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Abstract 28 

Recent developments in stem cell biology have enabled the study of cell fate decisions in early 29 
human development that are impossible to study in vivo. However, understanding how 30 
development varies across individuals and, in particular, the influence of common genetic 31 
variants during this process has not been characterised. Here, we exploit human iPS cell lines 32 
from 125 donors, a pooled experimental design, and single-cell RNA-sequencing to study 33 
population variation of endoderm differentiation. We identify molecular markers that are 34 
predictive of differentiation efficiency, and utilise heterogeneity in the genetic background 35 
across individuals to map hundreds of expression quantitative trait loci that influence 36 
expression dynamically during differentiation and across cellular contexts.  37 
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Introduction 38 

The early stages of human embryogenesis involve dramatic and dynamic changes in cellular 39 
states. However, the extent to which an embryo’s genetic background influences this process 40 
has only been determined in a small number of special cases linked to rare large-effect 41 
variants that cause developmental disorders. This lack of information is critical - it can provide 42 
a deep understanding of how genetic heterogeneity is tolerated in normal development, when 43 
controlling the expression of key genes is vital. Additionally, with cellular reprogramming 44 
becoming an increasingly used tool in molecular medicine, understanding how inter-individual 45 
variability effects such differentiations is key. 46 
 47 
Critically, recent technological developments have begun to facilitate such studies in vitro. In 48 
particular, the generation of population-scale collections of human induced pluripotent stem 49 
cells (iPSCs) [1,2] has allowed for assessing regulatory genetic variants in pluripotent [1,2] as 50 
well as in differentiated cells [3–5]. In addition, the rapid developments in single-cell RNA-seq 51 
now allow for assessing the molecular impact of genetic variability in a continuous manner 52 
across early human development. 53 
 54 
Here, we use a pooled cell differentiation assay to study endoderm differentiation across a set 55 
of 125 human iPSC lines, profiling changes in gene expression via single-cell RNA-56 
sequencing at 4 developmental timepoints [6]. Our study not only allows discovery of hundreds 57 
of novel expression Quantitative Trait Loci (eQTL) that vary across differentiation, but also 58 
enables the uncovering of genetic variants that impact the rate at which a cell line 59 
differentiates. Finally, we generalise approaches from studies of the interaction between 60 
genotype and environment (GxE) by leveraging the single-cell resolution of our study to 61 
investigate the interplay between genetic factors and cellular states.  62 
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Population-scale single-cell profiling of differentiating iPS cells 63 

We considered a panel of well-characterized human iPSC lines derived from 125 unrelated 64 
donors from the Human Induced Pluripotent Stem Cell initiative (HipSci) collection [1]. In order 65 
to increase throughput and mitigate the effects of batch variation, we exploited a novel pooled 66 
differentiation assay, combining sets of four to six lines in one well prior to differentiation (28 67 
differentiation experiments performed in total; hereon “experiments”; Fig. 1A, S1, S2). Cells 68 
were collected at four differentiation time points (iPSC; one, two and three days post initiation 69 
- hereon day0, day1, day2 and day3) and their transcriptomes were assayed using full-length 70 
RNA-sequencing (Smart-Seq2 [7]) alongside the expression of selected cell surface markers 71 
using FACS (TRA-1-60, CXCR4; Fig. S3, S4; Methods). Following quality control (QC), 72 
36,044 cells were retained for downstream analysis, across which 11,231 genes were 73 
expressed (Fig. S5; Methods). Exploiting that each cell line’s genotype acts as a unique 74 
barcode, we demultiplexed the pooled cell populations, enabling identification of the cell line 75 
of origin for each cell (similar to [8]; Methods). At each time point, cells from between 104 and 76 
112 donors were captured, with each donor being represented by an average of 286 cells 77 
(after QC, Fig. S2; Tables S1, S2;  Methods). The success of the differentiation protocol was 78 
validated using canonical cell-surface marker expression: consistent with previous studies [9], 79 
an average of 72% cells were TRA-1-60(+) in the undifferentiated state (day0) and an average 80 
of 49% of cells were CXCR4(+) three days post differentiation (day3; Fig. S3). 81 
 82 
Variance component analysis across all genes (using a linear mixed model; Methods) 83 
revealed the time point of collection as the main source of variation, followed by the cell line 84 
of origin and the experimental batch (Fig. 1B). Consistent with this, the first Principal 85 
Component (PC) was strongly associated with differentiation time (Fig. 1C, S6; Methods), 86 
motivating its use to order cells by their differentiation status (hereafter “pseudotime”, Fig. 1C). 87 
Alternative pseudotime inference methods yielded similar orderings (Fig. S7; Methods). 88 
 89 
Critically, the expected temporal expression dynamics of marker genes that characterise 90 
endoderm differentiation was captured by the ordering of cells along the inferred pseudotime 91 
(Fig. 1D). Exploiting these markers of differentiation progress and pseudotime, we assigned 92 
28,971 cells (~80%) to one of three canonical stages of endoderm differentiation: iPSC, 93 
mesendoderm (mesendo) and definitive endoderm (defendo) (Fig. 1C, S8; Methods). A 94 
smaller fraction of cells (N = 7,073) could not be confidently assigned to a canonical stage of 95 
differentiation; these cells were heavily enriched for those collected at day2, when rapid 96 
changes in molecular profiles are expected, reflecting a transitional population of cells. 97 
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 98 
 99 
 100 
Figure 1 | Single-cell endoderm differentiation of pooled iPSC lines.  101 
(A) Overview of the experimental design. iPSC lines from 125 genotyped donors were pooled in sets of 102 
4-6, across 28 experiments, followed by differentiation towards definitive endoderm. Cells were  103 
sampled every 24 hours (Methods) and molecularly profiled using scRNA-seq and FACS. (B) Variance 104 
component analysis of 4,546 highly variable genes, using a linear mixed model fit to individual genes 105 
to decompose expression variation into time point of collection, cell line and experimental batch 106 
(Methods). (C) Top: Principal component analysis of gene expression profiles for 36,044 QC-passing 107 
cells. Cells are coloured by the time point of collection. Bottom: Cells are ordered by pseudotime, 108 
defined as the first principal component (PC1). From left to right, cells transition from a pluripotent state 109 
to definitive endoderm. (D) Single cell expression (y axis) of selected markers for each developmental 110 
stage, spanning iPSC (NANOG), mesendo (T), and defendo (GATA6) stages, plotted along pseudotime 111 
(x axis).   112 
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Pseudo-temporal ordering yields stage-specific eQTL 113 

