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ABSTRACT. Protein design is a powerful tool for elucidating mecha-
nisms of function and engineering new therapeutics and nanotech-
nologies. While soluble protein design has advanced, membrane
protein design remains challenging due to difficulties in modeling
the lipid bilayer. In this work, we developed an implicit approach
that captures the anisotropic structure, shape of water-filled pores,
and nanoscale dimensions of membranes with different lipid compo-
sitions. The model improves performance in computational bench-
marks against experimental targets including prediction of protein
orientations in the bilayer, ∆∆G calculations, native structure dis-
crimination, and native sequence recovery. When applied to de novo
protein design, this approach designs sequences with an amino acid
distribution near the native amino acid distribution in membrane pro-
teins, overcoming a critical flaw in previous membrane models that
were prone to generating leucine-rich designs. Further, the proteins
designed in the new membrane model exhibit native-like features in-
cluding interfacial aromatic side chains, hydrophobic lengths com-
patible with bilayer thickness, and polar pores. Our method ad-
vances high-resolution membrane protein structure prediction and
design toward tackling key biological questions and engineering
challenges.

membrane proteins | lipid composition | energy function | structure
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Protein design is a powerful tool for elucidating biological
mechanisms and engineering new therapeutics. Over the

past 20 years, soluble protein design has advanced to atomic
level accuracy (1, 2). A remaining challenge is to create tools
for membrane proteins (3): a class of molecules that consti-
tute over 30% of all proteins (4) and are targets for 60% of
pharmaceuticals (5). There have been several achievements
in membrane protein design including a zinc-transporting
tetramer Rocker (6), an ion-conducting protein based on the
Escherichia Coli Wza transporter (7), β-barrel pores with
increased selectivity (8), receptors with new ligand-binding
properties (9, 10), and designed de novo α-helical bundles that
insert into the membrane (11). For these advances, design of
lipid-facing positions often used a native sequence or restricted
the chemistry and/or size of amino acids. To apply membrane
protein design to addressing biological questions and engineer-
ing challenges, tools must sample a realistic distribution of
amino acids tied with the diverse lipid composition.

The foundation of computational design tools is the en-
ergy function: a mathematical model of the physical rules
that distinguish native from non-native membrane protein
conformations and sequences. Currently, most computational
studies of membrane proteins are molecular dynamics simula-
tions with an all-atom lipid bilayer. In this conception, the
lipid molecules are represented explicitly using force fields such
as AMBER(12), CHARMM (13, 14), Slipids (15), or GRO-

MOS (16), and the protein-lipid interactions are scored with
a molecular mechanics energy function. All-atom models are
attractive because they can feature hundreds of lipid types to-
ward approximating the composition of biological membranes
(17). With current technology, detailed all-atom models can be
used to explore membrane dynamics for hundreds of nanosec-
onds (18): the time scale required to achieve equilibrated
properties on a bilayer with approximately 250 lipids (19).
Coarse-grained representations such as MARTINI (20), ELBA
(21), and SIRAH (22) reduce computation time by mapping
atoms onto representative beads. As a result, simulations have
explored dynamics up to the millisecond time scale to access
features of membrane organization and large protein domain
motions (23).

Implicit solvent models enable simulations to reach longer
timescales required to investigate biologically-relevant con-
formational and sequence changes. Instead of using explicit
molecules, implicit methods represent the solvent as a contin-
uous medium (24, 25), resulting in a 50—100-fold sampling
speedup (26). The most detailed implicit model is the Poisson-
Boltzmann (PB) equation, which relates electrostatic potential
to dielectric properties of the solvent and solute through a
second-order partial differential equation (27). Numerical
solvers have enabled PB calculations on biomolecular systems
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(28, 29); however, these calculations do not scale well. To
reduce computational cost, the Generalized Born (GB) approx-
imation of the PB equation treats atoms as charged spheres
(30). GB methods represent the low-dielectric membrane
through various treatments ranging from a simple switching
function (31) to heterogeneous dielectric approaches (32, 33).
However, evaluating the GB formalism is still computationally
expensive.

A popular approach to overcoming the computational cost
of solvent electrostatics models is the Lazaridis implicit mem-
brane model (IMM1; (34, 35)): a Gaussian solvent-exclusion
model that uses experimentally measured transfer energies of
side-chain analogues in organic solvents to emulate amino acid
preferences in the bilayer (36). IMM1 has been applied to
various biomolecular modeling problems including studies of
antimicrobial peptides (37), de novo folding (38, 39), and de
novo design of transmembrane helical bundles (11). However,
organic solvent slabs differ from phospholipid bilayers because
lipids are thermodynamically constrained to a bilayer configu-
ration, resulting in a unique polarity gradient that influences
side chain preferences (40–42). A possible alternative is to
directly calculate amino acid preferences by deriving statistical
potentials from a database of known membrane protein struc-
tures (38, 43, 44). Yet, statistical potentials are also limited
by the scarcity of membrane protein structures and do not
capture the physiochemical properties of the membrane.

