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Abstract
Quantitative imaging of biological architecture with fluores-
cent labels is not as scalable as genomic or proteomic mea-
surements. Here, we combine quantitative label-free imaging
and deep neural networks for scalable analysis of complex
structures. We reconstruct quantitative three-dimensional
density, anisotropy, and orientation in live cells and tissue
slices from polarization- and depth-resolved images. We re-
port a computationally efficient variant of U-Net architecture
that predicts a 3D fluorescent structure from its morphology
and physical properties. We evaluate the performance of our
models by predicting F-actin and nuclei in mouse kidney tis-
sue. Further, we report label-free imaging of axon tracts and
predict level of myelination in human brain tissue sections.
We demonstrate the model’s ability to rescue inconsistent la-
beling. We anticipate that the proposed approach will enable
quantitative analysis of architectural order across scales of
organelles to tissues.
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Introduction
The function of living systems emerges from dynamic in-
teraction of components over spatial and temporal scales
that range many orders of magnitude. Although molecu-
lar components of biological systems can now be identi-
fied with scalable genomic and proteomic technologies, these
technologies cannot capture dynamic interactions of compo-
nents and are destructive measurements. Light microscopy is
uniquely suited to study dynamic arrangement of molecules
within the context of organelles, of organelles within the con-
text of cells, and of cells within the context of tissues.

There is an outstanding need for scalable imaging tech-
nologies for mapping interactions among biological compo-
nents. Widely used fluorescence microscopy methods re-
port on labeled molecules within the crowded environment
of biological system. However, it is difficult to visualize
more than 7 components in a live sample (1) due to the
stochastic nature of labeling, photo-toxicity, and the broad
spectra of fluorescent proteins. Further, labeling of primary
specimens and non-model organisms is still a challenge. In

contrast, label-free imaging enables simultaneous and repro-
ducible visualization of many biological structures with min-
imal photo-toxicity by measuring intrinsic physical proper-
ties of the sample. Label-free microscopy with phase con-
trast (2), differential interference contrast (DIC) (3), and po-
larization contrast (4, 5), has enabled discoveries of biologi-
cal processes for almost a century.

Although label-free imaging is scalable, extracting quan-
titative measurements from label-free data is challenging due
to two reasons: 1) in label-free images, physical properties of
structures are encoded in complex modulation of the inten-
sity, rather than the intensity magnitude, and 2) many struc-
tures seen in label-free data have similar physical proper-
ties and are therefore difficult to distinguish with classical
analysis tools. To address these challenges, here we report
a computational imaging method for joint measurement of
density and structural anisotropy in 3D. We refer to density
and anisotropy collectively as the architectural order in this
paper. We also report computationally efficient deep neural
networks that predict 3D fluorescent structures from 3D ar-
chitectural order, thereby enabling analysis of specific struc-
tures within label-free data.

Related work. Label-free imaging typically requires mod-
ifications of the optical path of a common microscope, as
widely available cameras are sensitive only to the intensity
(i.e., brightness) and wavelength (i.e., color) of light, not the
relative times of arrival of light waves (i.e., phase) or the
plane of oscillation of the electric field (i.e., polarization).
Qualitative label-free imaging methods, such as phase con-
trast and DIC, transform the phase or polarization of light
into intensity. Quantitative methods aim to reconstruct physi-
cal properties of the specimen using inverse algorithms based
on image-formation models.

Phase microscopes report the optical path length 1, which
is modulated by the specimen density. Optical path length
and density can be measured from intensity modulation due
to the propagation of light (7, 8), from interference between

1To the first approximation, optical path length and retardance measured
by the microscope are refractive index and birefringence of the specimen,
respectively, integrated over the coherently illuminated volume of the speci-
men (6).
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Fig. 1. Label-free prediction of a structure from density and anisotropy measurements: (A) Light path of label-free polarization-resolved and depth-resolved imaging
microscope. The measured intensities encode spatial distributions of refractive index and birefringence of the specimen. Polarization states are generated by a calibrated
liquid-crystal universal polarizer that can be controlled electronically. (B) Mueller coefficients of the specimen are computed for every voxel from polarization-resolved
intensities using the inverse of instrument matrix A−1 (see eq. (9)). Mueller coefficients retrieved from the background region are used to correct imperfections in the light
path (fig. 2-supplement S4). Assuming that the specimen is transparent, complementary physical properties of the specimen are reconstructed from Mueller coefficients:
phase, retardance, orientation of slow axis, brightfield (not shown), and degree of polarization (not shown). (C) Multi-channel, 2.5D U-Net model is trained to predict 3D
fluorescent structures from label-free measurements. During training, pairs of label-free images and fluorescence images are supplied as inputs and targets to the U-Net
model. The model is optimized by minimizing the difference between the model prediction and the target. During inference, only label-free images are supplied as input to
the trained model to predict 3D fluorescence images.

light scattered by the specimen with another beam whose
phase is controlled (9–13), and from images of the specimen
illuminated from multiple angles (14–16). Among these ap-
proaches, reconstruction of phase from propagation of light
is experimentally the simplest approach, since the data can be
acquired on any microscope with motorized focus drive. The
weak object transfer function model of image formation (17–
22) allows for robust reconstruction of phase from a stack of
intensities measured in transmission.

Polarization microscopes measure retardance1, i.e.,
orientation-dependent optical path length, which is modu-
lated by the structural anisotropy below the spatial diffraction
limit and has been used to make measurements well below
the resolution limit (23). Structural anisotropy can be mea-
sured using tunable polarization modulators in the illumina-
tion or the detection path of the microscope (24–28). Shribak
et al. (13) developed a method that employed multiple liquid
crystal modulators for joint analysis of phase and retardance
in 2D, but not in 3D live specimens.

Quantitative phase imaging has been used to analyze di-
verse processes (9), such as, membrane mechanics, density
of organelles, cell migration and more recently propagation
of action potential (29). Polarized light imaging has enabled
discovery of the dynamic microtubule spindle (5), assessment
of structural integrity of meiotic spindles of oocytes in in-
vitro fertilization (IVF) clinics (30), label-free imaging of
white matter in adult human brain tissue slices (28, 31), and
imaging of activity-dependent structural changes in brain tis-
sue (32). It is apparent from above applications that joint

imaging of density and anisotropy without label can enable
new biological investigations. To our knowledge, approaches
for combined measurement of density and anisotropy in live
cells in 3D have not been reported.

Machine learning models have recently enabled identi-
fication of structures in diverse label-free images, opening
new opportunities for scalable analysis of label-free data.
Some examples include: 3D U-Net model for predicting
multiple organelles in cells from brightfield and DIC im-
ages (33); inception model for in silico 2D labeling of nu-
clei, cell types, and cell state (34) from phase contrast and
DIC images; generative adversarial models for 2D predic-
tion of histopathological stains from quantitative phase (35)
and auto-fluorescence (36); 3D U-Net model for segmen-
tation of immunological synapse from diffraction tomogra-
phy (37); random forest classifiers for recognizing carcinoma
in colon tissue from Raman scattering (38). Among the above
approaches, 3D U-Net models that translate label-free im-
age stacks to a fluorescence stacks (33) are attractive, be-
cause they predict both localization and expression of spe-
cific molecules in 3D. However, learning anisotropic struc-
tures, such as cytoskeletal networks, can be challenging from
brightfield data (33), because brightfield imaging is sensitive
to density, but not structural anisotropy. In addition, den-
sity information in brightfield stacks is difficult to interpret
and susceptible to imperfections in the light-path. Moreover,
training and prediction using 3D U-Net is expensive - the
computational cost required downsampling the data at the ex-
pense of spatial resolution (33).
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There is an unmet need for computationally efficient 3D
image translation models that can learn jointly from density
and anisotropy measurements.

Contributions. We recover density and anisotropy from
polarization- and depth-resolved acquisition. Our measure-
ments reveal structures across different biological scales,
including lipid droplets, mitochondria, spindle, nucleoli,
chromosomes, nuclei, nuclear envelope, plasma membrane,
glomeruli and tubules in mouse kidney tissue, axon tracts in
mouse and human brain tissue, and cell morphology in hu-
man brain tissue. The reconstruction relies on the description
of polarization of light by a Stokes vector (39) and recovery
of phase from 3D brightfield stack via deconvolution. Cast-
ing the image formation and reconstruction in Stokes formal-
ism also provides an elegant representation of the microscope
in terms of an instrument matrix (40–42), which enables ro-
bust calibration and background correction. Using the Stokes
formalism and deconvolution algorithms reported here, we
measure phase, retardance, slow axis 2, and degree of polar-
ization of transparent specimen.