Motivated by the observation that a substantial fraction of variability in gene expression was 114 
explained by cell-line effects (Fig. 1B), we tested for associations between common genetic 115 
variants and gene expression at the three defined stages of cell differentiation (Fig. 1C). 116 
Briefly, for each donor, experimental batch, and differentiation stage, we quantified each 117 
gene’s average expression level (Methods), before using a linear mixed model to test for cis 118 
eQTL, adapting approaches used for bulk RNA-seq profiles (+/- 250kb, MAF > 5% [1]; 119 
Methods). In the iPSC population (day0), this identified 1,833 genes with at least one eQTL 120 
(denoted eGenes; FDR < 10%; 10,840 genes tested; Table S3). To validate our approach, we 121 
also performed eQTL mapping using deep bulk RNA-sequencing data from the same set of 122 
iPSC lines (“iPSC bulk”; 10,736 genes tested), yielding consistent eQTL (~70% replication of 123 
lead eQTL effects; nominal P < 0.05; Methods; Table S4). 124 
 125 
Analogously, we mapped eQTL in the mesendo and defendo populations, yielding 1,702 and 126 
1,342 eGenes respectively. For comparison, we also performed eQTL mapping in cells 127 
collected on day1 and day3 -- the experimental time points commonly used to identify cells at 128 
mesendo and defendo stages [6]. Interestingly, this approach identified markedly fewer 129 
eGenes (1,181 eGenes at day1, and 631 eGenes at day3), demonstrating the power of using 130 
the single-cell RNA-seq profiles to define relatively homogeneous differentiation stages in a 131 
data-driven manner (Fig. 2B, S9; Methods; Table S5). 132 
 133 
Profiling multiple stages of endoderm differentiation allowed us to assess at which stage along 134 
this process individual eQTL can be detected. We observed substantial regulatory and 135 
transcriptional remodelling upon iPS differentiation to definitive endoderm, with over 30% of 136 
eQTL being specific to a single stage (Fig. 2A, 2C; Methods). Our differentiation time course 137 
covers developmental stages that have never before been accessible to genetic analyses of 138 
molecular traits. Consistent with this, 349 of our eQTL variants at the mesendo and defendo 139 
stages have not been reported in either a recent iPSC eQTL study based on bulk RNA-seq 140 
[10], or in a compendium of eQTL identified from 49 tissues as part of the GTEx project [11] 141 
(linkage disequilibrium, LD: r2 < 0.2; Methods; Table S3). 142 
 143 
In addition to these novel eQTL, we identified lead switching events for 155 eGenes, that is 144 
distinct lead eQTL variants for the same gene at different stages of differentiation (LD: r2 < 0.2; 145 
Methods). To investigate the potential regulatory role of such variants, we examined whether 146 
the corresponding genetic loci also featured changes in histone modifications during 147 
differentiation. Specifically, we used ChIP-Sequencing to profile five histone modifications 148 
associated with gene and enhancer usage (H3K27ac, H3K4me1, H3K4me3, H3K27me3, 149 
H3K36me3) in hESCs that were differentiated (using the same protocol employed above) 150 
towards endoderm and measured at equivalent time points (i.e. day0, day1, day2, day3; 151 
Methods). Intriguingly, for 20 of the lead switching events, we observed corresponding 152 
changes in the epigenetic landscape (stage-specific lead variants overlap with stage-specific 153 
changes in histone modification status), suggesting a direct mode of action (Fig. 2D). 154 
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 155 
 156 
Figure 2 | Mapping single-cell eQTL in each developmental stage. (A) Illustration of the single cell 157 
eQTL mapping strategy at different stages of differentiation. Shown is an example of an eQTL that is 158 
specific to the defendo stage. Boxplots of gene expression stratified by the allelic state of rs9648854 at 159 
each stage, showing an association between rs9648854 and CNTNAP2 expression at the defendo 160 
stage, but not at earlier stages. (B) Comparison of eQTL mapping using different strata of all cells. 161 
Stage definition based on pseudotime ordering increases the number of detectable eQTL, compared to 162 
using the time point of collection. Bars represent number of eGenes (genes with at least one eQTL, at 163 
FDR < 10%). (C) Proportion of eQTL that are specific to a single stage, shared across two stages, or 164 
observed across all stages (sharing defined as a lead eQTL variant at one stage with nominal significant 165 
effects P < 0.05 and consistent direction at another stage). (D) A lead switching event consistent with 166 
epigenetic remodelling. The overlap of H3K4me1 with the eQTL SNPs across differentiation time points 167 
is indicated by the coloured bars.  168 
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eQTL variants and early molecular markers are predictive of 169 

differentiation efficiency 170 

Previous studies have demonstrated that iPSC lines vary in their capacity to differentiate [12]. 171 
As a measure of differentiation efficiency in our experiments, we  used average pseudotime 172 
on day3, and observed significant variation across cell lines, which was consistent across 173 
replicate differentiations of the same cell line (Fig. 3A). Exploiting the scale of our study and 174 
the pooled experimental design, we set out to identify genetic and molecular markers of 175 
differentiation efficiency that are accessible prior to differentiation (Methods). 176 
 177 
First, we considered the set of 4,422 eQTL lead variants at any of the three developmental 178 
stages and tested each variant for association with differentiation efficiency (Fig. 3B; using a 179 
linear mixed model; Methods). This identified 5 eQTL variants at a lenient false discovery rate 180 
threshold (FDR 20%; Fig. 3B, Table S6). The most significant associations were observed 181 
with eQTL variants for DPH3 (P = 3.9e-5) and H2AFY2 (P = 1e-4). Loss of DPH3 results in an 182 
embryonic lethal phenotype in mice [13], while the effect direction of the eQTL variant for 183 
H2AFY2 was consistent with observations that knockdown of this gene inhibits endoderm 184 
differentiation of human iPSCs in vitro [14]. In order to further investigate these associations, 185 
we used staining for the percentage of CXCR4+ as an independent measure of differentiation 186 
efficiency [15]. CXCR4+ staining data on the same lines enabled replication of 3/5 of these 187 
associations (P < 0.05; one-tailed test). We also performed an additional set of differentiations 188 
in iPSC lines derived from individuals that were not part of the variant discovery, selected 189 
based on genotype at the DPH3 eQTL locus (n = 20). While the direction of effect was 190 
consistent, the association was not statistically significant (P = 0.24), likely reflecting low power 191 
at this sample size. Collectively, these results indicate that our approach can reveal genetic 192 
determinants of in vitro differentiation efficiency. 193 
 194 
Having identified genetic markers associated with differentiation capacity we next asked 195 
whether the average expression level of genes at the iPSC stage could represent molecular 196 
markers of differentiation efficiency. This revealed 38 associations (FDR 10%, 11,231 genes 197 
tested; Table S7), 15 of which were also observed when using independent bulk RNA-seq 198 
data from the same cell lines (replication defined as nominal P < 0.05; Table S7; Methods). 199 
As an example, the expression of ZDHHC9 in iPSCs was negatively associated with 200 
differentiation efficiency (Fig. 3C). Furthermore, ZDHHC9 is one of 17 differentiation-201 
associated genes located on the X chromosome, reflecting a significant enrichment of X 202 
chromosome genes (24.5-fold enrichment, P = 8x10-16, Fisher’s exact test). Higher expression 203 
of these genes was associated with reduced differentiation efficiency (Fig. 3C; Methods). The 204 
majority of these associations persisted when limiting the analysis to female lines (14/17 at P 205 
< 0.05), indicating variation beyond differences between sexes. These results are consistent 206 
with previous observations that X chromosome reactivation is a marker of poor differentiation 207 
capacity of iPSCs in general [16,17]. Finally, we note that the set of associated genes located 208 
on other chromosomes included genes with known roles in iPSC differentiation, such as TBX6 209 
[18]. 210 
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 211 
 212 

Figure 3 | Identification of molecular markers for differentiation efficiency.  213 
(A) Variation in differentiation efficiency across cell lines. Left: Differentiation progress over time, 214 
showing trajectories for 98 cell lines, coloured by differentiation efficiency. Shown are 98 cell lines with 215 
sufficient data at all time points (out of 126, more than 10 cells). Differentiation efficiency of a cell line 216 
was defined as the average pseudotime across all cells on day 3. Right: Differentiation efficiency across 217 
cell lines (points), and consistency of individual cell lines differentiated in multiple experiments (vertical 218 
bars). (B) Effects of genetic variation on differentiation efficiency. Left: schematic. Center: Manhattan 219 
plot displaying negative log P values for association tests between 4,422 lead eQTL variants and 220 
differentiation efficiency. Highlighted is an association for an eQTL variant for DPH3. Horizontal red line 221 
denotes FDR = 20% (Benjamini-Hochberg adjusted). Right: Boxplot displaying differentiation efficiency 222 
for 125 individuals stratified by the allelic state of rs73138519 (mesendo eQTL for DPH3), which is 223 
associated with decreased differentiation efficiency (Methods). (C) Associations between iPSC gene 224 
expression levels and differentiation efficiency. Left: schematic. Center: Genome-wide analysis to 225 
identify markers of differentiation efficiency, considering iPSC gene expression levels. Displayed are 226 
negative log P values signed by the direction of the effect. Horizontal blue lines denote FDR = 10% 227 
(Benjamini-Hochberg adjusted). Autosomal genes with significant associations are shown in blue; X 228 
chromosome genes with significant associations are shown in red. Right: Scatter plot between gene 229 
expression in the iPS state and differentiation efficiency for the X chromosome gene ZDHHC9. 230 
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Discovery of dynamic eQTL across iPSC differentiation 231 

