	flies	were	338 

counted	to	estimate	population	size	at	five	time	points	during	the	experiment.	We	tested	339 

for	effects	of	microbiome	treatments	on	host	population	size	using	an	LME	with	microbial	340 

treatment	as	a	fixed	effect	and	sample	date	as	a	random	effect.	Each	cage	was	used	as	a	341 

statistical	replicate	and	our	analysis	was	conducted	on	all	census	data	after	the	initial	342 

population	expansion	(>	day	21	of	the	experiment).	343 

	344 

Microbial	treatments		345 

The	experiment	consisted	of	three	treatments:	diet	supplemented	with	Lactobacillus	brevis	346 

DmCS_003	(Lb),	diet	supplemented	with	Acetobacter	tropicalis	DmCS_006	(At),	and	no	347 

bacterial	addition	(No-Ad).	To	prepare	the	bacterial	inoculum,	a	24-72	h	culture	of	each	348 

species	was	centrifuged	for	10	min	at	15,000x	g	and	resuspended	in	phosphate	buffered	349 

saline	(PBS)	at	OD600=0.1.	Separately,	300	ml	of	modified	Bloomington	diet	was	prepared	350 

in	a	1.5lb	aluminum	loaf	pan	under	standard	lab	conditions	(non-sterile).	Within	24	h	of	351 

diet	preparation,	2.2	ml	normalized	bacteria	were	spread	on	the	surface	of	the	food	inside	352 

of	the	loaf	pan.	The	inoculated	diets	were	covered	for	a	12-36	h	incubation	at	25°C	and	353 

transported	to	the	outdoor	experiment	site	3	times	each	week.	Diets	were	uncovered	354 

immediately	after	introduction	to	outdoor	fly	enclosures.	Diets	were	left	undisturbed	for	2-355 

3	days,	and	then	covered	with	mesh	caps	to	permit	larval	development	but	exclude	egg	356 

laying	adults.	Caps	were	removed	when	flies	had	eclosed	to	permit	release	of	the	next	adult	357 

generation	into	the	enclosure.	The	protocol	for	the	No-Ad	replicates	mimicked	the	above	358 

but	did	not	include	any	inoculation	of	the	food.	The	diets	provided	the	only	source	of	food	359 

available	that	was	capable	of	supporting	D.	melanogaster	development.		360 

	361 

Quantification	of	microbial	communities	from	experimental	treatments	 	 	 	362 

	 	 	363 
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For	culture-dependent	analysis,	five	pools	of	five	male	flies	were	collected	from	each	364 

treated	outdoor	cage	and	homogenized	in	a	microcentrifuge	tube	containing	125μl	mMRS	365 

medium.	Homogenates	were	dilution	plated	onto	mMRS	and	grown	at	30°C	under	ambient	366 

and	restricted	oxygen	conditions.	Tan-	or	copper-colored	colonies	were	classified	as	AABs,	367 

and	white	or	yellow	colonies	were	classified	as	LABs.	1ml	of	the	same	homogenate	was	368 

pelleted	for	DNA	extraction	via	the	QuickDNA	Fecal/Soil	Microbe	kit	(Zymo	Research,	369 

D6011)	and	analyzed	by	culture-independent	analysis	as	described	below.	Pairwise	370 

comparisons	between	absolute	colony-forming	unit	(CFU)	abundances	were	determined	by	371 

a	Dunn	test.	372 

	 	 	 	 	 	 	373 

We	used	16S	rRNA	marker	genes	of	pooled	whole-body	flies	to	survey	the	microbial	374 

community	associated	with	the	pooled	fly	homogenates.	From	each	DNA	extraction,	the	V4	375 

region	of	the	16S	rRNA	gene	was	amplified	as	described	previously,	except	using	a	HiSeq	376 