Next, we report a computationally efficient 2.5D U-Net
architecture for translating 3D distribution of physical prop-
erties to fluorescence intensities. Our 2.5D architecture is re-
lated to architectures used to segment 3D MRI data from 2D
projections of 3D data (43), but instead uses the information
over the depth of field of the microscope. We chose to use
information over the depth of field for prediction, because
microscopes measure optical sections and not optical pro-
jections. Our 2.5D multi-channel models accurately trans-
late brightfield, phase, retardance, and slow axis distributions
over the depth of field of the microscope into fluorescence in-
tensities in the corresponding 2D focal plane. 3D translation
is achieved using the 2.5D model by predicting fluorescence
at every slice of the output stack using neighboring slices of
label-free stacks as inputs. Formulating the prediction prob-
lem over the depth of field allows us to work with substan-
tially larger fields of view in a computationally efficient man-
ner as compared to full 3D models. Using quantitative data as
input removes artifacts and unintended correlations between
label-free and fluorescence data, which improves accuracy
of prediction and allows cleaner interpretation of predicted
structure. Further, measured density and anisotropy can be
interpreted jointly with predicted fluorescent structure to gain
new insights in biology.

We applied our approach to mapping the axon tracts and
myelination in a developing human brain across different
ages. In contrast to brains of model systems (e.g., mouse and
fruit fly), scalable mapping of the architecture of the human
and other large brains poses significant challenges. For exam-
ple, genetic tools are limited and not scalable for tracing the
neuronal connectivity at high-throughput. To overcome this
issue, we reasoned that joint imaging of density and struc-
tural anisotropy will allow us to more thoroughly describe

2Slow axis is the orientation along which the anisotropic structure is
denser. Higher density leads to slower propagation of light when the po-
larization of the light is oriented along the slow axis.

the structures of human brain tissue.
Collectively, above contributions establish a novel ap-

proach for imaging architectural order in living systems
across biological scales and analyzing it with a judicious
combination of physics-driven and data-driven modeling ap-
proaches.

Results
Reconstructing density and anisotropy. Simultaneous
recovery of multiple properties requires a model of image
formation accurate enough to account for partial polariza-
tion of light. Previous reconstruction algorithms (25, 26)
for transmission polarized light microscopy employed Jones
calculus (39, Ch.10) to describe image formation, which as-
sumes fully polarized illumination. However, LEDs or lamps
used for transmission microscopy lead to partially polarized
illumination that cannot be accounted for by Jones calculus.
Stokes vector representation of light and Mueller matrix rep-
resentation of the optical components cleanly capture the full
state of polarization of light (39, 41, 44), including partial
polarization. We previously developed Stokes representa-
tion of fluorescence polarization for simultaneous recovery
of concentration, alignment, and orientation of fluorophores
imaged with instantaneous fluorescence polarization micro-
scope (42). Fluorescence polarization microscopy also gives
rise to partially polarized emission, since independent emis-
sion events integrated through the imaging aperture are mu-
tually incoherent. In this paper, we employ the Mueller cal-
culus to describe transmission imaging with partial polariza-
tion. We exploit the same framework for calibration, back-
ground correction, and reconstruction of physical properties.

We implemented automated polarization-resolved and
depth-resolved imaging (fig. 1A, methods). We used 5 ellipti-
cal polarization states for sensitive detection of specimen re-
tardance (25, 26)(methods). Our image formation model rep-
resents the specimen’s physical properties in terms of Mueller
coefficients. We recover background-corrected Mueller coef-
ficients (methods) of the specimen at every voxel(fig. 1B). We
reconstruct brightfield, phase, retardance, slow axis, and de-
gree of polarization stacks from stacks of Mueller coefficients
(fig. 1C, methods). We developed a two-step background cor-
rection method that enables detection of low anisotropy of
the biological structures even in the presence of high, non-
uniform background resulting from the optics or imaging
chamber (methods,fig. 2-supplement S4).

Figure 2 shows background-corrected images of a mouse
kidney tissue slice, U2OS cells (bone cancer cell line), mouse
brain slice, and developing human brain slice in brightfield,
phase, retardance, and orientation contrasts. Both the phase
and brightfield images report density variation in the speci-
men. However, in brightfield images, optically dense struc-
tures appear in brighter contrast than the background on one
side of the focus, almost no contrast at the focus, and darker
contrast than the background on the other side of the fo-
cus (note the contrast variations in images of nuclei in the
XZ section of the brightfield image of the mouse kidney tis-
sue and in Video 1). This contrast variation along the opti-

Guo, Yeh, Folkesson et al. | Learning architectural order bioRχiv | 3

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2019. ; https://doi.org/10.1101/631101doi: bioRxiv preprint 

https://doi.org/10.1101/631101
http://creativecommons.org/licenses/by-nc/4.0/


orientation

100 µm

 M
ou

se
 k

id
ne

y 
tis

su
e

U
2O

S 
ce

lls
M

ou
se

 b
ra

in
 s

lic
e

10µm

10µm

H
um

an
 b

ra
in

 s
lic

e

100 µm

10µm

x
y

xz
x
y

xz
x
y

xz

Retardance (ρ)Bright-field (BF) Orientation (ω)Phase (φ)

orientation

orientation

orientation

Fig. 2. Complementary contrasts of phase and retardance report diverse biological structures: Brightfield (BF), Phase (φ), retardance (ρ), and orientation (ω)
images of mouse kidney tissue, mammalian cell line (U2OS), mouse brain tissue section, and human brain tissue section are shown. The orientation image represents slow
axis of the specimen with color (hue) and retardance with brightness. In kidney tissue, nuclei appear as smooth patches of low density and low retardance, while tubules
stand-out in retardance. Glomelurus, a network of small blood vessels, is identified by circular outline in the brightfield image of kidney tissue. In U2OS cells, chromatin, lipid
droplets, membranous organelles, and cell boundaries are visible due to variations in density, while microtubule spindle, lipid droplets, and cell boundaries are visible due
to their ordered structure. In mouse brain slices, axon tracts are more visible in phase, retardance, and orientation images compared to brightfield images, with slow axis
perpendicular to the direction of the bundles. Similar contrast improvement was observed in developing human brain tissue slice with less ordered tracts due to the early age
of the donor. 3D stacks of mouse kidney tissue and U2OS cell were acquired with 63x 1.47 NA oil objective and 0.9 NA illumination, whereas images of mouse and human
brain tissue were acquired with 10x 0.3 NA air objective and 0.2 NA illumination.

cal axis, described by the transport of intensity equation (7),
makes proper interpretation of density from brightfield im-
ages challenging. We developed a phase reconstruction al-
gorithm (methods) that translates this axial contrast modu-

lation into a more quantitative contrast that is proportional
to the density, i.e. denser structures consistently appear in
brighter contrast than the background in the image. The re-
tardance image is proportional to the degree of orientational
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order among molecules. The slow axis orientation image re-
ports the orientation in which the specimen is the densest.
In mouse kidney tissue, the retardance image highlights cap-
illaries within glomeruli, and brush borders in convoluted
tubules, among other components of the tissue. The nuclei
appear in darker contrast in the retardance image because of
the relatively less ordered structure of chromatin.

In the dividing U2OS cell (Video 2), the phase image
shows contrast consistent with density of various cellular
structures including cytoplasm, lipid vesicles, nucleoli, and
chromosomes compared to the brightfield image where the
contrast of the structures varies depending on their loca-
tion relative to the focus. Similarly, in mouse and develop-
ing human brain tissue sections, the phase image identifies
axon tracts better than brightfield image, because of vari-
ations in their density (fig. 2-supplement S1). The back-
ground corrected retardance and orientation in U2OS cells
(Video 2) show dynamics of membrane boundaries, spindle,
and lipid droplets. We note that the two-step background cor-
rection (methods) is essential to remove biases in the retar-
dance and orientation images, but not for phase image (fig. 2-
supplement S4). The retardance and orientation images of
mouse and human brain slices in fig. 2 distinctly report on
axon tracts. The birefringence of the axons arises from neu-
rofilaments that have higher density along the axon axis and
myelin sheath that has higher density perpendicular to the
axon axis (45). Due to the high birefringence of myelinated
axons in mouse brain slice, we see a slow axis perpendicular
to the direction of the axon tracts. Figure 2-supplement S2
shows stitched retardance and orientation images of a whole
mouse brain slice, in which not just the white matter tracts,
but also changes in the orientation of axons across different
cortical layers are visible.

We show degree of polarization measurements in fig. 2-
supplement S3. It is worth clarifying the difference between
retardance images shown in fig. 2 and degree of polarization
images. The retardance variations arise from single scatter-
ing events within the specimen that alter the polarization, but
do not reduce the degree of polarization. The degree of po-
larization on the other hand reports multiple scattering events
that reduce the polarization of light. In the future, we plan to
pursue models that account for diffraction and scattering ef-
fects in polarized light microscopy and enable more precise
retrieval of specimen properties.