The availability of large numbers of cells per donor across the differentiation trajectory enabled 232 
the analysis of dynamic changes of eQTL strength at fine-grained resolution. Using a sliding-233 
window approach (25% cells in each window, sliding along pseudotime by a step of 2.5% 234 
cells), we assessed how the joint set of 4,422 eQTL lead variants (4,470 SNP-gene pairs) 235 
discovered at the iPSC, mesendo, and defendo stages were modulated by developmental 236 
time. To do this, we reassessed each eQTL in each window, recording a SNP effect size per 237 
window (Methods). As a complementary approach, we also took advantage of the full length 238 
transcript sequencing to measure allele-specific expression (ASE) in each window (Fig. 4A 239 
top panel; Methods). Here, in each window, we quantified the deviation from 0.5 of the 240 
expression of the minor allele at the eQTL (ratio of reads phased to eQTL variants, Methods). 241 
Both methods result in a measure of the varying strength of genetic effects along development, 242 
or genetic effect dynamics. Reassuringly, the two approaches were highly consistent across 243 
pseudotime (Fig. 4A, S10). 244 
 245 
To formally test for eQTL effects that change dynamically across differentiation (dynamic 246 
QTL), we tested for associations between pseudotime and the genetic effect size (defined 247 
based on ASE; likelihood ratio test, considering linear and quadratic pseudotime), uncovering 248 
a total of 785 time dynamic eQTL (FDR < 10%; Methods), including a substantial fraction of 249 
eQTL that were not stage-specific (Table S3). This complements our earlier analysis, which 250 
identified substantial stage-specific effects (Fig. 2A, 2C), by identifying subtle changes in the 251 
relationship between genotype and phenotype during differentiation. To further explore this 252 
set of genes, we clustered eQTL jointly based on the relative gene expression dynamics 253 
(global expression changes along pseudotime, quantified in sliding windows as above, 254 
Methods), and on the genetic effect dynamics (Fig. 4A; Methods). This identified four basic 255 
dynamic patterns (Fig. 4B): sharply decreasing (cluster A), gradually decreasing (cluster B), 256 
transiently increasing (cluster C), and gradually increasing (cluster D). As expected, stage-257 
specific eQTL were grouped together in particular clusters (e.g. defendo specific eQTL in 258 
cluster D; Fig. S11). Notably, the gene expression dynamics and the eQTL dynamics tended 259 
to be distinct, demonstrating that gene expression level is not the primary mechanism 260 
governing variation in genetic effects. In particular, genetic effects were not most pronounced 261 
when gene expression was high (Fig. 4C, 4D). 262 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/630996doi: bioRxiv preprint 

https://doi.org/10.1101/630996
http://creativecommons.org/licenses/by/4.0/


10 

 263 
 264 
Figure 4 | eQTL dynamics during differentiation.  265 
(A) Combined analysis of the gene expression, ASE, and eQTL dynamics across pseudotime. Upper 266 
panels: Schematic of sliding window approach. Cells are binned according to pseudotime groups, to 267 
quantify average expression, perform an eQTL analysis, and quantify average ASE (each bin includes 268 
25% of cells, binned at increments of 2.5%). Lower panels: clustered heatmap of expression levels, 269 
eQTL effects, and ASE across pseudotime for the top 311 genes with the strongest dynamic QTL effects 270 
(FDR < 1%; out of 785 at FDR < 10%; Methods). For each gene, the  expression and the ASE dynamics 271 
were jointly grouped using  clustering analysis, with 4 clusters. The membership of gene expression 272 
and ASE dynamics of these 4 clusters is indicated by colours in the right-hand panel. Values in all 273 
heatmaps are z-score normalised by row. For ASE, average ASE values are plotted such that red 274 
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indicates highest deviation from 0.5. (B) Summary of the identified cluster dynamics, displaying the 275 
average dynamic profile of each cluster, computed as the average across z-score normalized gene 276 
expression/ASE profiles. (C) Exemplars of the dynamic gene expression and dynamic genetic effects 277 
clusters shown in A. Shaded regions indicate standard error (+/- 1 SEM; Methods). (D) Number of 278 
genes categorized by the combination of expression and ASE cluster from A. Average dynamics of 279 
expression clusters (rows) and ASE clusters (columns) as in B are shown. (E) Overlap of dynamic eQTL 280 
variants from A with histone marks. The odds ratio compared to the background of all other eQTL 281 
variants is shown (*P < 0.01; **P < 1x10-4; Fisher’s exact test). 282 
 283 
 284 
Distinct combinations of expression and eQTL dynamics result in different patterns of allelic 285 
expression. This is illustrated by the mesendoderm-specific eQTL for SPP1. Overall 286 
expression of SPP1 decreases during differentiation, but expression of the alternative allele is 287 
repressed more quickly than that of the reference allele (Fig. 4C). This illustrates how cis 288 
regulatory sequence variation can modulates the timing of expression changes in response to 289 
differentiation, similar to observations previously made in C. elegans using recombinant inbred 290 
lines [19]. In other cases, the genetic effect coincides with high or low expression, for example 291 
in the cases of IRF6 and AACS (Fig. 4C). These examples illustrate how genetic variation is 292 
intimately linked to the dynamics of gene regulation.  293 
 294 
We next asked whether dynamic eQTL were located in specific regulatory regions. To do this, 295 
we evaluated the overlap of the epigenetic marks defined using the hESC differentiation time 296 
series with the dynamic eQTL (Fig. 4D, S12). This revealed an enrichment of dynamic eQTL 297 
in H3K27ac, H3K4me1 (i.e. enhancer marks), and H3K4me3 (i.e. promoter) marks compared 298 
to non-dynamic eQTL (i.e. eQTL that we identified but did not display dynamic changes along 299 
pseudotime, Fig. 4D), consistent with these SNPs being located in active regulatory elements. 300 
 301 

Cellular environment modulates genetic effects on expression 302 

Whilst differentiation was the main source of variation in the dataset, single cell RNA-seq 303 
profiles can be used to characterize cell-toll-cell variation across a much wider range of cell 304 
state dimensions [20–22]. We identified sets of genes that varied in a co-regulated manner 305 
using clustering (affinity propagation; 8,000 most highly expressed genes; Table S8; 306 
Methods), which identified 60 modules of co-expressed genes. The resulting modules were 307 
enriched for key biological processes such as cell differentiation, cell cycle state (G1/S and 308 
G2/M transitions), respiratory metabolism, and sterol biosynthesis (as defined by Gene 309 
Ontology annotations; Table S9). These functional annotations were further supported by 310 
transcription factor binding (e.g. enrichment of SMAD3 and E2F7 targets in the differentiation 311 
and cell cycle modules, respectively (Table S10, S11)). Additionally, expression of the cell 312 
differentiation module (cluster 6;  Table S9) was correlated with pseudotime, as expected (R 313 
= 0.62; Fig. S7). 314 
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 315 
 316 