2500	at	the	BYU	DNA	sequencing	center	(74).	Sequence	variants	were	clustered	and	377 

assigned	to	the	sequencing	data	using	QIIME	2	(75,	76).	After	taxonomic	assignment,	378 

sequences	identified	as	Wolbachia	were	removed,	and	the	OTU	tables	were	rarefied	to	379 

balance	sequence	depth	with	sample	retention.	The	single	OTUs	with	perfect	matches	to	380 

the	At	and	Lb	genomes	were	identified	using	BLASTn	(77).	Tests	for	significant	differences	381 

in	microbial	beta-diversity	(Bray-Curtis,	weighted	Unifrac,	unweighted	Unifrac)	were	382 

performed	in	R	using	PERMANOVA	(78).	Differences	in	taxonomic	abundance	were	383 

assessed	using	ANCOM,	which	uses	relative	abundances	to	assess	differences	in	community	384 

composition	(79).	Figures	were	created	using	ggplot2	(80).		385 

	386 

Measuring	body	size	and	development	rate	387 

At	the	conclusion	of	the	experiment	we	sampled	adult	individuals	from	all	cages.	To	388 

determine	adult	mass	content	of	cage-caught	individuals,	we	took	pools	of	five	individuals	389 

of	each	sex,	dried	them	at	55c	for	24	hours,	weighed	them,	and	divided	the	total	weight	by	390 

five	to	obtain	average	individual	mass.	Body	size	data	(dry	weight)	were	analyzed	using	a	391 

ANOVA	with	microbial	treatment	and	sex	as	fixed	effects	with	cage	used	as	the	unit	of	392 

replication.	393 
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	 	 	 	 	 	 	394 

We	collected	eggs	from	each	No-Ad	cage	to	determine	the	effect	of	monoassociation	with	At	395 

and	Lb	on	development	rate.	To	rear	in	monoassociation,	fly	eggs	were	collected	within	24	396 

h	of	deposition,	bleached	twice	for	150s	each,	rinsed	thrice	in	sterile	H2O	,	transferred	to	397 

sterile	diet	at	a	target	density	of	30-60	eggs	per	vial,	and	inoculated	with	a	phosphate-398 

buffered	saline	(PBS)-washed	overnight	culture	of	either	bacterial	species,	normalized	to	399 

OD600=	0.1	(81).	The	period	of	larval	development	was	determined	by	counting	the	number	400 

of	empty	pupae	in	each	vial	three	times	each	day	(at	1,	6,	and	11	hours	into	the	daily	light	401 

cycle)	until	all	flies	had	eclosed	or	until	no	flies	eclosed	in	three	consecutive	time	periods,	402 

whichever	came	first.	Bacteria-dependent	differences	in	D.	melanogaster	development	403 

were	analyzed	using	Cox	mixed	survival	models	in	R.	Development	rate	was	calculated	as	404 

the	inverse	time	to	eclosion.	Significant	differences	between	treatments	were	determined	405 

by	a	Cox	proportional	hazards	model,	analyzed	separately	for	each	bacterial	inoculation,	406 

and	are	reported	as	different	letters	over	the	symbols.	Summary	statistics	were	also	407 

calculated	by	ANOVA.	408 

	409 

Genomic	sequencing	410 

We	sequenced	pools	composed	of	120	males	and	80	females	collected	from	each	cage	at	the	411 

end	of	the	study.	We	extracted	the	DNA	and	prepared	libraries	using	~500bp	fragments	for	412 

whole	genome	sequencing	using	(KAPA	Hyper	Prep	kit).	Libraries	were	multiplexed	with	413 

dual-indexing	and	sequenced	on	multiple	lanes	of	an	Illumina	NovaSeq	(6	samples	on	each	414 

lane)	system	with	150bp	paired	end	reads.	Reads	were	checked	for	quality	using	FastQC.	415 

Adapters	were	trimmed	with	Skewer	(82)	and	reads	with	a	quality	score	<20	were	416 

removed,	and	overlapping	read	pairs	were	merged	with	PEAR	(83).	We	aligned	reads	to	a	417 

reference	genome	composed	of	the	D.	melanogaster	reference	sequence	(v5	(84)),	the	418 

Lactobacilis	brevis,	and	the	Acetobacter	tropicalis	genomes	using	BWA	(85),	then	removed	419 

duplicate	reads	with	Picardtools	and	realigned	remaining	reads	around	indels	with	GATK’s	420 