Data shown in fig. 2 and in Video 3 report simultaneous,
quantitative measurements of density, structural anisotropy,
and orientation in 3D biological specimens, for the first time
to our knowledge. In the next sections, we discuss how these
complementary label-free measurements enable prediction of
fluorescence images of different types of structures. The
Python code for reconstruction is available at https://
github.com/mehta-lab/reconstruct-order.

Computationally efficient 3D prediction using 2.5D
residual U-Net. Joint optimization of optical contrast, archi-
tecture of the deep neural network, and the training process is
key to successful analysis of structures of interest. Label-free
measurement of density and anisotropy simultaneously visu-

alize several structures that are normally imaged with fluores-
cence labeling. To enable automated analysis of localization
and expression of specific molecules, we sought to develop
deep convolutional neural network models that translate 3D
label-free stacks into 3D fluorescence stacks. We optimized
our model architecture using mouse kidney tissue sections
where F-actin and nuclei are labeled.

We adapted the U-Net architecture that has been widely
successful in image segmentation and translation tasks (33,
37, 46, 47). U-Net’s success arises from its ability to exploit
image features at multiple spatial scales. It uses skip connec-
tions between the encoding and decoding blocks that give de-
coding blocks access to low-complexity, high-resolution fea-
tures in the encoding blocks. We added a residual connection
between the input and output of each block to speed up train-
ing of the model (47, 48). Prior work (33) on predicting flu-
orescence stacks from brightfield stacks has shown that 2D
models result in discontinuous predictions along the z-axis
as compared to 3D translation models. However, training
and prediction with 3D translation models are computation
and memory intensive. Further, typical microscopy stacks are
bigger in their extent in the focal plane (∼ 2000×2000 pix-
els) and smaller in extent along the optical axis (usually < 40
Z slices). But 3D U-Net model requires sufficiently large
number of Z slices (>= 64) to extract meaningful high level
features in Z-dimension as the input is isotropically down-
sampled in the encoding path of the U-Net. Therefore, use of
3D translation models often requires upsampling the data in
Z, which increases data size and makes training 3D transla-
tion model more computationally expensive.

To reduce the computational cost while maintaining the
optical resolution of the data and high accuracy of prediction,
we evaluated the prediction accuracy as a function of model
dimensions for a highly ordered structure (F-actin) and for
less ordered structure (nuclei) in mouse kidney tissue. We
evaluated three model architectures to predict fluorescence
volumes: slice→slice (2D in short) models that predict 2D
fluorescence slices from corresponding 2D label-free slices,
stack→slice (2.5D in short) models that predict the central
2D fluorescence slices from a stack of neighbor label-free
slices, and stack→stack (3D in short) models that predict 3D
fluorescent stacks from label-free stacks. For 2D and 2.5D
models, 3D translation is achieved by using the model to pre-
dict fluorescence in each plane of the stack. See methods
and fig. 3-supplement S1 for the description of the network
architecture and training process. We used Pearson correla-
tion coefficient and structural similarity index (SSIM) (49)
between predicted fluorescent stacks and target fluorescent
stacks from the test fields of view to evaluate the performance
of the models (methods). We report these metrics on the test
set (table 1, table 2, table 3), which was not used during the
training.

Figure 3A and fig. 3B show orthogonal slices of re-
tardance and experimental F-actin stacks from the test set
around a glomerulus and surrounding tissue, while fig. 3C
shows orthogonal slices through the F-actin volumes pre-
dicted using 2D, 2.5D, and 3D models trained on retardance
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Translation model Input(s) rxy rxz rxyz SSIMxy SSIMxz SSIMxyz

Slice-> Slice (2D) ρ 0.82 0.79 0.83 0.78 0.71 0.78
Stack-> Slice (2.5D, z = 3) ρ 0.85 0.83 0.86 0.80 0.75 0.81
Stack-> Slice (2.5D, z = 5) ρ 0.86 0.84 0.87 0.81 0.76 0.82
Stack-> Slice (2.5D, z = 7) ρ 0.87 0.85 0.87 0.82 0.77 0.83
Stack-> Stack (3D, z = 96) ρ 0.86 0.84 0.86 0.82 0.76 0.85

Table 1. Accuracy of 3D prediction of F-actin from retardance stack using different neural networks: Above table lists median values of the Pearson correlation (r)
and structural similarity index (SSIM) between prediction and ground truth F-actin volumes. We report accuracy metrics for Slice→Slice (2D) ,Stack→Slice (2.5D), and
Stack→Stack (3D) models trained to predict F-actin from retardance using Mean Absolute Error (MAE or L1) loss. We segmented target images with Rosin threshold to
discard tiles that mostly contained background pixels. To dissect the differences in prediction accuracy along and perpendicular to the focal plane, we computed (methods)
test metrics separately over XY slices (rxy , SSIMxy ) and XZ slices (rxz , SSIMxz ) of the test volumes, as well as over entire test volumes (rxyz , SSIMxyz ).

Translation model Input(s) rxy rxz rxyz SSIMxy SSIMxz SSIMxyz

Stack-> Slice (2.5D, z = 5) ρ 0.86 0.84 0.87 0.81 0.76 0.82
BF 0.86 0.84 0.86 0.82 0.77 0.83
φ 0.87 0.85 0.88 0.83 0.78 0.84

φ, ρ, ωx, ωy 0.88 0.87 0.89 0.83 0.80 0.85
BF, ρ, ωx, ωy 0.88 0.87 0.89 0.83 0.79 0.85

Table 2. Accuracy of prediction of F-actin in mouse kidney tissue as a function of input channels: Above table lists median values of the Pearson correlation (r) and
structural similarity index (SSIM) between prediction and target volumes of F-actin. We evaluated combinations of brightfield (BF), phase (φ), retardance (ρ), orientation x
(ωx), and orientation y (ωy ), as input. Model training conditions and computation of test metrics is described in table 1.

Translation model Input(s) rxy rxz rxyz SSIMxy SSIMxz SSIMxyz

Stack-> Slice (2.5D, z = 5) ρ 0.84 0.85 0.85 0.81 0.76 0.82
BF 0.87 0.88 0.87 0.82 0.77 0.84
φ 0.88 0.88 0.88 0.83 0.78 0.85

φ, ρ, ωx, ωy 0.89 0.89 0.89 0.84 0.80 0.86
BF, ρ, ωx, ωy 0.89 0.90 0.89 0.84 0.80 0.86

Table 3. Accuracy of prediction of nuclei in mouse kidney tissue: Above table lists median values of the Pearson correlation (r) and structural similarity index (SSIM)
between prediction and target volumes of nuclei. See table 2 for description.

as the input. Glomeruli are complex multi-cellular, three-
dimensional structures in kidney that perform filtration (50).
The predictions with 2D models show discontinuity artifacts
in the structure along the depth (fig. 3C, Video 4), as also ob-
served in prior work (33). The 2.5D model predicts smoother
structures along the Z dimension and improves the fidelity of
F-actin prediction in the XY plane, (fig. 3C, table 1), with
higher prediction accuracy as the number of z-slices in the
2.5D model input increases. The 3D model further improves
the fidelity and continuity prediction along the depth (fig. 3C
and Video 4). The distribution of SSIM along XY and XZ
slice (fig. 3D, table 1) shows that the 2.5D model approaches
the prediction accuracy of the 3D model, which is further im-
proved when using complementary label-free properties as
illustrated in the next section.

We note that we could train 2.5D model with ∼ 3× more
learnable parameters than 3D model (methods) while using
fewer computational and memory resources. In our experi-
ments, training a 3D model with 1.5M parameters required
3.2 days, training a 2D model with 2M parameters required
6 hrs, and training a 2.5D model with 4.8M parameters and 5
input z-slices required 2 days, using ∼ 100 training volumes.

The Python code for training our variants of image trans-
lation models is available at https://github.com/
czbiohub/microDL.

Predicting structures from multiple label-free con-
trasts improves accuracy. Considering the trade-off be-
tween computation speed and model performance, we
adopted 2.5D models with 5 input Z-slices to explore how
combinations of label-free inputs affect the accuracy of pre-
diction of fluorescent structures.

We found that when multiple label-free measurements are
jointly used as inputs, both F-actin and nuclei are predicted
with higher fidelity compared to when only a single label-
free measurement is used as the input (table 2 and table 3).
Figure 4 A-C shows structural differences in the predictions
of the same glomerulus as fig. 3. These observations from
a representative field of view generalize to the entire test set
as illustrated by the distribution of SSIM between slices of
ground-truth and predictions in fig. 4C. The continuity of pre-
diction along Z-axis improves as more label-free contrasts
are used for prediction (Video 5). These results indicate that
our model leverages information in complementary physical
properties to predict target structures. We note that using
complementary label-free contrasts boosted the performance
of 2.5D models to exceed the performance of 3D single-
channel models without significantly increasing the computa-
tion cost (compare table 1 and table 2). The prediction accu-
racy for fine F-actin structures also improves when comple-
mentary contrasts are used as input (Video 4 and Video 5).