Figure 5 | Allele-specific expression reveals interactions with fundamental cellular processes.  317 
(A) Illustration of eQTL affected by cellular context. Left: Schematic of cellular contexts affecting a 318 
regulatory element containing an eQTL SNP, and thus affecting allele-specific expression. Right: Allele-319 
specific expression variation for two exemplar eQTL SNPs that tag cancer GWAS variants and display 320 
GxE interactions (FDR < 10%). The eQTL for RNASET2 (rs2247315) tags a risk variant for basal cell 321 
carcinoma, and is responsive to cellular respiration, while that for PPP1R14A (rs12608912) tags a risk 322 
variant for prostate cancer and is responsive to the cell cycle G1/S transition (Table S12). Cellular 323 
contexts for each cell were inferred by GO annotations of coexpression modules (Methods). Shaded 324 
regions indicate standard error (+/- 1 SEM; Methods). (B) Results summary: numbers of eQTL (from 325 
Fig.2; Methods) identified as displaying GxE interactions with pseudotime (purple), displaying GxE 326 
interactions with other cellular contexts but not with pseudotime, (after appropriately accounting for 327 
pseudotime, red), displaying GxE interactions with both pseudotime and at least one other cellular 328 
context (yellow), and displaying no GxE interactions at all (grey). Significance is assessed at FDR < 329 
10%. (C) Higher order interaction example: an eQTL variant for RPS26 (rs10876864) is affected by a 330 
GxExE higher order interaction with both pseudotime and respiration. This variant is also a risk variant 331 
for allergic disease and vitiligo. Left panel: Effects of respiration state on ASE for cells with low and 332 
high pseudotime. Lines shown are linear regressions with 95% confidence intervals for the 30% of cells 333 
with lowest and highest values for pseudotime. Right panel: Heatmap of averaged ASE for cells falling 334 
within the specified windows of pseudotime and respiration state. Only values for windows containing 335 
n > 30 cells are shown (n = 17,373 cells in total).   336 
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Using the same ASE-based interaction test as applied to identify dynamic QTL, reflecting ASE 337 
variation across pseudotime (Fig. 4; Methods), we assessed how the genetic regulation of 338 
gene expression responded to these cellular contexts. Briefly, we tested for genotype by 339 
environment (GxE) interactions using a subset of four co-expression modules as markers of 340 
cellular state, while accounting for pseudotime (Fig. 5A; Methods). These four co-expression 341 
modules were annotated based on GO term enrichment, and taken as markers representing 342 
cell cycle state (G1/S and G2/M transitions) and metabolic pathway activity (respiratory 343 
metabolism and sterol biosynthesis; Methods). This approach extends previous work using 344 
ASE to discover GxE interactions [23,24], taking advantage of the resolution provided by 345 
single-cell data. We identified 686 eQTL that had an interaction effect with at least one factor 346 
(Fig. 5B; FDR < 10%), with many of these effects being orthogonal to the effects of 347 
differentiation. Indeed, 394 genes had no association with pseudotime, but responded to at 348 
least one other factor. Conversely, of the 785 dynamic eQTL, 292 were also associated with 349 
other factors, while 493 were associated only with pseudotime (Fig. 5B, S13; Tables S13; 350 
Methods).  351 
 352 
These interactions encompass regulatory effects on genes and SNPs with important functional 353 
roles. Specifically, 145 interaction eQTL variants overlap with variants previously identified in 354 
genome-wide association studies (GWAS, LD r2 > 0.8; Methods; Table S12), including seven 355 
risk variants for cancer (EFO term: EFO_0000311). For example, an eQTL for RNASET2 356 
shows sensitivity to cellular respiratory metabolic state (Fig. 5A). This eQTL SNP is in strong 357 
LD (r2 = 1.0) with a GWAS risk variant for basal cell carcinoma [25]. Furthermore, an eQTL for 358 
PPP1R14A showed sensitivity to the G1/S state, and is in LD (r2 = 0.81) with a GWAS risk 359 
variant for prostate cancer [26] (Fig. 5A). The onset of cancer affects cellular respiratory 360 
metabolism and cell cycle progression [27], raising the possibility that the effects of these 361 
variants are enhanced during oncogenesis. These examples illustrate the versatility of our 362 
single cell dataset and how it can provide regulatory information about variants in contexts 363 
beyond early human development. 364 
 365 
Finally, we explored whether we could detect higher order interaction effects, where the 366 
genetic effect varies with a cellular state in different ways along differentiation, effectively 367 
testing for GxExE interactions. To this end, we fitted a linear model with fixed effects for 368 
differentiation and each of the factors, plus a combined term (factor x pseudotime, Fig. 5B, 369 
5C; Methods). This identified 220 genes with significant higher order interactions between a 370 
genetic variant, differentiation, and at least one other factor (Fig. 5B, 5C, S13; Table S13d). 371 
One example is the eQTL for RPS26, whose ASE was sensitive to cellular respiration, but 372 
only late in differentiation (Fig. 5C). This eQTL variant (rs10876864) is a risk variant for allergic 373 
disease and vitiligo [28,29]. These results highlight the context-specificity of eQTL, and the 374 
power of scRNA-seq in dissecting this specificity within one set of experiments.  375 
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Discussion 376 

Our map of early endoderm differentiation across 125 individuals offers a unique and powerful 377 
tool for interrogating the role of genetic heterogeneity in early human development. We 378 
exploited this resource to identify hundreds of novel eQTL that act at tightly-defined time points 379 
during early differentiation, and at specific states, thus fully utilising the power of single-cell 380 
transcriptomics. Moreover, we used our map and an independent experimental validation 381 
assay to demonstrate that specific germline variants have the potential to alter the rate of 382 
differentiation. 383 
 384 
More generally, this latter analysis elucidates the broad utility of our data for studying the role 385 
of genetic variation in regenerative medicine and normal development. In the case of definitive 386 
endoderm differentiation, the in vitro protocol is short and efficient, the molecular basis is 387 
relatively well understood, and the process is highly canalised [30]. However, most 388 
differentiation protocols are less well understood, less efficient, more variable, and require 389 
more time. Thus, we expect application of this approach in other contexts to expand our 390 
molecular understanding, improve protocol efficiency, and characterise the genetic 391 
component of differentiation across the spectrum of human development and cellular contexts.  392 
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Methods 393 

Overview: pooled scRNA-seq profiling during endoderm differentiation 394 

A total of 126 pluripotent stem cell (iPSC) lines derived from 125 donors as part of the HipSci 395 
project were considered for analysis (Table S1). Batches of 4-6 cell lines were co-cultured 396 
and grown as a mixed population for a total of 28 experiments, in 12 well plates. Cells were 397 
harvested immediately prior to the initiation of differentiation (day0; iPSCs), and at time points 398 
1, 2, and 3 days post differentiation initiation (day1, day2, day3). Subsequently, single cells 399 
were sorted into 384 well plates. Cells were processed using Smart-seq2 for scRNA-seq with 400 
parallel FACS analysis of the markers TRA-1-60 and CXCR4 being performed for each cell. 401 
A subset of cell lines were assayed in more than one experiment (33 donors; Table S1, S2; 402 
Fig. S2). In addition to the differentiation of pools of cell lines by co-culture for scRNA-seq, 403 
cell lines were also differentiated individually and assayed by FACS for the percentage of 404 
CXCR4+ cells on day3, following the same protocol. These individual differentiations were 405 
performed in two phases. First, individual differentiations of cell lines included in the scRNA-406 
seq experiments were performed in parallel with the single-cell experiments. Second, an 407 
independent set of differentiations of new cell lines (i.e. cell lines derived from individuals not 408 
represented in the first set of cell lines), selected by genotype in order to validate the genetic 409 
association with differentiation, were performed as separate experiments. 410 