In this work, we developed, implemented, and tested a
biologically-realistic energy function for membrane protein
structure prediction and design. We first derived and vali-
dated the energy function parameters from experimental and
computational modeling of phospholipid bilayers to capture
biologically-important membrane features. Next, we tested
the model on four benchmarks: (1) prediction of protein orien-
tations in the membrane, (2) ∆∆G of mutation calculations,
(3) native structure discrimination and (4) native sequence
recovery. We investigated properties of the in silico designed
membrane proteins including the amino acid composition. Fi-
nally, we share several design anecdotes that exhibit native-like
membrane protein features including interfacial aromatic side
chains, hydrophobic lengths compatible with different lipid
compositions, and polar pores.

Results

Biologically-realistic implicit membrane model. We developed
a biologically-realistic implicit membrane model inspired by
Lazaridis’ implicit model (IMM1; (35)). Similar to IMM1,
the membrane is modeled as a continuum of three phases: an
isotropic phase representing bulk lipids, an isotropic phase
representing bulk water, and an anisotropic phase represent-
ing the interfacial region. To accurately model the polarity
gradient and dimensions of native membranes, we derived
new equations and parameters from biophysical measurements.
The result is a new energy term called ∆Gmemb that computes
protein stability given the water-to-bilayer transfer energy
∆Gatom

w→l of atomic groups a and the fractional hydration fhyd:

∆Gmemb =
Nres∑
r=1

Natom(r)∑
a=1

(1 − fhyd)(∆Gatom
w→l (a)). [1]

The parameter ∆Gatom
w,l captures the thermodynamics of

protein-lipid interactions. We derived ∆Gatom
w,l from the Moon

& Fleming side-chain hydrophobicity scale (45) because the
energies were measured in bilayers with phospholipids, a
major component of biological membranes (46). Following
Lazaridis’ formalism (47), the function fhyd captures the three-
dimensional shape of the implicit membrane as a dimension-
less number that describes the phase given the position of an
atomic group. When an atomic group is exposed to the lipid
phase, fhyd = 0; whereas when an atomic group is exposed to
the water phase, fhyd = 1.0. The transition between the two
isotropic phases is modeled by a composition of functions:

fhyd = fthk + fpore − fthkfpore. [2]
The function fthk (Eq. 3, see Methods) models the transi-

tion between the water and lipid phase along the z-axis, and
is thus an implicit representation of the hydrophobic thick-
ness. We developed parameters for fthk by fitting to molecular
dynamics simulations and scattering density profiles of phos-
pholipid bilayers. The result is a logistic curve that depends
on two parameters. We derived parameters for fourteen phos-
pholipid bilayer compositions (Table S4-5). The membrane
thickness can be derived by setting fthk = 0.5 (Fig. 1A-B).

The function fpore defines the shape of a water-exposed
pocket or channel (Fig. 1C-E). Previously, Lazaridis devel-
oped a cylindrical model of pores for β-barrel proteins (47).
This geometric assumption is straightforward for β-barrel pro-
teins; however, α-helical protein pores require varied geometric
descriptors such as cones, cylinders, and ellipses (48). To ac-
commodate, we created a model that approximates pores as
elliptical tube with varying cross sections. This parameteriza-
tion allows the model to describe cavities that do not penetrate
through the membrane and pores that constrict, expand, or
twist relative to z. The energy function accounts for the pore
by first calculating a relative radius, gradius (Eq. 5). The tran-
sition between the two phases is modeled by a sigmoid curve
fpore (Eq. 6) with two parameters: gradius and the transition
steepness n (default n = 10).

We integrated our model into the current all-atom energy
function for modeling soluble proteins in Rosetta, called REF15
(49). REF15 computes macromolecular energies through a
linear combination of terms for van der Waals, solvation, elec-
trostatics, hydrogen bonding, backbone- and side-chain in-
teractions. To account for the membrane environment, we
added ∆Gmemb with an empirically determined weight of 0.5.
The resulting energy function, called franklin2019, is given by
∆Efranklin2019 = ∆EREF15 + ∆Gmemb.