Interestingly, when only a single contrast is provided as
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Fig. 3. Accurate 3D prediction of fluorescent structure with 2.5D U-Net: Orthogonal sections (XY - top, XZ - bottom, YZ - right) of 3D volumeric test images of (A)
retardance, (B) Experimental fluorescence of F-actin stain (target image), and (C) F-actin predicted from the retardance image using different U-Net architectures. (D) Violin
plots of structral-similarty metric (SSIM) between images of predicted and experimental stain in XY and XZ planes. The horizontal dashed lines in the violin plots indicate
25th quartile, median, and 75th quartile of SSIM. The yellow triangle in C highlights a tubule structure, whose prediction can be seen to improve as the model has access to
more information along Z. The same field-of-view is shown in fig. 2, Video 1, Video 4, and Video 5.

the input, a model trained on phase images has higher predic-
tion accuracy than the model trained on brightfield images.
This is possibly because the phase image has consistent,
quantitative contrast along z-axis, while the depth-dependent
contrast in brightfield images makes the learning task more
challenging. This improvement of using phase over bright-
field images, however, is not observed when the retardance
and orientation images are included as inputs as well, possi-
bly because the quantitative contrast in retardance and orien-
tation images provides sufficient information for prediction
of nuclei. We note that fine details of striated F-actin and
nucleoli are missing even in the multi-contrast 2.5D model
prediction (Video 5). This may be due to limited information
content in the input images or due to the model not being
trained on sufficient examples of fine features.

In conclusion, above results show that 2.5D multi-
contrast models predict 3D structures with as high an accu-
racy as 3D U-Net models, but have multiple practical advan-
tages that facilitate scaling of the approach. In addition, the
results show that structures of varying density and order can

be learned with higher accuracy when complementary phys-
ical properties are used as inputs.

Mapping axon tracts and their myelination in sections
of developing human brain. We next evaluate the possi-
bility of mapping axon tract orientation and myelination in
a postmortem human fetal brain without label. Studies in
prenatal (51) and postnatal (52) human brains suggest that
human brains develop and are wired differently as compared
to model systems such as mice. Development of myelina-
tion is essential for long-range neural transmission and, con-
sequently, emergence of coordination among different parts
of brain (52). Scalable imaging of myelination and connec-
tivity in developing human brain has the potential to enable
studies that address outstanding questions of fundamental im-
portance and clinical relevance. Label-free imaging of white
matter is already being pursued in adult human brains (28)
with polarized light. However, mapping myelination and
axon tract orientation during human development requires
higher sensitivity to changes in density and anisotropy, since
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Fig. 4. Prediction accuracy improves with multiple label-free contrasts as inputs: 3D predictions of ordered F-actin and nuclei from different combinations of label-free
contrasts using 2.5D U-Net model. (A) Fluorescent stain for a field of view from the test set. Phalloidin-labeled F-actin in shown green and DAPI labeled nuclei is shown in
magenta. (B) F-actin and nuclei distribution predicted with models trained on retardance (ρ) and phase (φ) alone are shown. (C) F-actin and nuclei distribution predicted with
models trained with combined input of retardance, orientation, and phase. (D) Violin plots of structral-similarty metric (SSIM) between images of predicted and experimental
stain in XY and XZ planes. The horizontal dashed lines in the violin plots indicate 25th quartile, median, and 75th quartile of SSIM. The yellow triangle and white triangle point
out structures missing in predicted F-actin and nuclei distributions when only one channel is used as an input, but predicted when all channels are used. Label-free inputs
used for prediction are shown in fig. 2 and Video 1.

Translation model Input(s) rxy SSIMxy

Slice->Slice (2D) φ 0.73 0.73
φ, ρ, ωx, ωy 0.83 0.78

BF, ρ, ωx, ωy 0.81 0.74
Stack-> Slice (2.5D, z = 5) ρ, ωx, ωy 0.83 0.76

BF, ρ, ωx, ωy 0.85 0.79

Table 4. Accuracy of prediction of FluoroMyelin in human brain tissue slices across two developmental points (GW20 and GW24): Above table lists median values
of the Pearson correlation (r) and structural similarity index (SSIM) between predictions of image translation models and target fluorescence. We evaluated combinations of
retardance (ρ), orientation x (ωx), orientation y (ωy ), phase (φ), and brightfield (BF ) as inputs. These metrics are computed over 15% of the fields of view from two GW20
datasets and two GW24 datasets that were not used during training. The 2D models take∼ 4 hours to converge, whereas 2.5D models take∼ 64 hours to converge.

contrast is much lower than developed human brain. Deep
learning models that translate this data into quantifiable maps
of myelination can facilitate analysis of the complex informa-
tion contained in such data.

We imaged brain sections from two different ages, gesta-
tional week (GW) 24 (fig. 5A–E, fig. 5-supplement S1) and

GW20 (fig. 5F–J, fig. 5-supplement S2), which correspond
to the earliest stages of oligodendrocyte maturation and early
myelination in the cerebral cortex (51). The stitched retar-
dance and orientation images show the orientation of the
axon tracts in different regions of the brain that are not ac-
cessible with brightfield or phase imaging, with slow axis
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Fig. 5. Label-free mapping of myelination and axon tracts in developing human brain tissue section: (A) Stitched image of retardance and orientation of a gestational
week 24 (GW24) brain section from the test set. Different regions of the brain can be identified in the label-free images, CP: cortical plate; SP: subplate; OSVZ: outer
subventricular zone. The orientation is encoded by color according to legend shown in bottom-right. (B) Region of interest over cortical plate and subplate showing
retardance and orientation as lines. The orientation is represented by both colors and orientations of the lines, and retardance is represented by length of the lines. (C)
Experimental FluoroMyelin stain (target) and the predicted fluoromyelin stain from the label-free contrasts with the most accurate model identified in table 4. (D) Scatter plot
of target and predicted intensity. Yellow dashed line indicates the function y=x. (E) Insets from (B) of retardance and orientation highlight difference in pattern of orientation
of tracts in cortical plate and mixed orientation of tracts in subplate. (F – J) Same as (A–E), but for GW20 sample. IZ: intermediate zone.
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orientation perpendicular to the direction of the axon tracts,
similar to the observations on the mouse brain section (com-
pare with fig. 2-supplement S2). The retardance of the white
matter in subplate is higher than cortical plates in both time
points, which is consistent with the reduced myelin density
in the cortical plate relative to the white matter. Importantly,
thanks to the calibration and background correction methods
(methods), we are able to detect the orientation of axons in
cortical plates even though myelin density is low early during
development.

In contrast to predictions reported in fig. 3 and fig. 4, here
we performed 2D instead of 3D phase reconstruction for hu-
man brain slice dataset as the archival tissue (12 µm thick)
was thinner than the depth of field (∼ 16 µm) of the low mag-
nification objective (10X) we used for imaging large areas.
The stitched 2D reconstructed phase shows tissue morphol-
ogy and axon tracts with significantly higher contrast when
compared to the brightfield image (fig. 5-supplement S1A
and fig. 5-supplement S2A). This is because 2D phase re-
construction is more sensitive to density variation integrated
along the z-axis compared to the brightfield imaging.

Interestingly, the pattern of orientation in cortical plate
at GW24 (fig. 5E) suggests layered arrangement of neurons,
while the pattern of orientation in subplate at GW24 shows
criss-crossing arrangement of neurons. These differences be-
tween orientation pattern in cortical plate and subplate are
less pronounced in data acquired from GW20 tissue (fig. 5I).
To our knowledge, above data is the first report of label-free
imaging of myelination and axon tract orientation in prena-
tal brain tissue. These data illustrate that the sensitivity and
resolution of our approach

Predicting myelination in sections of developing hu-
man brain. We explored how information in the label-free
measurements can be used to predict myelination, which
serves as a proxy for development of white matter. We ap-
plied our image translation approach to the task of predict-
ing myelination in the developing human brain at 2 different
ages. Myelination is visualized using lipophilic organic dye
FluoroMyelin that preferentially binds to myelin (53).

To test how well our models generalize to different brain
sections not seen by the model during the training stage, we
ran model inference on images of a GW24 and GW20 sec-
tions that were not included in training, validation, or test
set (results shown in fig. 5 and its supplements). The mod-
els were able to predict the axon tracts and myelination in
these sections well, with increasing accuracy as we included
more label-free channels as the input. Proper data normaliza-
tion was essential for predicting the intensity correctly across
different fields-of-view in large stitched images. Due to the
batch variation of the staining and imaging process, we found
that normalizing the images over whole the dataset gives the
most accurate intensity prediction (fig. 5-supplement S3).