Cell culture for maintenance and differentiation 411 

Human iPSC lines were thawed for differentiation and maintained in Essential 8 (E8) media 412 
(LifeTech) according to the manufacturer's instructions. Prior to plating for differentiation, cells 413 
were passaged at least twice after thawing and always 3 - 4 days before plating for 414 
differentiation to ensure all the cell lines in each experiment were growing at a similar rate 415 
prior to differentiation. To plate for endoderm differentiation, cells were washed 1x with DPBS 416 
and dissociated using StemPro Accutase (Life Technologies, A1110501) at 37°C for 3 - 5 min. 417 
Colonies were fully dissociated through gentle pipetting. Cells were resuspended in MEF 418 
medium [6], passed through a 40µm cell strainer, and pelleted gently by centrifuging at 300xg 419 
for 5 min. Cells were re-suspended in E8 media and plated at a density of 15,000 cells per 420 
cm2 in gelatin/MEF coated plates [6,31] in the presence of 10 µM Rock inhibitor – Y27632 [10 421 
mM] (Sigma, Cat # Y0503 - 5 mg). Media was replaced with fresh E8 free of Rock inhibitor 422 
every 24 hours post plating. Differentiation into definitive endoderm commenced 72 hours post 423 
plating as previously described [6]. The overall efficiency of the differentiation protocol was 424 
validated using reference lines with good and poor differentiation capacity, respectively (Fig. 425 
S14). 426 

Single cell preparation and sorting for scRNAseq 427 

Cells were dissociated into single cells using Accutase and washed 1x with MEF medium as 428 
described above. For all subsequent steps, cells were kept on ice to avoid degradation.  429 
Approximately 1 x 106 cells were re-suspended in PBS + 2% BSA + 2 mM EDTA (FACS 430 
buffer); BSA and PBS were nuclease-free. For staining of cell surface markers TRA-1-60 431 
(BD560380) and CXCR4 (eBioscience 12-9999-42), cells were re-suspended in 100 µL of 432 
FACS buffer with enough antibodies to stain 1 x 106 cells according to the manufacturer's 433 
instructions, and were placed on ice for 30 min. Cells were protected from light during staining 434 
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and all subsequent steps. Cells were washed with 5 mL of FACS buffer, passed through a 35 435 
µM filter to remove clumps, and re-suspended in 300 µL of FACS buffer for live cell sorting on 436 
the BD Influx Cell Sorter (BD Biosciences). Live/dead marker 7AAD (eBioscience 00-6993) 437 
was added immediately prior to analysis according to the manufacturer's instructions and only 438 
living cells were considered when determining differentiation capacities. Living cells stained 439 
with 7AAD but not TRA-1-60 or CXCR4 were used as gating controls. Data for TRA-1-60 and 440 
CXCR4 staining were available for 31,724 cells, of the total 36,044. Single-cell transcriptomes 441 
of sorted cells were assayed as follows: reverse transcription and cDNA amplification was 442 
performed according to the SmartSeq2 protocol [7], and library preparation was performed 443 
using an Illumina Nextera kit. Samples were sequenced using paired-end 75bp reads on an 444 
Illumina HiSeq 2500 machine (one lane of sequencing per 384 well plate). 445 

Genotyping 446 

iPS cell lines were genotyped as previously described [1], using the Illumina 447 
HumanCoreExome-12 Beadchip. Genotypes were called using GenomeStudio (Illumina, CA, 448 
USA), following independent imputation using IMPUTE2 v2.3.1 [32] and phasing using 449 
SHAPEIT v2.r790 [33]. Imputation was performed based on a joint reference panel of 450 
haplotypes from the UK10K cohorts and 1000 Genomes Phase 1 data [33,34]. Single-sample 451 
VCFs were merged and subsequent QC was performed using Genotype Harmonizer [35] and 452 
BCFtools. Variants with INFO score lower than 0.4 were excluded from further analysis. 453 

Demultiplexing donors from pooled experiments 454 

Assignment of cells to donors was performed using Cardelino [36]. Briefly, Cardelino estimates 455 
the posterior probability of a cell originating from a given donor based on common variants in 456 
scRNA-seq reads, while employing a beta binomial-based Bayesian approach to account for 457 
technical factors (e.g. differences in read depth, allelic drop-out, and sequencing accuracy). 458 
For this assignment step, we considered a larger set of n = 490 HipSci lines with genotype 459 
information, which included the 126 lines used in this study. A cell was assigned to a donor if 460 
the model identified the match with posterior probability > 0.9, requiring a minimum of 10 461 
informative variants for assignment. Cells for which the donor identification was not successful 462 
were not considered further. Across the full dataset 99% of cells that passed RNA QC steps 463 
(below) were successfully assigned to a donor. 464 

scRNA-seq quality control and processing 465 

Adapters of raw scRNA-seq reads were trimmed using Trim Galore! [37–39], using default 466 
settings. Trimmed reads were mapped to the human reference genome build 37 using STAR 467 
[40] (version: 020201) in two-pass alignment mode, using the default settings proposed by the 468 
ENCODE consortium (STAR manual). Gene-level expression quantification was performed 469 
using Salmon [41] (version: 0.8.2), using the “--seqBias”, “--gcBias” and “VBOpt” options using 470 
ENSEMBL transcripts (built 75) [42]. Transcript-level expression values were summarized at 471 
a gene level (estimated counts per million (CPM)) and quality control of scRNA-seq data was 472 
performed with the scater Bioconductor package in R [43]. Cells were retained for downstream 473 
analyses if they had at least 50,000 counts from endogenous genes, at least 5,000 genes with 474 
non-zero expression, less than 90% of counts came from the 100 highest-expressed genes, 475 
less than 15% of reads mapping to mitochondrial (MT) genes, they had a Salmon mapping 476 
rate of at least 60%, and if the cell was successfully assigned to a donor (Fig. S15). Dead 477 
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cells as identified based on 7AAD staining were discarded. Size factor normalization of counts 478 
was performed using the scran Bioconductor package in R [44]. Expressed genes with an 479 
HGNC symbol were retained for analysis, where expressed genes in each batch of samples 480 
were defined based on i) raw count > 100 in at least one cell prior to QC and ii) average 481 
log2(CPM+1) > 1 after QC. Normalized CPM data were log transformed (log2(CPM+1)) for all 482 
downstream analyses. The joint dataset was investigated for outlying cell lines or experimental 483 
batches, which identified no clear groups of outlying cells (Fig. S16, S17). 484 
 485 
As a final QC assessment, we considered possible differences between cell lines from healthy 486 
and diseased donors. In particular, a subset of 11 cell lines were derived from neonatal 487 
diabetes patients, and differentiated together with cell lines from healthy donors across 7 488 
experiments (out of 28). There was no detectable difference in differentiation capacity between 489 
healthy and neonatal diabetes lines in these experiments (P>0.05), and cells from both sets 490 
of donors overlapped in principal component space (Fig. S18). Thus, we included cells from 491 
all donors in our analyses irrespective of disease state. 492 
 493 
The final merged and QC’ed dataset consisted of 36,044 cells with expression profiles for 494 
11,231 genes (Fig. S2). 495 

Bulk RNA-Seq quality control and processing 496 

Raw RNA-seq data for 546 HipSci cell-lines were obtained from the ENA project: ERP007111 497 
and EGA projects: EGAS00001001137 and EGAS00001000593. CRAM files were merged 498 
per cell-line and converted to FASTQ format. Processing of the merged FASTQ files was 499 
matched to the single cell processing, as described above. Samples with low quality RNA-seq 500 
were discarded based on the following criteria: lines with less than 2 billion bases aligned, with 501 
less than 30% coding bases, or with a duplication rate higher than 75%. This resulted in 540 502 
lines for analysis, 108 of which had matched (day0) single cell RNA-seq data available. 503 
 504 
Gene-level expression levels were quantified using Salmon, analogously to the alignment, as 505 
described for the single cells. Gene expression profiles were normalized using scran, to match 506 
the single cell data processing, and the scran normalized CPM data is log transformed 507 
(log2(CPM+1)). 508 