IndelRealigner	(86).	Index	switching,	where	reads	are	attributed	to	the	wrong	sample,	can	421 

happen	on	Illumina	HiSeq	platforms	(87).	We	detected	a	small	amount	of	human	422 

contamination,	likely	due	to	index	switching,	and	removed	all	reads	that	mapped	to	the	423 

human	genome	using	bbmap,	with	parameters	suggested	at	https://jgi.doe.gov/data-and-424 
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tools/bbtools/bb-tools-user-guide/bbmap-guide/	for	removing	contaminant	reads	while	425 

minimizing	false	positives	(minratio=0.9	maxindel=3	bwr=0.16	bw=12	fast	minhits=2	426 

qtrim=r	trimq=10	untrim	idtag	printunmappedcount	kfilter=25	maxsites=1	k=14)	and	a	427 

version	of	human	reference	genome	hg19	masked	for	repeat	short	kmers,	low	entropy	428 

windows,	and	regions	highly	conserved	across	species.		This	reference	genome	was	created	429 

by	Brian	Bushnell	specifically	for	human	contaminant	removal,	and	is	freely	available	at	430 

https://drive.google.com/file/d/0B3l...it?usp=sharing,	full	description	at	431 

http://seqanswers.com/forums/showthread.php?t=42552.	After	mapping	and	QC	we	432 

retained	an	average	of	83M	mapped	reads	per	sample	at	an	average	coverage	(mosdepth	433 

(88))	of	109x	of	the	Drosophila	melanogaster	autosomes	(range	92-133x)	and	average	434 

coverage	92x	on	the	X	chromosome.	We	then	used	PoPoolation2	(Kofler	et	al.	2011)	to	435 

obtain	allele	counts	at	segregating	sites,	discarding	bases	with	quality	<20.	To	be	included	436 

for	downstream	analysis	we	required	SNPs	to	be	bi-allelic	with	one	of	the	two	alleles	437 

matching	the	reference	allele,	and	we	excluded	SNPs	overlapping	any	called	indels,	SNPs	438 

with	less	than	10	mapped	reads	containing	the	minor	allele	(an	allele	frequency	of	~0.5%	439 

across	all	samples),	and	SNPs	with	min	and	max	read	depths	less	than	50	or	greater	than	440 

250	respectively.	Since	the	timescale	of	our	experiment	was	too	short	to	expect	any	true	441 

signal	from	new	mutations	arising	during	the	5	generations	of	evolution,	we	additionally	442 

filtered	out	any	SNPs	with	allele	frequencies	<1%	in	either	sample	from	the	founder	443 

population.	Finally,	we	excluded	SNPs	within	repeat	regions	as	defined	by	UCSC	444 

RepeatMasker	(89),	and	any	SNPs	that	showed	distinct	allele	frequency	ranges	in	the	two	445 

rounds	of	sequencing.	This	yielded	at	dataset	of	~2	million	SNPs.	446 

	447 

PCA	and	Fst	Analyses	448 

Allele	frequencies	at	each	segregating	site	for	each	sample	were	used	to	conduct	a	principal	449 

component	analysis	using	the	R	function	prcmp	with	scale=TRUE,	and	the	first	two	PCs	450 

were	plotted	to	examine	genome-wide	divergence	across	samples	visually.	To	obtain	a	451 

more	quantitative	account	of	the	divergence	of	populations	under	each	treatment	from	the	452 

founder	population,	a	bootstrap-Fst	analysis	was	conducted	with	1,000	rounds.	In	each	453 

round,	1,000	sites	were	randomly	selected	from	across	the	genome,	and	Fst	was	calculated		454 

at	each	site	between	the	average	allele	frequency	in	the	two	founder	samples	and	allele	455 
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frequencies	averaged	within	treatment	groups	(3	of	the	8	No-Ad	samples	were	randomly	456 

averaged	for	each	round	to	match	the	number	of	At	and	Lb	samples).	Next,	a	window-based	457 

analysis	was	used	to	examine	divergence	between	treatments.	Average	Fst	was	calculated	458 

between	allele	frequencies	from	each	pair	of	treatment	samples	in	windows	of	250	459 

consecutive	SNPs,	with	50-SNP	step-size	between	windows.	For	each	window,	the	average	460 