We trained multi-contrast 2D and 2.5D models with dif-
ferent combinations of label-free input contrasts and Fluo-
roMyelin as the target to predict. To improve the model ac-
curacy and generalize the model prediction to different de-
velopment ages and different types of sections of the brain,

we pooled imaging datasets from GW20 and GW24, with
2 different brain sections for each age. The pooled dataset
was then split into training, validation, and test set. Similar
to the observations on the mouse kidney tissue dataset, 2.5D
model with brightfield, retardance, and orientation as the in-
put has the highest SSIM and Pearson correlation over the
test set (table 4). The linearity between predicted and target
FluoroMyelin with scatter plots (fig. 5D and fig. 5I) shows
that our model reliably translates the complex information in
density and anisotropy to expression of FluoroMyelin.

Notably, the 2D model with phase, retardance, and orien-
tation as the input has scores close to the best 2.5D model but
the training takes 3.7 hrs to converge, while the best 2.5D
model takes 64.7 hrs to converge (table 4). This is most
likely because the 2D phase reconstruction captures the den-
sity variation encoded in the brightfield Z-stack that is infor-
mative for the model to predict axon tracts accurately.

Label-free inputs
Фρ,ω

Fluoromyelin 
stain

Prediction

ρ,ω, Ф (2D)

CP

SP

Fig. 6. Model predicted stain is robust to experimental variation in staining:
ROI of GW24 brain section shows artifacts in FluoroMyelin stain due to quenching
of fluorescence by mounting medium. FluoroMyelin stain predicted by the model
does not show the artifacts observed in experimental FluoroMyelin stain. (Left to
right) retardance, orientation, and phase input of the 2D model; experimental Fluo-
roMyelin stain; predicted stain from multi-contrast 2D model. CP: cortical plate; SP:
subplate.

Rescue of inconsistent label. Another useful feature of our
image translation approach is that prediction results are ro-
bust to experimental variation in fluorescent stains. For ex-
ample, we found that antifade chemical in the mounting
media quenched the fluorescence of FluoroMyelin and cre-
ated dark patches in FluoroMyelin (fig. 6) images. How-
ever, the quenching of dye had no impact on the physical
properties we measure in the label-free channels. Therefore,
the model trained on images without artifacts from fluores-
cence quenching predicted the expected staining pattern even
where experimental stain failed. This robustness is particu-
larly valuable for precious tissue specimens such as archival
prenatal human brain tissue.

Discussion
We have reported an innovative approach for label-free mea-
surement of density and anisotropy from 3D polarization-
resolved acquisition. We discuss how we elected to balance
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the trade-offs and the future directions of research.
The phase and degree of polarization information is

inherently present in polarization-resolved acquisition, but
can now be reconstructed thanks to our accurate forward
models and corresponding reconstruction algorithms. As
compared to joint imaging of density and anisotropy with
orientation-independent differential interference contrast and
orientation-independent PolScope (13), our method uses only
one polarization modulator that simplifies calibration. How-
ever, our simpler light path achieves lower depth section-
ing compared to differential interference contrast. Our
method provides diffraction-limited imaging of density and
ansiotropy in live cells, as evident from the 3D movie of or-
ganelles (fig. 2, Video 2, Video 3). Our open-source Python
software is free to use for non-profit research. We anticipate
the modularity of the optical path and the availability of soft-
ware to facilitate adoption.

Our approach of recovering phase from propagation of
light, reports the local phase variation and not the absolute
phase. Measurement of absolute phase would require use of
interference with a reference beam (10, 11). Nonetheless,
we can still visualize many biological processes by using the
relative phase variation. Further, we employ partially coher-
ent illumination, i.e., simultaneous illumination from multi-
ple angles. Partially coherent illumination improves spatial
resolution, depth sectioning, and robustness to imperfections
in the light path away from the focal plane.

We also note that, similar to other present polarization-
resolved imaging systems (28, 42), our approach reports pro-
jection of the anisotropy onto the focal plane. Anisotropic
structures, such as axon bundles, appear isotropic to the
imaging system when they are aligned along the optical
axis of the imaging path. Recovering true 3D anisotropy
along with 3D density using forward models that account for
diffraction effects in the propagation of polarized light is the
an important open area of research.

Polarization-sensitive imaging has also been performed
in reflection mode, most commonly with polarization sensi-
tive optical coherence tomography (PS-OCT). PS-OCT has
been used to measure round-trip birefringence and diattenu-
aton of diverse tissues, e.g., of brain tissue (54). But deter-
mination of the material axes in the reflection mode is con-
founded by the fact that light passes through the specimen
in two directions. The reconstruction and background cor-
rection algorithms in PS-OCT primarily rely on Jones cal-
culus, since OCT is a coherent interferometer and intensity
recorded in individual speckle is fully polarized (55). How-
ever, PS-OCT practitioners employ degree of polarization
uniformity (55) over several speckles to analyze depolariza-
tion due to multiple scattering.

We have also reported novel deep learning models for ef-
ficient analysis of multi-dimensional 3D data we acquire. In
contrast to other work on image translation that demonstrated
2D prediction (34–36), our 2.5D architecture achieves 3D
prediction with apparently similar or superior accuracy as
the 3D prediction reported in (33) (Pearson correlation co-
efficient in 3D for nuclei prediction from brightfield images:

0.87 v.s. 0.7 reported in (33)), while being computationally
more efficient. We note that Pearson correlation coefficient is
affected by both the accuracy of the prediction as well as the
noise in the target images. Thus a more direct comparison of
model performances on the same dataset would be useful in
the future. Also, 2.5D network can be applied to image data
that only has a few z-slices without up- or down-sampling
the data, making it useful for analysis of thin slices as well as
3D specimens. Even though we focus on image translation
in this work, the same 2.5D network can be used for 3D seg-
mentation. 3D segmentation using the 2.5D network bears
additional advantages over 3D network because annotation
can be done only on a subset of slices rather than the whole
3D volume, which would save significant amount of manual
annotation time and efforts.

In comparison to Christiansen et al.’s 2D translation
model (34) where the image translation was formulated as a
pixel-wise classification task of 8-bit classes, our 2.5D trans-
lation model formulates the image translation as a regression
task that allows prediction of much larger dynamic range of
gray levels. While training a single model that predicts mul-
tiple structures seems appealing, this more complex task re-
quires increasing the model size with the trade-off of longer
model training time. Our modeling strategy to train one
model to predict only one target allowed us to use signifi-
cantly smaller models that can fit into the memory of a single
GPU for faster training.

We systematically evaluated how the dimensions and in-
put channels affect the prediction accuracy. Compared to
previous work that predict fluorescence images from single
label-free contrast (33–36), we show that higher prediction
accuracy can be achieved by combining multiple label-free
contrasts. Additionally, we demonstrated prediction of fluo-
rescence images of tissue, while previous work has reported
prediction of fluorescence images of cultured cells or bright-
field images of histochemically-stained tissue (33–36).

A common shortfall of machine learning approaches is
that they tend not to generalize well. We have shown that
our data normalization and training process leads to mod-
els of myelination that generalize to two developmental time
points in fig. 5. In contrast to reconstruction using physical
models, we note that the errors or artifacts in the prediction
by machine learning models are usually heterogeneous and
highly dependant on the quality of training data and the in-
put. Therefore, prediction errors made by machine learning
models can be difficult to recognize in the absence of ground
truth. For image translation in biological specimen with un-
known structures, such as prenatal human brain, it would be
crucial to also estimate the confidence interval of output val-
ues, which is an important area of research.

Several methods for tracing connectivity in the mouse
brain at mesoscale have been developed (56), but they have
not yet been scaled to human brain. The volume of fetal hu-
man brain during third trimester (105mm3− 4× 105mm3)
is 3 orders of magnitude larger than the volume of an adult
mouse brain ( ∼ 5× 102mm3). Our data shows that quanti-
tative polarized light microscopy can provide label-free mea-
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surement of myelination and axon tract orientation at high
density with ∼ 1.5µm resolution over centimeter spatial ex-
tents, in both primary human brain sections and mouse brain
sections. Our results comparing human and mouse brain sec-
tions highlight the high degree of fasciculation of axonal bun-
dles in the mouse brain compared with human. We antic-
ipate that analysis of connectivity across large brain slices
will be possible by adapting tractography algorithms devel-
oped for diffusion weighted-MRI measurements to our vec-
torial data. Scalable mapping of myelination and connec-
tivity from archival tissue of postmortem brain may enable
high-throughput mapping of mesoscale connectivity in large
brains, leading to new insights into how information process-
ing streams are organized across the developing and adult hu-
man brain.