Variance component analysis 509 

Variance component analysis was performed, per gene, by fitting a random effects model 510 
using LIMIX [45] to the gene’s expression profiles across cells. To reduce computational cost, 511 
we considered a random subset of 5,000 cells. The experiment, day of collection, and cell line 512 
identity were each included as random effects. Full variance component results for all genes 513 
are provided in Table S14. 514 

Highly variable genes 515 

The top highly variable genes were computed using scran’s trendVar and decomposeVar 516 
functions, using a design matrix to correct for the differentiation experiment-specific effects 517 
(i.e. treating each experiment as a different batch). At FDR < 1%, this identified 4,546 highly 518 
variable genes. 519 
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Pseudotime definition 520 

We used the first principal component calculated based on the top 500 highly variable genes 521 
in our set to represent differentiation pseudotime. This component was linearly re-scaled to 522 
take values between 0 (the minimum value observed for any cell) and 1 (the highest value 523 
observed). For comparison, we considered three alternative methods for defining pseudo time: 524 
 525 
(i) We considered diffusion pseudotime (DPT) [46] (Fig. S7A). The underlying diffusion map 526 
was generated using 15 nearest neighbours and with gene expression represented by the first 527 
20 PCs across the top 500 most highly variable genes. DPT analysis was carried out using 528 
the default settings with Scanpy v1.2.2 [47]. There was a Pearson correlation of 0.82 between 529 
DPT and the pseudotime definition we used. 530 
 531 
(ii) We considered calculating pseudotime by projecting each cell on to the principal curve of 532 
the first two principal components of the top 500 most highly variable genes (Fig. S7B). 533 
Principal curve analysis was performed using the R package princurve [48]. There was a 534 
Pearson correlation of 0.86 between the principal curve pseudotime and the pseudotime 535 
definition we used. 536 
 537 
(iii) We considered representing pseudotime by the mean expression of the differentiation co-538 
expression module. This gene cluster was enriched for GO terms associated with 539 
differentiation including ‘anatomical structure morphogenesis’ (GO:0009653), 540 
‘anterior/posterior pattern specification’ (GO:0009952), and ‘response to BMP’ (GO:0071772) 541 
(Table S9; Fig. S7C). There was a Pearson correlation of 0.64 between the differentiation co-542 
expression module and the pseudotime definition we used. The lower concordance between 543 
pseudotime and this module is consistent with the limited set of genes included - the 544 
coexpression module only includes genes upregulated during differentiation, and therefore 545 
uses no information from changes in expression of pluripotency-associated genes. 546 
 547 

Definition of mesendoderm and definitive endoderm populations 548 

The stage labels post iPSC (mesendo and defendo) were defined using a combination of 549 
differentiation stages obtained using the single-cell defined pseudotime and knowledge based 550 
on canonical marker genes. Cells were assigned to the mesendo stage if they were collected 551 
at day1 or day2, and had pseudotime values between 0.15 and 0.5, corresponding to a 552 
pseudotime window around the peak expression of Brachyury (T), a marker of mesendoderm 553 
(Fig. S8A). Cells were assigned to the defendo stage if they were collected at day2 or day3, 554 
and had pseudotime values higher than 0.7, corresponding to a pseudotime window with 555 
maximal expression of GATA6, a marker of definitive endoderm (Fig. S8B). Cells with 556 
intermediate pseudotime (between 0.5 and 0.7) mostly came from day2, and were not 557 
assigned to any stage for the purposes of the initial stage QTL mapping (results shown in Fig. 558 
2). Overall, we assign 28,971 (80%) cells to any of the stages (iPSC, mesendo, defendo). 559 
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Identification of genetic and molecular markers for differentiation 560 
efficiency 561 

Differentiation efficiency for each cell line was defined as its average pseudotime across cells 562 
at day3, quantified for each experiment and unique donor. To test for associations with 563 
molecular markers, we considered stage-specific gene expression levels, again quantified for 564 
each donor and experiment (as log2(CPM + 1)). 565 
 566 
Three sets of tests were performed. In each case, models were fitted using the lme4 package 567 
in R [49], and significance was determined by the Likelihood ratio test. The tested model was: 568 
 569 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	 = 	𝑀𝑎𝑟𝑘𝑒𝑟	 + 	𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡	 + 	𝐷𝑜𝑛𝑜𝑟	 + 𝜀 570 
 571 
Where Experiment is a random effect grouping sets of samples from the same experiment, 572 
and Donor is a random effect grouping samples from the same donor (and cell line). Two sets 573 
of Markers were tested - genetic markers (i.e. eQTL SNPs), and expression markers (i.e. 574 
expression levels in the iPSC stage/day0), and are presented in Table S6, Table S7, 575 
respectively. For genetic markers, tests were limited to the lead eQTL variant per eGene and 576 
differentiation stage. 577 
 578 
Genetic markers were validated using data from independent differentiations of individual cell 579 
lines. Here, the percentage of CXCR4+ on day 3 (as measured by FACS) was used as a 580 
measure of differentiation efficiency, with the following model: 581 
 582 

%	𝐶𝑋𝐶𝑅4+	= 	𝑀𝑎𝑟𝑘𝑒𝑟	 + 𝜀 583 
 584 
Two sets of tests were performed: (1) all 5 associations (FDR 20%) were tested using data 585 
from the original set of cell lines; (2) the strongest association, with the eQTL variant for DPH3, 586 
was tested using data from new cell lines selected according to their genotype at this locus. 587 
 588 
Expression markers were validated by comparison to bulk RNA-sequencing at the iPSC stage 589 
(day0). In particular, we tested the association between gene expression in the same cell lines, 590 
assayed in separate experiments by bulk RNA-seq of iPSCs, with differentiation efficiency in 591 
our experiments, using the model: 592 
 593 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	 = 	𝑀𝑎𝑟𝑘𝑒𝑟	𝑏𝑢𝑙𝑘	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑖𝑛	𝑖𝑃𝑆𝐶𝑠	 + 𝜀 594 
 595 
Results of the replication p-values and directions of effect are provided in Table S7. 596 
 597 
To evaluate whether donor sex had a significant effect on differentiation, we fit the following 598 
linear mixed model: 599 
 600 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	 = 	𝑆𝑒𝑥	 + 	𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡	 + 	𝐷𝑜𝑛𝑜𝑟	 + 𝜀 601 
 602 
In this model Sex was modelled as a fixed effect and tested for significance using likelihood 603 
ratio test, and Experiment and Donor were modelled as random effects, as above. 604 
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cis eQTL mapping 605 

A consistent eQTL mapping strategy was applied to bulk RNA-seq expression  and expression 606 
traits derived from scRNA-seq. We considered common variants (minor allele frequency > 5%) 607 
within a cis-region spanning 250kb up- and downstream of the gene body for cis QTL analysis. 608 
Association tests were performed using a linear mixed model (LMM), accounting for population 609 
structure and sample repeat structure (see below) as random effects (using a kinship matrix 610 
estimated using PLINK [50]). All models were fitted using LIMIX [45]. The values of all features 611 
were standardized and the significance was tested using a likelihood ratio test (LRT). To adjust 612 
for global differences in expression across samples, we included the first 10 principal 613 
components calculated on the expression values in the model, as covariates. In order to adjust 614 
for multiple testing, we used an approximate permutation scheme, analogous to the approach 615 
proposed in [51]. Briefly, for each gene, we generated 1,000 permutations of the genotypes 616 
while keeping covariates, kinship, and expression values fixed. We then adjusted for multiple 617 
testing using this empirical null distribution. To control for multiple testing across genes, we 618 
then applied the Storey procedure [52]. Genes with significant eQTL were reported at an FDR 619 
< 10%. 620 
 621 

