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Abstract 
 
Low pass sequencing has been proposed as a cost-effective alternative to genotyping arrays to identify 
genetic variants that influence multifactorial traits in humans. For common diseases this typically has 
required both large sample sizes and comprehensive variant discovery. Genotyping arrays are also 
routinely used to perform pharmacogenetic (PGx) experiments where sample sizes are likely to be 
significantly smaller, but clinically relevant effect sizes likely to be larger. To assess how low pass 
sequencing would compare to array based genotyping for PGx  we compared  a low-pass assay (in which 
1x coverage or less of a target genome is sequenced) along with software for genotype imputation to 
standard approaches. We sequenced 79 individuals to 1x genome coverage and genotyped the same 
samples on the Affymetrix Axiom Biobank Precision Medicine Research Array (PMRA). We then down-
sampled the sequencing data to 0.8x, 0.6x, and 0.4x coverage, and performed imputation. Both the 
genotype data and the sequencing data were further used to impute human leukocyte antigen (HLA) 
genotypes for all samples. We compared the sequencing data and the genotyping array data in terms of 
four metrics: overall concordance, concordance at single nucleotide polymorphisms in pharmacogenetics-
related genes, concordance in imputed HLA genotypes, and imputation r2. Overall concordance between 
the two assays ranged from 98.2% (for 0.4x coverage sequencing) to 99.2% (for 1x coverage sequencing), 
with qualitatively similar numbers for the subsets of variants most important in pharmacogenetics. At 
common single nucleotide polymorphisms (SNPs), the mean imputation r2 from the genotyping array was 
90%, which was comparable to the imputation r2 from 0.4x coverage sequencing, while the mean 
imputation r2 from 1x sequencing data was 96%. These results indicate that low-pass sequencing to a 
depth above 0.4x coverage attains higher power for trait mapping when compared to the PMRA.  
 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/632141doi: bioRxiv preprint 

https://doi.org/10.1101/632141


Introduction 
 
Research in human genetics relies on efficiently profiling the genome of large numbers of individuals. A 
number of approaches can be used for this, usually trading off comprehensiveness (i.e. the fraction of the 
genome that is measured) with cost. By far the most commonly-used approach is the genotyping array, in 
which a set of known polymorphisms (usually around 500,000-2,000,000) is measured. This technology is 
inexpensive (currently on the order of tens to hundreds of dollars), but the set of genetic variants profiled 
is a small number of all known variants, and the technology does not allow for the detection of new (for 
example rare or population-specific) genetic variants. Genotyping arrays are commonly used for 
pharmacogenetics (PGx) studies where typically sample numbers are more limited, but inclusion of PGx 
focused variants on the arrays makes them suitable tools for screening the genome for markers associated 
with efficacy and adverse events.     
 
The technological alternative to genotyping technology is sequencing technology, in which specific 
polymorphisms are not targeted for analysis, but rather the entire genome is sampled with some average 
depth of coverage. As sequencing costs have dropped, low-pass sequencing (for our purposes, which we 
will define as sequencing in which the average coverage of the genome is equal to or lower than 1x) 
becomes an appealing alternative to genotyping (CONVERGE consortium et al., 2015; Gilly et al., 2017; 
Pasaniuc et al., 2012). As an intuition for why this approach is useful, note that a human sample sequenced 
at 0.4x coverage is expected to have a single sequencing read covering each of around 30 million genetic 
variants identified in the 1000 Genomes Project (Auton et al., 2015), while a genotyping array obtains 
measurements (albeit somewhat less noisy measurements) at two orders of magnitude fewer sites.  
 
In this paper, we directly compare genotyping results from low-pass sequencing to a commonly used 
genotyping array, the Affymetrix Axiom Biobank Precision Medicine Research Array (PMRA). Two types of 
metrics are relevant for this comparison. One is simply the genome-wide coverage of the assay, which we 
measure using average imputation quality. The other is genotyping quality at particular genetic variants 
of interest. We were particularly interested in applications to PGx—the identification of genetic variants 
that influence drug response. In this application, genetic variants in the MHC and genes involved in drug 
metabolism (so-called “ADME” genes, for absorption, distribution, metabolism, and excretion) are known 
to be particularly relevant. We thus considered these separately. 
 
Results 
 
We selected 79 individuals to be both genotyped and sequenced. Each individual was genotyped on the 
Affymetrix Axiom Biobank PMRA, and sequenced by Gencove, Inc. to an average of 1x coverage using the 
Illumina HiSeq 4000 platform with paired-end 150 base pair reads. Sequencing reads were then sampled 
at random to obtain an average of 0.8x, 0.6x, and 0.4x coverage of the genome (Methods). 
 
We then performed genotyped imputation of genetic variants in the 1000 Genomes Phase 3 release. This 
imputation for was performed using minimac2 (for the genotyping array data) or Gencove’s loimpute 
software v0.18 (for the low-pass sequencing data, see Methods for details). Both the unimputed PMRA 
data and the imputed low-pass sequencing data were then used to impute HLA genotypes using HIBAG 
(Zheng et al., 2014).  
 