Conclusion
In summary, we report an integrative computational imaging
approach that combines label-free imaging, reconstruction of
physical properties using image formation models, and pre-
diction of biological structures with data-driven deep neural
network models. Our Stokes-formalism based reconstruc-
tion algorithms (https://github.com/mehta-lab/
reconstruct-order) and computationally efficient
U-Net variants (https://github.com/czbiohub/
microdl) facilitate imaging and interpretation of label-
free signatures across biological scales. Our approach en-
ables simultaneous measurement of phase, retardance, orien-
tation, and degree of polarization contrasts with diffraction-
limited spatial resolution. These contrasts report variations
in density, anisotropy, and scattering of the specimen. We
demonstrated visualization of diverse biological structures:
glomeruli and tubules in mouse kidney tissue, multiple or-
ganelles in cells, and axon tracts and myelination in mouse
and human brain slices. We demonstrated multi-contrast
2.5D U-Net model for accurate and computationally efficient
prediction of biological structures from label-free contrasts.
Fluorescence predicted from label-free images is robust to in-
herent variability in labeling. We demonstrated accurate pre-
diction of ordered F-actin and nuclei in heterogeneous tissue,
as well as myelination in prenatal human brain tissue. We
anticipate that our approach will enable scalable analysis of
architectural order that underpins healthy and disease states
of cells and tissues.

Methods
Model of image formation. We describe dependence of the
polarization resolved images on the specimen properties us-
ing Stokes formalism (44, Ch.15). This representation al-
lows us to accurately measure the polarization sensitive con-
trast at the image plane for every focal plane. First, we re-
trieve the coefficients of the specimen’s Mueller matrix that
report linear birefringence, transmission, and depolarization.
For brevity, we call them ‘Mueller coefficients’ of the spec-
imen in this paper. Mueller coefficients are recovered from
the polarization-resolved intensities and an instrument matrix

that captures how Mueller coefficeints are related to intensi-
ties recorded by the microscope. Assuming that the speci-
men is mostly transparent, more specifically satisfies the first
Born approximation (39), we reconstruct specimen phase, re-
tardance, slow axis, and degree of polarization stacks from
stacks of Mueller coefficients (fig. 1). The assumption of
transparency is generally valid for the structures we are in-
terested in, but does not necessarily hold when the specimen
exhibits significant absorption or diattenuation. To ensure
that the inverse computation is robust, we need to make ju-
dicious decisions about the light path, calibration procedure,
and background estimation. A key advantage of Stokes in-
strument matrix approach is that it easily generalizes to other
polarization diverse imaging methods - A polarized light mi-
croscope is represented directly by a calibrated instrument
matrix.

For sensitive detection of birefringence, it is advanta-
geous to suppress isotropic background by illuminating the
specimen with elliptically polarized light and image with cir-
cular state of opposite handedness (25). For experiments re-
ported in this paper, we acquired data by illuminating the
specimen sequentially with right-handed circular and ellipti-
cal states and analyzed the transmitted light with left-handed
circular state.

Forward model: specimen properties → Mueller coeffi-
cients. We assume a weakly scattering specimen modeled by
properties of net retardance ρ, orientation of the slow axis ω,
transmission t, and depolarization p. The Mueller matrix of
the specimen can be expressed as a product of two Mueller
matrices, Mt, representing the transmission and depolariza-
tion parts, and Mr, representing the birefringent part of the
specimen. The expression of Mr is a standard Mueller ma-
trix of a linear retarder that can be found in (44, Ch.14), and
Mt is expressed as

Mt =


t 0 0 0
0 tp 0 0
0 0 tp 0
0 0 0 tp

 . (1)

With Mt and Mr, the Mueller matrix of the specimen is then
given by

Msm = Mt ·Mr =


m0 0 0 0
0 ∗ ∗ m1
0 ∗ ∗ m2
0 −m1 −m2 m3

 , (2)

where ∗ signs denote irrelevant entries that cannot be re-
trieved under our experiment scheme. The relevant entries
that are retrievable can be expressed as a vector of Mueller
coefficients, which is

m =


m0
m1
m2
m3

=


t

tpsin2ω sinρ
−tpcos2ω sinρ

tpcosρ

 (3)

This vector is coincidentally the Stokes vector when
right-handed circularly polarized light passing through the
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specimen. The aim of the measurement we describe in the
following paragraphs is to accurately measure these Mueller
coefficients at each point in the image plane of the micro-
scope by illuminating the specimen and detecting the scat-
tered light with mutually independent polarization states.
Once a map of these Mueller coefficients has been acquired
with high accuracy, the specimen properties can be retrieved
from the above set of equations.

Forward model: Mueller coefficients → intensities. To ac-
quire the above Mueller coefficients, we illuminate the spec-
imen with a series of right-handed circularly and elliptically
polarized light (25). The Stokes vectors of our sequential il-
lumination states are given by,

Si =


1
0
0
1


i=RCP

,


1

sinχ
0

cosχ


i=0

,


1

−sinχ
0

cosχ


i=45

,


1
0

sinχ
cosχ


i=90

,


1
0

−sinχ
cosχ


i=135

(4)

where χ is the compensatory retardance controlled by the LC
that determines the ellipticity of the four elliptical polariza-
tion states.

After our controlled polarized illumination has passed
through the specimen, we detect the light with the left-handed
circular state by having a left-handed circular analyzer in
front of our sensor. We express the Stokes vector before the
sensor as

Ssensor,i = MLCAMsmSi, (5)

where i = {RCP,0,45,90,135} depending on the illumina-
tion states, and MLCA is the Muller matrix of a left-handed
circular analyzer (44, Ch.14). The detected intensity images
are the first component of Stokes vector at the sensor under
different illuminations (Ii = [Ssensor,i]0). Stacking the mea-
sured intensity images to form a vector

I =


IRCP
I0
I45
I90
I135

 , (6)

we can link the relationship between the measured intensity
and the specimen vector through an ‘instrument matrix’ A as

I = Am, (7)

where

A =


1 0 0 −1
1 sinχ 0 −cosχ
1 0 sinχ −cosχ
1 −sinχ 0 −cosχ
1 0 −sinχ −cosχ

 . (8)

Each row of the instrument matrix is determined by the
interaction between various illumination polarization states
and the specimen’s properties. Any polarization-resolved
measurement scheme can be characterized by an instrument
matrix that transforms specimen’s polarization property to
the measured intensities. Calibration of the polarization
imaging system is then done through calibrating this instru-
ment matrix.

Computation of Mueller coefficients at image plane. Once
the instrument matrix has been experimentally calibrated, the
Stokes vector can be obtained from recorded intensities using
its inverse (compare Eq. 7),

m = A−1I, (9)

Computation of background corrected specimen properties.
We retrieved the vector of Mueller coefficients, m, by solv-
ing Eq. 9. Slight strain or misalignment in the optical compo-
nents or the specimen chamber can lead to background that
masks out contrast from the specimen. The background typi-
cally varies slowly across the field of view and can introduce
spurious correlations in the measurement. It is crucial to cor-
rect the vector of Mueller coefficients for non-uniform back-
ground birefringence that was not accounted for by the cali-
bration process. To correct the non-uniform background bire-
fringence, we acquired background polarization images at the
empty region of the specimen. We then transformed speci-
men (i = sm) and background (i = bg) vectors of Mueller
coefficients as follows,

m1
i = mi

1/m
i
3,

m2
i = mi

2/m
i
3,

DOPi =

√
(mi

1)2 + (mi
2)2 + (mi

3)2

mi
0

, (10)

We then reconstructed the background corrected proper-
ties of the specimen: brightfield (BF), retardance (ρ), slow
axis (ω), and degree of polarization (DOP) from the trans-
formed specimen and background vectors of Mueller coeffi-
cients msm and mbg using the following equations:

m1 = m1
sm−m1

bg (11)
m2 = m2

sm−m2
bg (12)

BF = msm
0 /mbg

0 (13)

ρ = arctan2
(√

m1
2 +m2

2
)

(14)

ω = 1
2 arctan2

(
m1
−m2

)
(15)

DOP = DOPsm/DOPbg (16)

When the background cannot be completely removed us-
ing the above background correction strategy with a sin-
gle background measurement, (i.e. the specimen has spa-
tially varying background birefringence), we applied a sec-
ond round of background correction on the measurements.
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In this second round, we estimated the residual transformed
background Mueller coefficients by fitting a low-order 2D
polynomial surface to the transformed specimen Mueller co-
efficients. Specifically, we downsampled each 2048× 2048
image to 64× 64 image with 32× 32 binning. We took
the median of each 32× 32 bin to be each pixel value in
the downsampled image. We then fitted a second-order 2D
polynomial surface to the downsampled image of each trans-
formed specimen Mueller coefficient to estimate the resid-
ual background. With this newly estimated background, we
performed another background correction. The effect of two
rounds of the background corrections are shown in fig. 2-
supplement S4.