Mapping cis eQTL across three stages of differentiation from scRNA-seq 622 
data  623 

To map eQTL based on scRNA-seq profiles, we quantified average gene expression profiles 624 
(log2(CPM + 1)) across cells for each (donor, day of collection, experiment) combination. This 625 
approach retains differences across experiments and days, for cells from the same donor, and 626 
is enabled by the pooled experimental design. Accounting for population structure using a 627 
kinship matrix is especially important in this context, since aggregated expression values for 628 
the same donor from different experiments are essentially replicates and hence genetically 629 
identical. We separately mapped eQTL for each  differentiation stage (i.e. iPSC, mesendo, 630 
defendo), yielding 1,833 (10,840 tested), 1,702 (10,924 tested) and 1,342 (10,901 tested) 631 
genes with an eQTL respectively (FDR<10%). eQTL results are provided in  Table S3). 632 
 633 
For comparison, we performed analogous QTL analyses using all cells from day1, and day3 634 
instead of the pseudo-time based differentiation stages. This approach resulted in 1,181 635 
(10,787 tested) and 631 (10,765 tested) genes with an eQTL  at day 1 and 3 respectively 636 
(Table S5). 637 

Mapping dynamic eQTL (visualisation purposes only) 638 

We performed eQTL mapping across a sliding window on pseudotime, considering bins that 639 
contain 25% of all cells, sliding along the pseudotime by a step of 2.5% of cells (Fig. 4A, top 640 
middle panel). Similarly to the approach taken for eQTL analysis in individual differentiation 641 
stages, expression values are averaged by (donor, day, experiment) combinations, within 642 
each window. 643 

Mapping cis eQTL in iPSCs with bulk RNA-seq 644 

To perform cis-eQTL mapping in the bulk RNA-seq data, we considered cell lines that had 645 
been used to map iPSC eQTL from the scRNA-seq data (bulk data was available for 108 646 
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donors out of the 112 day0 single cell donors), and tested the same set of genes. This yielded 647 
2,908 significant genes at an FDR of 10% (out of 10,736 genes tested). 648 
 649 
To compare the iPSC eQTL maps derived from bulk and single-cell RNA-seq data, we 650 
assessed the nominal significance (P < 0.05) as well as the consistent direction of effect of 651 
single-cell iPSC eQTL lead variants (top variant per gene) in the full set of results from the 652 
bulk iPSC eQTL analysis and vice versa. 653 

SNP tagging 654 

We used LD tagging to account for linkage disequilibrium (LD) effects that might cause false 655 
positive lead switches and to identify links between GWAS implicated variants and eQTL. To 656 
this end, we calculated the LD between lead eQTL variants and either GWAS variants or other 657 
eQTL lead variants, using both the 1000 genomes phase3 reference panel and the HipSci 658 
dataset to calculate LD between SNPs, taking the union of both sets. 659 

Lead switching event quantification 660 

Lead switching events were defined as two or three distinct variants that were identified at 661 
distinct differentiation stages, found to be significantly associated (FDR < 10%) with the same 662 
genes, and that were not in LD (r2 < 0.2). 663 

GWAS Tagging 664 

We performed GWAS tagging using an LD threshold of r2 > 0.8. We considered all GWAS 665 
variants from the GWAS catalog as available as part of ENSEMBL 94 [53], for all traits and 666 
diseases. This analysis was restricted to variants that reached genome-wide significance (P 667 
< 5e-8) for any of the traits. 668 

Allele-specific expression quantification 669 

Duplicated reads were removed from the STAR alignments using Picard Tools 670 
(http://broadinstitute.github.io/picard). ASE was quantified at the gene level relative to a 671 
heterozygous eQTL lead variant. As a result, for a given eQTL, ASE was only quantified across 672 
cells from donors heterozygous for that eQTL variant. This was done following five steps (see 673 
Fig. S19 for a worked example of one gene in one cell): (1) ASE counts were obtained using 674 
GATK tools v3.7 in ASEReadCounter mode, with the settings “-minDepth 1 --675 
minMappingQuality 10 --minBaseQuality 2 -rf DuplicateRead”. ASE of a SNP in a given cell 676 
was quantified if (i) the cell was heterozygous for that SNP, based on the known donor 677 
genotypes, and (ii) the SNP was located in an exonic region (ENSEMBL 75 annotation, as 678 
above). The output from GATK tools gives the number of reads mapping to the alternative and 679 
reference alleles for each heterozygous SNP in each cell. (2) For each cell, ASE 680 
quantifications for each SNP were converted from “alternative allele reads” to “chrB allele 681 
reads” using the known phase (indicated as chrA|chrB, where 0=reference, 1=alternative) of 682 
each SNP in each donor (e.g. for a SNP with the phase “1|0”, the alternative allele is on chrA, 683 
so the number of reads mapping to chrB = number of reference allele reads = total number of 684 
reads - number of alternative allele reads). Thus, for each cell, ASE for all SNPs was quantified 685 
relative to the genotypes of the chromosomes of that individual, rather than to “reference” or 686 
“alternative” alleles. (3) Aggregation of ASE from SNP-level to gene-level. For each gene, this 687 
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was done by summing the “chrB allele reads” and “total reads” across all SNPs contained in 688 
the exons of that gene (as described in the ENSEMBL 75 GTF file). (4) Conversion of 689 
quantifications from “chrB allele reads” to “reads from the chromosome containing the 690 
alternative allele of the eQTL SNP”, again by using the available phasing information. For each 691 
eQTL (i.e. each gene-SNP pair), this provides a consistent definition of ASE across all cells 692 
heterozygous for the eQTL SNP (i.e. across cells from multiple donors). Donors that are not 693 
heterozygous at the eQTL variant of interest were not used for quantification. (5) Conversion 694 
to allelic fractions i.e. quantifications express the allelic reads as a fraction of the total number 695 
of reads. 696 
 697 
ASE association tests with cellular factors 698 

ASE quantifies the relative expression of one allele over the other. If one of these alleles is 699 
more responsive to a particular environmental factor (e.g. because of preferential transcription 700 
factor binding), then ASE is expected to vary systematically with that factor. This observation 701 
has previously been used to identify GxE interactions in gene expression across individuals 702 
[23]. Here, we applied similar concepts to single-cell RNA-seq, testing for the influence of 703 
cellular environmental factors (i.e. cellular processes) on ASE in individual cells. Importantly, 704 
these ASE tests are “internally matched”, as potentially confounding batch effects and 705 
technical variation affect both alleles in each cell similarly. 706 
 707 
Five sets of tests were performed, in a linear modelling framework (Fig. 5, S13; Tables S13): 708 
 709 
(1) Linear pseudotime (“pseudo”) tests. The ASE of each gene-eQTL pair was tested for 710 
association with pseudotime, across all cells in which ASE was quantified for that pair: 711 
 712 

𝐴𝑆𝐸	 = 	𝑝𝑠𝑒𝑢𝑑𝑜	 + 	𝜀 713 
 714 
(2) Quadratic pseudotime tests. As (1), but with linear pseudotime as a covariate: 715 
 716 

𝐴𝑆𝐸	 = 	𝑝𝑠𝑒𝑢𝑑𝑜	 +	𝒑𝒔𝒆𝒖𝒅𝒐𝟐 	+ 	𝜀 717 
 718 
(3) Linear cellular factor test. As (1), but with each of 4 cellular factors (“factor”) (respiratory 719 
metabolism, sterol biosynthesis, G1/S transition and G2/M transition): 720 
 721 

𝐴𝑆𝐸	 = 	𝑓𝑎𝑐𝑡𝑜𝑟	 + 	𝜀 722 
 723 
(4) Pseudotime-corrected linear cellular factor test. As (3), but with pseudotime included as a 724 
covariate: 725 
 726 