The relevant metrics to use when comparing the two technologies depend on the downstream use cases. 
Specifically, if an investigator is interested in identifying genetic variants associated with a trait but has no 
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a priori knowledge of where in the genome such variants are likely to be located, then the relevant metric 
is the average correlation between imputed genotype calls and true genotypes. On the other hand, if the 
investigator knows that specific variants are most likely to be relevant to the trait of interest, then the 
relevant metric is the concordance between the technologies at those specific sites. Since in PGx 
applications there are some specific genes and variants of interest, we computed metrics in both of these 
classes. 
 
Overall genotype concordance 
 
We first examined the overall concordance between the genotyping arrays and imputed sequences at 
different depths. To do this, we removed genotypes imputed with low confidence (with less than 90% 
posterior probability on a single genotype), and assessed the concordance between the two platforms, 
averaging across individuals, using metrics from the draft guidance of the United States Food and Drug 
Administration. These metrics measure concordance for variants present and absent in a reference 
genome—a “positive percent agreement” (PPA) for variants that are different from the reference and a 
“negative percent agreement” (NPA) for variants that match a reference genome. For our purposes we 
considered the genotypes from the PMRA as “truth”; in this case the PPA ranged from 98.2% for 0.4x 
coverage sequencing to 99.2% for 1x coverage sequencing, while the NPA ranged from 99.8% for 0.4x 
coverage to 99.9% for 1x coverage. 
 

Table 1: Genotype concordance between genotyping and sequencing platforms. In all cases the genotyping 
array was treated as ‘Truth’. Positive % Agreement  (PPA)– The percent of non-reference calls in the Truth 
dataset detected by Test, ignoring no calls in Test. (True Positives / True Positives + False Negatives). 
Negative % Agreement  (NPA) – The percent of reference calls in the Truth dataset detected by Test, 
ignoring no calls in Test. (True Negatives / True Negatives + False Positives). No Calls– Count of No Calls in 
test that were variant in Truth. No calls are averaged across all 79 individuals.  

Comparison PPA (%) NPA (%) No Calls (Average) 

Accuracy, .4x vs PMRA 98.22% 99.82% 2535 

Accuracy, .6x vs PMRA 98.76% 99.85% 1848 

Accuracy, .8x vs PMRA 99.01% 99.86% 1508 

Accuracy, 1x vs PMRA 99.19% 99.88% 1251 
 
 
Genotype concordance at ADME genes 
 
We then specifically compared the concordance between the genotypes at variants in ADME genes as 
defined by Hoverlson et al. (Hovelson et al., 2017). There were 216 such variants that were directly 
genotyped on the PMRA. We thus computed the same concordance metrics specifically at these 216 
variants. For these analyses we excluded low-confidence genotype calls from the low-pass sequencing 
data; the percentage of excluded calls range from 1.6% of genotype calls in the 0.4x data down to 0.8% of 
genotype calls in the 1x data.  
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Concordance results are presented in Figure 
1A. At common variants (where the minor allele 
is present in more than five copies in the 
sample, corresponding to a minor allele 
frequency over 3%), PPA ranged from 98.5% 
(for 0.4x coverage) up to 99.4% (for 1x 
coverage). The lowest concordance metric was 
the PPA at rarer variants, which ranged from 
82.1% (for 0.4x coverage) to 95.2% (for 1x 
coverage).   
 
Genotype concordance at HLA  
 
Apart from ADME genes, another important 
locus in PGx is the MHC region. We imputed 
four digit HLA alleles from both the PMRA and 
sequencing data using HIBAG (Zheng et al., 
2014), and assessed the concordance across 
the two platforms at each of the seven HLA 
genes assessed by HIBAG. (Figure 1B). There 
was little variation in imputed genotype 
concordance across levels of sequencing 
coverage, and with the exception of the gene 
DPB1, concordance was above 95%. 
 
For samples where we saw consistent 
discordance for a given gene between the 
platforms, we then generated gold standard 
HLA genotype calls (Methods). A total of 15 HLA 
genotype calls in 12 samples were retested in 
this manner. The correct calls were obtained at 
7/15 genotypes from the PMRA, and 6, 7, 7, and 
8/16 genotypes after imputation from 0.4x, 
0.6x, 0.8x, and 1x sequencing, respectively.  
  
 
Imputation quality and comparison 
 
Finally, an important metric of how well a 
technology assays known polymorphisms in the 
genome is the squared correlation between 
imputed genotype dosages and the true 
genotypes (known as “imputation r2”). 
Intuitively, if the researcher has a flat prior on 
where in the genome to look for an association 
between a genetic variant and a trait, the 

Figure 1: Genotype concordance across platforms at specific 
variants relevant to pharmacogenomics. A. Concordance at SNPs 
in ADME genes. Variants were classified as “rare” if the minor 
allele was present in five or fewer copies in the sample 
(corresponding to an allele frequency of about 3%. Concordance 
rates are split according to the genotype calls on the PRMA, which 
was considered “truth”—reference concordance is at variants 
where the PRMA is homozygous reference, and non-reference 
concordance is for all other sites. B. Concordance in HLA 
genotypes across platforms. Shown are the concordance rates 
between sequencing and genotyping array data in imputed HLA 
genotypes. Concordance is shown for 0.4x and 1x sequencing. 
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average squared correlation is a measure of the power of the study.  
 