Phase reconstruction. As seen from Eq. 3, the first compo-
nent in the vector of Mueller coefficients, m0, is equal to the
total transmitted intensity of electric field in the focal plane.
Assuming a specimen with weak absorption, the intensity
variations in a Z-stack encode the phase information via the
transport of intensity (TIE) equation (7). In the following,
we leverage weak object transfer function (WOTF) formal-
ism (17–22) to retrieve 2D and 3D phase from this TIE phase
contrast and describe the corresponding inverse algorithm.

Forward model for phase reconstruction. The linear relation-
ship between the 3D phase and the through focus brightfield
intensity was established in (17) with Born approximation
and weak object approximation. In our context, we refor-
mulated as

m0(r) =m0,dc +φ(r)⊗r hφ(r) +µ(r)⊗r hµ(r), (17)

where r = (r⊥,z) = (x,y,z) is the 3D spatial coordinate vec-
tor, m0,dc is the constant background of m0 component, ⊗r
denotes convolution operation over r coordinate, φ refers to
phase, µ refers to absorption, hφ(r) is the phase point spread
function (PSF), and hµ(r) is the absorption PSF. Strictly, φ
and µ are the real and imaginary part of the scattering po-
tential scaled by ∆z/2k, where ∆z is the axial pixel size of
the experiment and k is the wavenumber of the incident light.
When the refractive index of the specimen and that of the en-
vironment are close, the real and imaginary scaled scattering
potential reduce to two real quantity, phase and absorption.

When specimen’s thickness is larger than the depth of
field of the microscope (usually in experiments with high NA
objective), the brightfield intensity stack contains 3D infor-
mation of specimen’s phase and absorption. Without mak-
ing more assumptions or taking more data, this problem is
ill-posed because we are solving two unknowns from one
measurement. Assuming the absorption of the specimen is
negligible (18, 21, 22), which generally applies to transpar-
ent biological specimens, we turn this problem into a linear
deconvolution problem, where 3D phase is retrieved.

When specimen’s thickness is smaller than the depth of
field of the microscope (usually in experiments with low
NA objective), the whole 3D intensity stack is coming from
merely one effective 2D absorption and phase layer of speci-

men. We rewrite Eq. 17 as

m0(r) =m0,dc + φ(r⊥)⊗r⊥ hφ(r⊥,z)
+ µ(r⊥)⊗r⊥ hµ(r⊥,z). (18)

In this situation, we have multiple 2D defocused measure-
ments to solve for one layer of 2D absorption and phase of
the specimen.

Inverse problem for phase reconstruction. With the linear re-
lationship between the first component of the Mueller coef-
ficients vector and the phase, we then formulated the inverse
problem to retrieve 2D and 3D phase of the specimen.

When we recognize the specimen as a 3D specimen, we
then use Eq. 17 and drop the absorption term to estimate
specimen’s 3D phase through the following optimization al-
gorithm:

min
φ(r)

∑
r

∣∣m′0(r)−φ(r)⊗r hφ(r)
∣∣2 + τφReg(φ(r)), (19)

where m′0(r) = m0(r)−m0,dc, τφ is the regularization pa-
rameter for applying different degree of denoising effect, and
the regularization term depending on the choice of either
Tikhonov or anisotropic total variation (TV) denoiser is ex-
pressed

Reg(φ(r)) =


∑

r
|φ(r)|2, Tikhonov∑

r

∑
i=x,y,z

|∂iφ(r)| , TV

When using Tikhonov regularization, this optimization prob-
lem has an analytic solution that has previously described
by (18, 21, 22). As for TV regularization, we adopted alter-
nating minimization algorithm that is proposed and applied
to phase imaging in (57) and (58), respectively, to solve the
problem.

If we consider the specimen as a 2D specimen, we then
turn Eq. 18 into the following optimization problem:

min
φ,µ(r⊥)

∑
r

∣∣m′0(r)−φ(r⊥)⊗r⊥ hφ(r⊥,z)−µ(r⊥)⊗r⊥

hµ(r⊥,z)|2 + τφReg(φ(r⊥)) + τµReg(µ(r⊥)), (20)

where we have an extra regularization parameter τµ here for
the absorption. When Tikhonov regularization is selected,
the analytic solution similar to the one described in (59) is
adopted.

When the signal to noise ratio of the brightfield stack is
high, Tikhonov regularization gives satisfactory reconstruc-
tion in a single step with computation time proportional to
the size of the image stack. However, when the noise is
high, Tikhonov regularization can lead to high- to medium-
frequency artifacts. Using iterative TV denoising algorithm,
we can trade-off reconstruction speed with robustness to
noise.
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Specimen preparation. Mouse kidney tissue slices
(Thermo-Fisher Scientific) and mouse brain slices were
mounted using coverglass and coverslip. U2OS cells were
seeded and cultured in a chamber made of two strain-free
coverslips that allowed for gas exchange. In the mouse
kidney tissue slice, F-actin was labeled with Alexa Fluor 568
phalloidin and nuclei was labeled with DAPI.

Human prenatal brain samples were fixed with 4%
paraformaldehye in phosphate-buffered solution (PBS)
overnight, then rinsed with PBS, dehydrated in 30% su-
crose/OCT compound (Agar Scientific) at 4C overnight, then
frozen in OCT at -80 °C. Frozen samples were sectioned
at 12 µm and mounted on microscope slides. Sections were
stained directly with red FluoroMyelin (Thermo-Fisher Sci-
entific, 1:300 in PBS) for 20 minutes at room temperature,
rinsed 3 times with PBS for 10 minutes each, then mounted
with ProLong Gold antifade (Invitrogen) with a coverslip.

Image acquisition and registration. We implemented
LC-PolScope on a Leica DMi8 inverted microscope with
Andor Dragonfly confocal for multiplexed acquisition of
polarization-resolved images and fluorescence images. We
automated the acquisition using Micro-Manager v1.4.22 and
OpenPolScope plugin for Micro-Manager that controls liquid
crystal universal polarizer (custom device from Meadowlark
Optics, specifications available upon request).

We multiplexed the acquisition of label-free and fluores-
cence volumes. The volumes were registered using trans-
formation matrices computed from similarly acquired multi-
plexed volumes of 3D matrix of rings from the ARGO-SIM
test target (Argolight).

In transmitted light microscope, the resolution increases
and image contrast decreases with increased numerical aper-
ture of illumination. We used 63X 1.47 NA oil immersion
objective (Leica) and 0.9 NA condenser to achieve a good
balance between image contrast and resolution. The mouse
kidney tissue slice was imaged using 100 ms exposure for 5
polarization channels, 200 ms exposure for 405 nm channel
(nuclei) at 1.6 mW in the confocal mode, 100 ms exposure for
561 nm channel (F-actin) at 2.8 mW in the confocal mode.
The mouse brain slice were also imaged using 30 ms expo-
sure for 5 polarization channels. U2OS cells were imaged
using 50 ms exposure for 5 polarization channels. For train-
ing the neural network, we acquired 160 non-overlapping
2048× 2048× 45 z-stacks of the mouse kidney tissue slice
with Nyquist sampled voxel size 103nm×103nm×250nm.
Human brain sections were imaged with a 10X objective and
0.2 NA condenser with a 200 ms exposure for polarization
channels, 250 ms exposure for 568 channel (FluoroMyelin)
in the epifluorescence mode. The full brain sections were im-
aged, approximately 200 images depending on the size of the
section, with 5 z positions at each location.

Data preprocessing for model training. The images were
flat-field corrected. For training 3D models, the image vol-
umes were upsampled along Z to match the pixel size in XY
using linear interpolation. The images were tiled into 256×
256 patches with a 50% overlap between patches for 2D and

2.5D models. The volumes were tiled into 128× 128× 96
patches for 3D models with a 25% overlap along XYZ. Tiles
that had sufficient fluorescence foreground (2D and 2.5D:
20%, 3D: 50%) were used for training. Foreground masks
were computed by summing the binary images of nuclei and
F-actin obtained from Otsu thresholding in the case of mouse
kidney tissue sections, and binary images of FluoroMyelin
for the human brain sections.

Proper data normalization is essential for predicting the
intensity correctly across different fields-of-views. We found
the common normalization scheme where each image is nor-
malized by its mean and standard deviation does not pro-
duce correct intensity prediction (fig. 5 - figure supplement
S3). We normalized the images on the per dataset basis to
correct the batch variation in the staining and imaging pro-
cess across different datasets. To balance contributions from
different channels during training of multi-contrast models,
each channel needs to be scaled to similar range. Specifically,
for each channel, we subtracted its median and divided by its
inter-quartile range (range defined by 25% and 75% quan-
tiles). We used inter-quartile range to normalize the channel
because standard deviation underestimates the spread out of
the distribution of highly correlated data such as pixels in im-
ages.