𝐴𝑆𝐸	 = 	𝑝𝑠𝑒𝑢𝑑𝑜	 + 	𝑓𝑎𝑐𝑡𝑜𝑟	 + 	𝜀 727 
 728 
(5) Combined pseudotime-factor test. As (4), but testing for the additional effect of (pseudotime 729 
x factor) included as a covariate: 730 
 731 

𝐴𝑆𝐸	 = 	𝑝𝑠𝑒𝑢𝑑𝑜	 + 	𝑓𝑎𝑐𝑡𝑜𝑟	 +	(𝑝𝑠𝑒𝑢𝑑𝑜 × 𝑓𝑎𝑐𝑡𝑜𝑟) 	+ 	𝜀 732 
 733 
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In each case, tests were only performed for eQTL for which ASE was quantified in at least 500 734 
cells. Tests were performed using the statsmodels package in Python (likelihood ratio test). 735 
Multiple testing correction was performed independently for each of the five sets of tests, using 736 
Benjamini-Hochberg correction. 737 
 738 
Binning ASE across pseudotime 739 

For visualizing ASE as a function of pseudotime or other cellular factors, we averaged ASE 740 
across bins of 25% of cells, as done for the sliding window eQTL analysis (above). For each 741 
(eQTL x bin) combination, the mean ASE, number of cells, standard deviation, and standard 742 
error of the mean (SEM) was calculated (noting that, while each bin contains an equal number 743 
of cells, not all cells have quantified ASE for each gene). For each eQTL, to calculate the 744 
dynamics of allelic expression across pseudotime (i.e. the expression of transcripts from the 745 
ALT and REF chromosomes, as plotted in Fig. 4C), two calculations were performed. First, 746 
the mean expression of each gene across the pseudotime bins was calculated using all cells 747 
heterozygous for the eQTL SNP (i.e. the cells in which ASE was quantified). The expression 748 
of each allele in each pseudotime bin was then calculated by taking the mean ASE +/- SEM, 749 
multiplied by the mean expression of that gene (in CPM) in that bin. 750 

Coexpression and covariation clustering 751 

Grouping of pseudotime-smoothed gene expression and allele-specific expression (see 752 
below) was performed by spectral clustering, as implemented by the Python scikit-learn library 753 
(Fig. 4). The negative of the Pearson correlation was used as the dissimilarity metric. A range 754 
of cluster numbers were tried, with N = 4 judged to be the most clusters possible before highly 755 
correlated pairs of clusters were observed. 756 
 757 
Grouping of genes by single-cell co-expression was performed using affinity propagation [54], 758 
as implemented by the Python scikit-learn library [55]. The Pearson correlation across all cells 759 
was used as the similarity/‘affinity’ metric. The top 8,000 highest expressed genes were 760 
included in this clustering (as judged by average expression across all cells). This generated 761 
a set of 60 co-expression clusters. GO enrichment of each cluster was performed by Fisher’s 762 
exact test in Python using GOATOOLS [56], and results are listed in Table S9 (FDR 10%). 763 
 764 
Exemplar co-expression clusters were selected to represent 4 dimensions of cellular state 765 
(Fig 5A): cell cycle G1/S transition (cluster 10), cell cycle G2/M transition (cluster 30), cellular 766 
respiration (cluster 0), and sterol biosynthesis (cluster 28). This selection was done according 767 
to two criteria: (1) strongest enrichment of relevant GO terms. The co-expression clusters 768 
showed the largest overrepresentation of genes for the GO terms ‘G1/S transition of mitotic 769 
cell cycle’ (GO:0000082; cluster 10), ‘G2/M transition of mitotic cell cycle’ (GO:0000086; 770 
cluster 30), ‘respiratory electron transport chain’ (GO:0022904; cluster 0), and ‘sterol 771 
biosynthetic process’ (GO:0016126; cluster 28). (2) a priori expectation of sources of cell-to-772 
cell variation. Variation in cell cycle stage is a common feature of single-cell datasets [20], 773 
while variation in metabolic state during iPSC differentiation is well known [57]. 774 
 775 
ChIP-seq experiments and data processing 776 

ChIP-seq was performed using FUCCI-Human Embryonic Stem Cells (FUCCI-hESCs, H9 777 
from WiCell) in a modified endoderm differentiation protocol to that used for the iPSC 778 
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differentiations (see details below). Cells were grown in defined culture conditions as 779 
described previously [58]. Pluripotent cells were maintained in Chemically Defined Media with 780 
BSA (CDM-BSA) supplemented with 10ng/ml recombinant Activin A and 12ng/ml recombinant 781 
FGF2 (both from Dr. Marko Hyvonen, Dept. of Biochemistry, University of Cambridge) on 0.1% 782 
Gelatin and MEF media coated plates. Cells were passaged every 4-6 days with collagenase 783 
IV as clumps of 50-100 cells. The culture media was replaced 48 hours after the split and then 784 
every 24 hours. 785 
 786 
The generation of FUCCI-hESC lines has been described in [59] and are based on the FUCCI 787 
system described in [60]. hESCs were differentiated into endoderm as previously described 788 
[61]. Following FACS sorting, Early G1 (EG1) cells were collected and immediately placed into 789 
the endoderm differentiation media and time-points were collected every 24h up to 72h. 790 
Endoderm specification was performed in CDM with Polyvynilic acid (CDM-PVA) 791 
supplemented with 20ng/ml FGF2, 10µM Ly-294002 (Promega), 100ng/ml Activin A, and 792 
10ng/ml BMP4 (R&D). 793 
 794 
We performed ChIP as described previously [62]. For ChIP-sequencing, ChIP for various 795 
histone marks (H3K4me3, H3K27me3, H3K4me1, H3K27ac, H3K36me3) (see Table S15 for 796 
antibodies) was performed on two biological replicates per condition. At the end of the ChIP 797 
protocol, fragments between 100bp and 400bp were used to prepare barcoded sequencing 798 
libraries. 10ng of input material for each condition were also used for library preparation and 799 
later used as a control during peak calls. The libraries were generated by performing 8 PCR 800 
cycles for all samples. Equimolar amounts of each library were pooled and this multiplexed 801 
library was diluted to 8pM before sequencing using an Illumina HiSeq 2000 with 75bp paired-802 
end reads. 803 
 804 
Reads were mapped to GRCh38 reference assembly using BWA [63]. Only reads with 805 
mapping quality score ≥ 10 and aligned to autosomal and sex chromosomes were kept for 806 

further processing. Peak calling analysis [64] was performed using PeakRanger [65], and only 807 

the peaks that were reproducible at an FDR of ≤0.05 in two biological replicates were selected 808 

for further processing. Peak calling was done using appropriate controls with the tool 809 

peakranger 1.18 in modes ranger (H3K4me3, H3K27ac; ‘-l 316 -b 200 -q 0.05’), ccat 810 
(H3K27me3; ‘-l 316 --win_size 1000 --win_step 100 --min_count 70 --min_score 7 -q 0.05’) 811 
and bcp (H3K4me1, H3K36me3; ‘-l 316’). Adjacent peak regions closer than 40 bp were 812 
merged using the BEDTools suite [66], and those overlapping ENCODE blacklisted regions 813 
were filtered out (ENCODE Excludable Mappability Regions [67]). Finally, peaks were 814 
converted to GRCh37 coordinates using UCSC LiftOver [68]. 815 

Data availability 816 

All HipSci data can be accessed from http://www.hipsci.org. Bulk RNA-seq data are available 817 
under accession numbers: ERP007111 (ENA project) and EGAS0000100113, 818 
EGAS00001000593  (EGA projects). Single cell RNA-seq data for the open access lines 819 
(study 3963) are available under the accession numbers ERP016000 (ENA project). 820 
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