Fst	between	the	3	At	and	3	Lb	samples	was	recorded,	as	well	as	the	average	Fst	between	3	461 

randomly	selected	No-Ad	samples	and	3	other	randomly	selected	No-Ad	samples.	Windows	462 

overlapping	centromeric	or	telomeric	regions	as	defined	by	Comeran	et	al.	(90)	were	463 

excluded	from	this	analysis,	as	the	exceedingly	low	recombination	rates	in	these	regions	464 

could	make	them	more	prone	to	linked	fluctuations	across	large	numbers	of	sites.	465 

	466 

SNP	Outlier	analysis	467 

To	find	SNPs	that	changed	in	frequency	due	to	microbial	treatment	we	used	the	R	function	468 

glm	to	fit	a	generalized	linear	model	to	the	allele	frequencies	at	each	SNP	to	test	for	469 

significant	associations	between	allele	frequency	and	treatment.	GLMs	were	fit	using	a	470 

quasibinomial	error	structure,	as	this	reduces	the	rates	of	false	positives	relative	to	other	471 

significance	testing	protocols	in	genomic	data	(91).	We	identified	outlier	sites	with	472 

significant	divergence	between	At	and	Lb	samples	at	an	FDR	<.05	(92),	and	a	mean	473 

difference	in	allele	frequency	(effect	size)	of	2%,	as	this	was	approximately	the	average	474 

difference	in	allele	frequency	between	treatments	for	all	SNPs.		475 

	476 

Test	for	directional	concordance	with	clinality	477 

SNPs	that	vary	across	the	North	American	latitudinal	cline	may	reflect	local	adaptation	478 

(67–69,	93),	and	represent	potential	sources	of	adaptation	to	microbiome	composition,	479 

which	is	one	of	many	factors	known	to	vary	along	this	cline.	Although	we	do	not	expect	480 

extensive	overlap	between	SNPs	that	vary	predictably	along	the	cline	and	SNPs	that	vary	481 

predictably	between	treatments	in	our	experiment	(due	to	different	segregating	sites,	482 

different	non-microbiome-related	selective	pressures,	and	different	timescales	of	483 

adaptation),	we	did	predict	that	the	subset	of	SNPs	that	are	strongly	predictable	in	both	484 

cases	should	be	‘oriented’	in	the	same	direction	ie.,	an	allele	strongly	associated	with	485 

natural	clinal	populations	harboring	more	AAB	should	also	be	the	allele	associated	with	486 
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experimental	populations	experimentally	enriched	for	AAB	(here,	the	At	treatment).	As	487 

such,	we	used	an	existing	genomic	dataset	on	clinal	variation	(67,	68)	to	see	if	the	SNPs	that	488 

showed	both	1)	divergence	between	microbial	treatments	in	our	experiment,	and	2)	489 

divergence	between	natural	clinal	populations,	were	more	likely	to	be	‘directionally	490 

concordant’	than	other	SNPs.		We	first	collected	p-values	and	coefficients	for	each	SNP	in	491 

our	dataset	from	our	generalized	linear	model	of	allele	frequency	divergence	between	492 

treatments	(pAt-Lb	and	coefAt-Lb),	and	p-values	and	coefficients	from	a	previously	conducted	493 

generalized	linear	model	of	allele	frequency	divergence	across	the	cline	(pcline	and	coefcline).		494 