We computed this metric for different levels of sequencing coverage by correlating the imputed allelic 
dosages with directly genotyped sites. We computed this same metric for the genotype data by using the 
leave-one-out r2 at genotyped sites computed by minimac2. At common SNPs, the average r2 obtained 
from the genotyping array was 0.9 (Figure 1), consistent with previous reports from a European 
population (Nelson et al., 2017). For the sequencing data, this metric varied from 0.9 (for 0.4x coverage) 
to 0.96 (for 1x coverage).  
 
To investigate the effect of the choice of imputation reference panel on imputation performance on the 
sequencing data, we performed a head-to-head comparison between using the 1000 Genomes and a 
subset of the Haplotype Reference Consortium haplotypes (McCarthy et al., 2016) as reference panels 
using the above methodology (i.e., by treating the array data as “truth” and comparing overlapping sites 
between the reference panel and the array sites). Using the HRC dataset as the imputation reference 
panel yielded marginal increases in average r2 values in all MAF bins but the lowest, where it suffered a 
decrease of about 0.036 as compared to the 1000 Genomes imputed sites in the same bin. The exact 
details and further discussion on this particular comparison can be found in the accompanying 
Supplementary Materials.  
 
 
 

 
Discussion 
 
In this paper, we performed a 
direct comparison between low-
pass sequencing (combined with 
imputation) and a commonly-used 
genotyping array for the purposes 
of trait mapping in 
pharmacogenetics. Overall, 
genotype calls across the two 
platforms were highly concordant. 
For the purposes of trait mapping, 
low-pass sequencing above a 
sequencing coverage of 0.4x had 
higher imputation accuracy than 
the genotyping array, indicating a 
corresponding increase in power.  
 
It is worth noting that the cost of 
sequencing is declining rapidly; if 
sequencing a human genome to 
30x coverage costs $1,000, then 
the cost of sequencing a human 
sample to 0.4x coverage is around 
$13. The key components of cost 

Figure 2: Comparison of imputation quality across platforms. Alleles were binned 
according to their minor allele frequency (as measured on the genotyping array) 
and imputation r2 averaged across all variants in the bin. For sequencing data, the 
array data was treated as ‘truth’ and imputation r2 computed by correlating 
imputed dosages to array genotypes. For the array data, imputation r2 for all 
genotyped variants was computed using a leave-one-out procedure implemented in 
minimac2. 
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in a low-pass sequencing assay then become sequencing library preparation and analysis. As the costs of 
sequencing continue to drop, the importance of these latter costs will continue to grow.  
 
Methods 
 
Genotyping. DNA samples were genotyped by BioStorage Technologies/Bioprocessing Solutions Alliance, 
Brooks Life Sciences (Piscataway, NJ, USA) using the Affymetrix Axiom PMRA. 
 
Prior to genotype imputation, variants in each GWAS dataset were excluded using standard Affymetrix 
QC thresholds for the PMRA, if there were deviations from Hardy-Weinberg proportions within subgroups 
of any given ancestry or showed gross and irreconcilable differences in alleles or allele frequency with 
reference panel genotypes from the HapMap or 1000 Genome projects.  Standard Affymetrix array QC 
sample level thresholds were also applied prior to imputation. 
(http://www.affymetrix.com/support/downloads/manuals/axiom_genotyping_solution_analysis_guide.
pdf) 
 
Imputation of PMRA data. Genotype imputation for genetic variants that were not directly genotyped 
(“untyped variants”) was performed using a cosmopolitan haplotype reference panel from the 1000 
Genomes Project [The 1000 Genomes Project Consortium, 2015], and using Hidden Markov Model 
methods as implemented in MaCH and minimac  [Li, 2009; Howie, 2012].  

HLA genotyping. High resolution HLA genotyping was performed at BioStorage 
Technologies/Bioprocessing Solutions Alliance, Brooks Life Sciences (Piscataway, NJ, USA) using the 
Thermo Fisher AllSet+ Gold SSP High-Resolution HLA kit for HLA-A, HLA-B, HLA-DRB1, HLA-DQB1 and HLA-
DPB1 following the manufacturer’s instructions. 

 
Sequencing. Sequencing libraries were prepared from DNA using the KAPA Library Preparation Kit by 
Roche and sequenced on an llumina HiSeq 4000 instrument. Sequencing reads for each sample were 
aligned to the genome using bwa mem (Li and Durbin, 2009), and sequencing reads were randomly 
sampled to obtain different levels of sequencing coverage. Imputation of genotypes from sequencing data 
was done using loimpute v. 0.18 by Gencove, Inc. (New York, NY) to a reference panel comprising a subset 
of the 1000 Genomes Phase 3 (described in more detail in the Supplementary Materials).  
 
Imputation of sequencing data. Imputation was performed using an implementation of the Li and 
Stephens model (Li and Stephens, 2003), described in more detail in the Supplementary Note. 
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