Neural network architecture. We experimented with 2D,
2.5D and 3D versions of U-Net models fig. 3-supplement S1.
Across the three U-Net variants, each convolution block in
the encoding path consists of two repeats of three layers: a
convolution layer, ReLU non-linearity activation, and a batch
normalization layer. We added a residual connection from the
input of the block to the output of the block to facilitate faster
convergence of the model (47, 48). 2×2 downsampling is ap-
plied with 2×2 convolution with stride 2 at the end the each
encoding block. On the decoding path, the feature maps were
passed through similar convolution blocks, followed by up-
sampling using bilinear interpolation. Feature maps output
by every level of encoding path were concatenated to feature
maps in the decoding path at corresponding levels. The final
output block had a convolution layer only.

The encoding path of our 2D and 2.5D U-Net consists of
five layers with 16, 32, 64, 128 and 256 filters respectively,
while the 3D U-Net consists of four layers with 16, 32, 64 and
128 filters each due to its higher memory requirement. The
2D and 3D versions use convolution filters of size of 3×3
and 3×3×3 with a stride of 1 for feature extraction and with
a stride of 2 for downsampling between convolution blocks.

The 2.5D U-Net has the similar architecture as the 2D
U-Net with following differences:

1. The 3D features maps are converted into 2D using skip
connections that consist of a N×1×1 valid convolu-
tion.

2. Convolution filters in the encoding path are N×3×3,
where N = 3,5,7 is the number of slices in the input.

3. In the encoding path, the feature maps are downsam-
pled across blocks using N×2×2 average pooling.
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4. In the decoding path, the feature maps were upsampled
using bilinear interpolation by a factor of 1×2×2 and
the convolution filters in the decoding path are of shape
1×3×3.

The 2D , 2.5D, 3D network with single channel input con-
sisted of 2.0 M, 4.8M, 1.5M learnable parameters, respec-
tively.

Model training and inference. We randomly split the im-
ages in groups of 70%, 15%, and 15% for training, validation
and test. The split are kept consistent across all model train-
ing to make the results comparable. All models are trained
with Adam optimizer, L1 loss function, and a cyclic learning
rate scheduler with a min and max learning rate of 5×10−5

and 6× 10−3 respectively. The 2D, 2.5D, 3D network were
trained on mini-batches of size 64, 16, and 4 to accommo-
date the memory requirements of each 3D model. Models
were trained until the validation loss does not decrease for 20
epochs. The model with minimal validation loss was saved.
Single channel 2D models converged in 6 hours, 2.5D model
converged in 47 hours and the 3D model converged in 76
hours on NVIDIA Tesla V100 GPU with 32GB RAM.

As the models are fully convolutional, model predictions
were obtained using full XY images as input for the 2D
and 2.5D versions. Due to memory requirements of the 3D
model, the test volumes were tiled along x and y while re-
taining the entire z extent (patch size: 96× 512× 512) with
an overlap of 32 pixels along X and Y. The predictions were
stitched together by linear blending the model predictions in
the overlapping regions.

Model evaluation. Pearson correlation and structural simi-
larity index (SSIM) along the XY, XZ and XYZ dimensions
of the test volumes were used for evaluating model perfor-
mance.

The Pearson correlation coefficient between a target im-
age T and a prediction image P is defined as

r(T,P ) = σTP
σTσP

(21)

where σTP is the covariance of T and P , and σT and σP
are the standard deviations of T and P respectively.

SSIM compares two images using a sliding window ap-
proach, with window size N ×N (N ×N ×N for XYZ).
Assuming a target window t and a prediction window p,

SSIM(t,p) = (2µtµp+ c1)(2σtp+ c2)(
µ2
t +µ2

p+ c1
)(
σ2
t +σ2

p + c2
) (22)

where c1 = (0.01L)2 and c2 = (0.03L)2, and L is the
dynamic range of pixel values. Mean and variance are rep-
resented by µ and σ2 respectively, and the covariance be-
tween t and p is denoted σtp. We use N = 7. The total
SSIM score is the mean score calculated across all windows,
SSIM(T,P ) = 1

M

∑
SSIM(t,p) for a total of M windows.

For XY and XZ dimensions, we compute one test metric per

plane and for XYZ dimension, we compute one test metric
per volume.

Importantly, it is essential to scale the the model predic-
tion back to the original range before normalization for cor-
rect calculation of target-prediction SSIM. This is because
unlike Pearson correlation coefficient, SSIM is not a scale-
independent metrics.
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Supplementary figures

Figure 2 - supplement S1. Comparison of background-corrected brightfield image (top) with quantitative phase image (bottom) of a mouse brain slice. The phase image
reports density variations at higher contrast. These images are stitches of 48 fields of view and are substantially downsampled to reduce size.
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Figure 2 - supplement S2. Retardance (top) and orientation (bottom) measurements of a mouse brain slice, which report structural anisotropy and slow axis orientation,
respectively. We needed to compress the measured dynamic range of retardance and orientation by using gamma correction (0.5) to visualize less anisotropic gray matter
in the presence of highly anisotropic white matter. These images are stitches of 48 fields of view and are substantially downsampled to reduce size. The peak retardance is
50nm.
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Figure 2 - supplement S3. Degree of polarization (DOP) images for four specimens shown in fig. 2. When the specimen does not exhibit multiple scattering or diattenuation,
DOP = 1. The DOP decreases when the specimen exhibits multiple scattering and increases when the specimen exhibits diattenutation, i.e., polarization-dependent
absorption.
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Figure 2 - supplement S4. Effect of background correction methods on reconstructed retardance and phase of the U2OS cell. When the specimen has intrinsically low
birefringence, background correction methods have a large impact on the reconstructed retardance and slow axis orientation. However, the background correction has
no significant impact on phase reconstruction. (Left column) Reconstructions without background correction. (Middle column) Background-corrected reconstruction using
an experimental images of empty region next to the cells (Right column) Background-corrected reconstruction using images estimated by fitting a very smooth surface to
specimen image.
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Figure 3 - supplement S1. Schematic illustrating U-Net architectures: Schematic of 2D U-Net model used for translating slice→slice and 2.5D U-Net model used for
translating stack→slice. The 3D U-Net model used for translating stack->stack is similar to the 2D U-Net, but uses 3D convolutions instead of 2D and is 4 layers deep instead
of 5 layers deep.
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Figure 5 - supplement S1. Label-free images and predicted Fluoromyelin images of a slice of human brain at gestational week 24 (GW24): (A) retardance (ρ),
orientation (ω), brightfield (BF), and phase (φ) images from a field of view drawn from a test dataset, (B) experimental Fluoromyelin (target), (C) Fluoromyelin predicted by
image translation models using different label-free images as inputs: (left to right) retardance, orientation, and brightfield as input to 2.5D model; retardance, orientation, and
phase as input of 2D model; retardance and orientation as input to 2.5D model. Insets at the bottom show label-free, target, and predicted images within cortical plate (CP)
and subplate (SP) at higher magnification. Scale bars: (A-C) 600µm, (insets) 100µm.
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Figure 5 - supplement S2. Label-free images and predicted Fluoromyelin images of a slice of human brain at gestational week 20 (GW20): The data is presented in
the same way as fig. 5-supplement S1.
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Normalized per field of view Normalized per dataset

Figure 5 - supplement S3. Normalizing training data per dataset yields prediction with correct dynamic range of intensity: Predictions of FluoroMyelin in GW20
human brain tissue slice with training data normalized per field of view (left) and across dataset (right).
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Videos

Video 1. Z-stacks of brightfield , phase, retardance, and orientation images of mouse kidney tissue. The same field of view is shown in fig. 2, fig. 3, and fig. 4.
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Video 2. Time-lapse of phase, retardance, and slow axis orientation in a dividing U2OS cell shows differences in density and anisotropy of organelles. The same field of view
is shown in fig. 2.

Video 3. 3D rendering of the time-lapse showing diverse structures color coded by their retardance and phase in U2OS cells shown in fig. 2. Phase values from low to high
are color-coded with magenta, cyan, and green, respectively. Retardance values are color-coded with yellow. With this pseudo-color scheme, cytoplasm appears in magenta,
chromatin appears in magenta and changes to blue as it condenses to chromosomes, nucleoli appear in blue, lipid vesicles appear in green surrounded by yellow rings, and
spindles appear in yellow .
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Video 4. Through focus series showing 3D F-actin distribution in the test field of view shown in fig. 3: We show F-actin distribution (labeled with phalloidin-AF568) acquired
on a confocal microscope (target), as well as predicted from 2D, 2.5D, and 3D models trained to translate retardance distribution into fluorescence distributions.
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Video 5. Through focus series showing 3D F-actin and nuclei distribution in the test field of view shown in fig. 4: We show overlays of F-actin (phalloidin-AF568) distribution
in green and nuclei (DAPI) distribution in magenta DAPI as acquired on confocal (target) and as predicted from models. Predictions were obtained from 2.5D models trained
on retardance (ρ) alone, phase (φ) alone, and on combination of retardance, orientation, phase (ρ,ω,φ).
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