The	models	were	oriented	such	that	a	positive	coefAt-Lb	indicated	that	the	frequency	of	the	495 

alternate	allele	was	higher	in	Lt	samples	than	At	samples,	while	a	positive	coefcline	indicated	496 

that	the	frequency	of	the	alternate	allele	was	higher	in	high-latitude	(LAB-enriched)	497 

populations	than	low-latitude	(AAB-enriched)	populations.	We	assigned	each	SNP	to	two	498 

bins:	an	At-Lb	divergence	bin	equal	to	the	integer	nearest	-log10(pAt-Lb),	and	a	clinality	bin	499 

equal	to	the	integer	nearest	-log10(pcline).		We	then	examined	the	intersection	of	each	At-Lb	500 

bin	and	each	clinality	bin,	and	recorded	the	percent	of	SNPs	where	the	sign	of	coefAt-Lb	501 

matched	the	sign	of	coefcline	,	which	we	termed	‘directional	concordance’.	Finally,	we	502 

shuffled	the	bin	labels	across	SNPs	500	times	(maintaining	the	same	bin	pairs),	and	503 

remeasured	directional	concordance	values	to	obtain	a	p-value	for	each	true	concordance	504 

value.	505 

	506 

Tests	for	enrichment	at	inversions	507 

We	identified	breakpoints	(94)	and	segregating	marker	sites	(95)	associated	with	7	large	508 

chromosomal	inversions.	To	test	for	enrichment	of	divergence	between	At	and	Lb	samples	509 

at	marker	sites	for	each	inversion,	we	first	assigned	every	segregating	site	a	divergence	510 

score	equal	to	-log10	of	the	p-value	from	the	GLM	analysis	of	per-site	divergence.		We	then	511 

recorded	the	percent	of	times	(of	1,000	replicates)	that	an	equally-sized	random	set	of	sites	512 

had	a	mean	divergence	score	higher	than	the	markers	of	a	particular	inversion.		Similarly,	513 

to	test	for	enrichment	of	At-Lb	divergence	at	sites	within	each	inversion,	we	recorded	the	514 

percent	of	times	(of	1,000	replicates)	that	a	randomly-selected	set	of	1,000	sites	from	515 

outside	an	inversion	had	a	mean	divergence	score	higher	than	a	randomly-selected	set	of	516 

1,000	sites	from	inside	an	inversion.		Finally,	to	test	for	enrichment	of	clinal	concordance	517 
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within	each	inversion,	we	recorded	the	percent	of	times	(of	1,000	replicates)	that	a	518 

randomly-selected	set	of	1,000	sites	from	outside	an	inversion	had	a	concordance	rate	519 

higher	than	a	randomly-selected	set	of	1,000	sites	from	inside	an	inversion.	520 
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Figure	1:	The	effect	of	microbial	additions	on	the	gut	microbiomes	of	D.	melanogaster	in	556 
the	At	and	Lb	treatments.	Panel	A	shows	the	effect	of	At	and	Lb	treatments	at	the	fourth	557 
week	of	the	experiment	on	microbiome	composition	of	pools	of	adults	males	collected	from	558 
cages.	Panels	B	and	C	show	the	relative	abundance	of	AAB	and	LAB	(respectively)	in	the	559 
microbiomes	of	D.	melanogaster	from	each	microbial	addition	treatment	(plotted	as	means	560 
+/-	SEM).	561 
 562 

 563 
 564 

 565 
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 567 
 568 
 569 
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Figure	2:	Population	size	and	body	mass	of	D.	melanogaster	populations	from	each	570 
microbial	addition	treatment.	Panel	A	shows	shows	the	mean	from	each	treatment	of	the	571 
dry	weight	of	D.	melanogaster	individuals	of	each	sex	from	each	replicate	cage.	Panel	B	572 
shows	host	population	size	over	the	course	of	the	experiment.	Both	panels	values	plotted	573 
are	means	+/-	SEM.	574 
	575 
A	576 

	577 
 578 
B 579 

 580 
 581 
 582 
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Figure	3:	Genomic	landscape	of	divergence	between	At	and	Lb	treated	cages	compared	to	583 
divergence	observed	amongst	No-Ad	cages.	Fst	was	calculated	between	pairs	of	samples	in	584 
windows	of	250	SNPs,	tiled	across	the	genome	with	50-SNP	shifts.	Shown	below	is	the	log2	585 
of	the	ratio	between	average	Fst	between	pairs	of	At	and	Lb	samples	compared	to	average	586 
Fst	between	pairs	of	No-Ad	samples	for	each	window	(positive	values	show	more	587 
divergence	between	At	and	Lb,	negative	more	divergence	among	No-Ad).	Panels	are	588 
chromosomes	and	the	black	dotted	lines	show	the	values	for	2.5	standard	deviations	above	589 
and	below	the	mean.	The	enrichment	for	values	>2.5	standard	deviations	above	the	mean	590 
relative	to	those	below	the	mean	demonstrate	enhance	divergence	between	At	and	Lb	591 
treatments.	Centromeric	and	telomeric	regions	were	excluded	from	this	analysis	according	592 
to	the	coordinates	provided	in	(90).		593 
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Fig.	4:	Concordance	of	allelic	divergence	in	natural	and	experimental	populations.	609 
Concordance	is	calculated	as	the	%	of	sites	in	which	the	allele	found	at	higher	frequencies	610 
in	natural	high-latitude	populations	compared	to	low-latitude	populations	was	also	found	611 
at	higher	frequencies	in	experimental	Lb	populations	compared	to	At	populations.	Each	612 
point	refers	to	a	distinct	subset	of	sites,	binned	according	to	clinality	(x-axis)	and	At-Lb	613 
divergence	(color);	the	number	of	sites	examined	is	indicated	by	the	size	of	the	point.		A	614 
dashed	black	line	is	drawn	at	the	null	expectation	of	50%	concordance.		Solid-colored	615 
points	represent	site	subsets	in	which	concordance	is	significantly	elevated	compared	to	616 
the	shuffled	null	distribution. 617 
 618 

	619 

	620 
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Supplemental	tables	and	figures	
	
Table	S1.	List	of	sites	that	show	significant	divergence	between	At	and	Lb	cages	in	the	
experiment	(effect	size	>2%	and	FDR	<.05).	Table	shows:	the	chromosome	arm,	position,	
whether	the	SNP	is	within	a	centromeric	or	telomeric	region,	reference	allele,	alternate	
allele,	gene	name,	p-value	for	divergence	between	At	and	Lb	treatments,	average	allele	
frequency	in	founder,	No-Ad,	At,	and	Lb	populations,	p-value	for	divergence	across	clinal	
populations,	all	annotations	of	SNP	effect	according	to	snpEff,	and	GO	terms.	
	 *Table	is	large	so	it	is	attached	separately.		
	

Table	S2.	Enrichment	of	At-Lb	divergence	among	sites	strongly	linked	to	large	
cosmopolitan	inversions	(inversion	markers),	and	enrichment	of	At-Lb	divergence	and	
clinal	concordance	among	sites	within	inversions.		In	each	case,	the	number	of	sites	tested,	
and	their	average	At-Lb	divergence	score	is	indicated,	as	well	as	a	non-parametric	p-value	
indicating	the	percent	of	times	(of	1,000	trials)	that	a	random	subset	of	sites	of	equivalent	
size	had	an	equal	or	higher	average	divergence	score	(divergence.p).		For	sites	within	
inversions,	the	concordance	rate	between	the	identity	of	the	allele	associated	with	
experimentally-treated	and	natural	clinal	populations	enriched	for	the	same	microbial	taxa	
is	also	indicated,	as	well	as	a	similar	non-parametric	p-value.	
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Table	S3.	List	of	sites	that	show	divergence	between	At	and	Lb	cages	in	the	experiment	
(effect	size	>2%	and	p-value	<.05)	and	that	show	the	most	pronounced	variation	along	a	
cline	in	eastern	North	America	(clinality	FDR<10-8).	Of	these	35	sites,	80%	show	
concordance	in	the	direction	of	allele	change	between	experimental	replicates	enriched	for	
AAB	and	populations	that	have	a	higher	proportion	of	AAB	in	the	microbiome.		

Table	shows:	the	chromosome	arm,	position,	reference	allele,	alternate	allele,	gene	name,	
gene	group	ID,	inversions	overlapping	the	site,	coefficient	and	p-value	for	divergence	
between	At	and	Lb	treatments,	coefficient	and	p-value	for	divergence	across	clinal	
populations,	concordance	between	the	allele	associated	with	experimental	populations	and	
natural	populations	enriched	for	the	same	microbial	taxa,	average	allele	frequency	in	
founder,	No-Ad,	At,	and	Lb,	populations,	all	annotations	of	SNP	effect	according	to	snpEff,	
and	GO	terms.	Gene	names	for	SNPs	outside	genic	regions	are	in	parenthesis	and	indicate	
the	closest	gene	for	gene-counting	purposes.	

*Table	is	large	so	it	is	attached	separately.		
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Figure S1: Beta-diversity analysis of microbial communities based on 16S rRNA gene 
sequencing of whole-body flies collected at week 1 and week 4 of the experiment using Bray-
Curtis, weighted Unifrac, and unweighted Unifrac distance metrics. At each time point, five 
replicate samples of five flies were collected from each cage, the flies were homogenized, and 
the homogenate was stored at -80°C until a 16S rRNA gene library was prepared. Libraries 
were sequenced paired-end with 250 bp reads on a Illumina HiSeq. Distance matrices were 
created using standard QIIME2 parameters. PERMANOVAs were calculated in R using the 
vegan package. 
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Figure S2: Absolute abundance of CFUs in D. melanogaster from outdoor enclosures. Pools of 
5 male flies were collected from outdoor enclosures, homogenized in 125 ul phosphate-buffered 
saline (PBS), and dilution plated on modified de Man-Rogosa-Sharpe medium. Colony forming 
units (CFUs) were counted on plates after 1-3 days, and normalized to CFU per fly: AAB were 
copper or tan-colored, while LAB were yellow or white. Values are shown as a mean of all 
pools, which were collected from each of 3 separate experiments (usually 5 pools per cage per 
sampling time, exact N shown in caption). For each of three metrics - AAB abundance, LAB 
abundance, and AAB+LAB abundance - pairwise comparisons between absolute CFU 
abundances were determined by a Dunn test {dunn.test} and shown by compact letter displays 
over the bars {rcompanion}. LAB, AAB, and LAB+AAB abundances are shown within the blue 
bars, within the red bars, and outside of the bars, respectively. If no letters are shown there 
were no significant differences. The Kruskal-Wallis test statistic (KW), degrees of freedom (df), 
and p-values (p) for each comparison are reported. All statistics were calculated in R. 
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Figure S3: Microbiome composition of homogenized adult flies based on 16S sequence data. 
Individual bars represent cage-collected pools composed of 5 males with 5 replicate pools 
sequenced for each cage. Graphs show relative abundance of each microbiome group for each 
pool (5 from each cage) after 1 week of treatment and 4 weeks of treatment. Flies were 
sampled from throughout the experimental cages with care taken not to sample flies directly on 
media.  
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Figure S4: OTUs where we detecting significant differences in abundance between microbiome 
treatments or within treatments over time as determined by ANCOM with the most stringent 
correction for multiple tests. Significant differences with treatment and/or time were 
subsequently confirmed by a mixed effects model with a binomial family and are shown as 
compact letter displays (different letters represent significant differences between conditions). 
Most OTUs could not be classified to the species level and are named according to the lowest 
taxonomic assignment.  
 
Each panel shows the relative abundance of a specific OTU as a percentage of total the 
microbiome community in the At and Lb experimental treatments at week 1 and week 4 of the 
experiment. Bars are shaded based on taxonomic assignments and represent the mean +/- SE. 
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Figure S5. Taxonomic identity of randomly selected bacterial colonies isolated from whole body 
homogenates of caged D. melanogaster. For each of the At and Lb treatments, 10 AAB-like 
(copper-colored) and 10 LAB-like (white or yellow colored) colonies were randomly selected, 
streaked for isolation, and genome sequenced. Genomic libraries were prepared using 800ul of 
bacteria culture, which was centrifuged at 15,000 x g for 10 minutes. Pellets were resuspended 
in 600 ul of lysis buffer, and the 600 ul volume was extracted and quantified. In order to 
fragment the extracted DNA, 1.5 ug of DNA was diluted in 2 ul fragmentase buffer. 2 ul NEB 
fragmentase was added and each sample was incubated at 37C to digest the fragments to 
approximately 500 bp (incubation times were optimized to the batch of fragmentase). Enzyme 
activity was halted after incubation using 10ul (0.25M) EDTA. DNA was cleaned using Zymo 
DNA Clean and Concentrator 25 columns. For end repair, 50 ul fragmented DNA was mixed 
with 3 ul NEB enzyme mix, 7ul NEB end prep reaction buffer, and placed in a thermocycler for 
30 minutes each for 20C and 65 C. This reaction was combined with 30ul NEB ligation master 
mix, 1ul ligation enhancer, and 2.5 ul of a unique illumina adapter and then ligated at 20C for 15 
minutes. Fragment size selection was done using Ampure SPRI beads (SPB). The bead stock 
was diluted in a ratio of 109.25 ul SPB to 74.75 ul to ul ddH2O. 160ul diluted SPB were added 
to 100 ul of end repaired sample, and incubated at 25°C for 5 minutes. The bead-separated  
supernatant was mixed with 30 ul of SPB stock and the supernatant was discarded. Samples 
were washed twice with 200ul 80% EtOH, resuspended in 22.5 ul RSB for 5 min, and 17.5 ul 
was transferred to an ALP plate. Barcode ligation was enriched with the KAPA Library 
Amplification kit according to manufacturer instructions, size selection was repeated, libraries 
normalized to 5ng/uL via Qubit, and sequenced by 2x125 bp sequencing on a Illumina HiSeq 
2500 at the BYU DNA sequencing center.  
 
Genome sequences were assembled using Velvet 1.2.10 as described previously (Newell, 
2014). Briefly, the nucleotide coverage of each of the raw assemblies was determined based on 
the size of the expected genome (A. tropicalis DmCs_006 or L. brevis DmCs_002), assembled 
into contigs across a kmer range of 85-123, adjusted for expected coverage and coverage 
cutoff, and a single assembly that minimized node number while maximizing n50 value and total 
genome size was selected manually. When sequence reads provided greater than 200X 
nucleotide coverage, the raw reads were split evenly into subsets providing 101-200X coverage, 
and each subset was assembled as described above except that there were no adjustments for 
expected coverage and coverage cutoff. The contigs file from the multiple sub-assemblies for 
each genome were used to create a final assembly.  
 
The similarity of each of these genomes was compared in an all against all mummer 
comparison that included the reference genomes for A. tropicalis DmCs_006 or L. brevis 
DmCs_002. Genomes were clustered according to a 99.9% or greater M-to-M score. 
Taxonomic identity of the representative sequence for each cluster, picked as the assembly with 
the fewest contigs, was assigned using JSpecies.  

 
Taxonomic identities of bacterial isolates recovered from evolving flies. A pool of five male 
flies from a randomly-selected cage that had been inoculated with either At or Lb was collected, 
homogenized, and plated on mMRS. From each pool, ten AAB-like colonies and ten LAB-like 
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colonies were cultured in isolation and subjected to whole genome sequencing. Whole genome 
nucleotide similarity of the strains was determined by ANIm, with different isolates assigned at 
ANIM>99.9%. The results show that strains identical to the inoculated At strain could be 
recovered from the treatment flies, confirming that the treatment bacteria were colonizing the 
flies.  
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Fig S6: Average Fst between the founder population and each treatment for 1,000 subsets of 
1,000 segregating sites. For all comparisons, allele frequencies at each site were averaged 
within replicate populations of the same treatment before calculating Fst. For the No-Ad 
treatment, a random sample of 3 replicate No-Ad populations was chosen for each site subset 
to match the number of At and Lb replicates.  
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Figure S7: PCA based on all SNPs for all experimental cages and the founding population 
colored by treatment. ‘Founder’ represent sub-samples of the initial population used to found 
each replicate and were sampled at Day 0. All outdoor treatment cages were sampled at Day 
45.  
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