Computational benchmark performance of the biological-
ly-realistic implicit membrane. We evaluated the accuracy of
franklin2019 using four computational benchmark tests against
experimental targets. The tests were designed to evaluate an
energy function’s ability to replicate measured membrane
protein stabilities and perform accurate structure prediction
and design. We compared the performance of franklin2019
to three existing models: (1) an implicit membrane parame-
terized from the behavior of side-chain analogues in organic
solvents (M07; (39)), (2) a knowledge-based model that cap-
tures depth-dependent amino acid preferences (M12; (50)),
and (3) the Rosetta all-atom energy function for soluble pro-
teins (R15; (49, 51)). For brevity, we will refer to franklin2019
as M19. We chose these models because the low computa-
tional cost enabled evaluation with structure prediction and
design tests.
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Fig. 1. The implicit membrane is modeled
as three phases: two isotropic phases for
water and lipid and a transition region that
represents the interfacial head groups. (A)
The transition between phases in the z-
dimension is modeled by a logistic curve
which can be parameterized for different
lipid compositions. Example curves for
DLPC (dot-dash, black) and DOPC (solid,
black) are shown in comparison to the sig-
moid curve used in IMM1 (dashed, gray).
(B) Implicit solvent phases for the Ammo-
nium transporter Amt-1 (PDB 2b2f) in the
z-dimension. The water phase is shown
in blue, the interface is in teal, and the
lipid is in gray. (C) The transition between
phases due to an elliptical pore is mod-
eled by a sigmoid curve. (D) Top view of
implicit solvent phases due to a pore in
Amt-1 with the same coloring scheme as
B. The three panels of (E) demonstrate
the variation in pore shape (purple) for
different x − y cross sections along the
z-axis.

Test #1: Partitioning of transmembrane peptides into the implicit
membrane. The water-to-bilayer transfer energy of a protein
∆Gw,l thermodynamically stabilizes the protein in the mem-
brane. Therefore, implicit membrane energy functions must
accurately estimate the value of ∆Gw,l. We investigated the
partitioning properties of M19 by computing the water-to-
bilayer partitioning energies and full energy landscape of trans-
membrane peptides as a function of membrane orientation.
We define orientation by two degrees of freedom: helix tilt
angle and membrane depth (Fig. 2A).

Remarkably, M19 was the only energy function for all
five peptides in the membrane to predict a favorable ∆Gw,l
(Table 1, see Methods). To investigate further, we mapped all
possible orientations to their M07, M12, and M19 energies.
An example for the acetylcholine M2 peptide (1a11) is shown
in Fig. 2. The M07 energy landscape (Fig. 2B) has three
small, low energy wells and they are isoenergetic with the
water phase. This behavior is nonphysical and is likely an
artifact of inconsistent parameterization. In contrast, the lipid
phase is more thermodynamically favorable than the water
phase for both M12 (Fig. 2C) and M19 (Fig. 2D). Ultimately,
M19 is the most native-like because the landscape is smooth
and continuous: a requirement for high-resolution all-atom
structural modeling.

Table 1. Partitioning energy from water to lipid, ∆Gw,l

Target (PBD ID) ∆GM07
w,l (REU) ∆GM12

w,l (REU) ∆GM19
w,l (REU)

1a11 1.32 -10.41 -11.44
1mp6 0.26 -20.46 -15.77
1pje -4.46 -25.42 -15.24
2nr1 14.41 7.55 -7.47
WALP23 -7.23 -29.41 -17.80

The energy landscapes for the remaining four targets are
given in Fig. S5. We found that the M2 proton channel
segment (Fig. S5A) and NMDA glutamate receptor segment
(Fig. S5B) demonstrate similar characteristics to acetylcholine.
Namely, that M19 generates the smoothest landscape with

−50

−25

0

25

50

0 90 180 270 360
Tilt Angle (degrees)

D
ep

th
 (Å

)

−20
Energy
(REU)

A

−50

−25

0

25

50

0 90 180 270 360
Tilt Angle (degrees)

D
ep

th
 (Å

)

−25 −15 −5
Energy
(REU)

B

−50

−25

0

25

50

0 90 180 270 360
Tilt Angle (degrees)

D
ep

th
 (Å

)

−40 −30 −20
Energy
(REU)

C

−50

−25

0

25

50

0 90 180 270 360
Tilt Angle (degrees)

D
ep

th
 (Å

)

−30 −25 −20 −15
Energy
(REU)

D

(-40Å, 270˚)

(0Å, 180˚)

(0Å, 30˚)

GSEKMSTAISVLLAQAVFLLLTSQR
Acetylcholine Helix A (1a11)

m07

m19m12

Fig. 2. Orientation-dependent energy landscape of the acetylcholine M2 helix (PDB
1a11). The orientation-dependent landscape represents the relative energies of a
protein at all possible tilt angles and depths. (A) Sample peptide orientations in the
energy landscape grid. (B, C, and D) are energy landscape plots with the energy
colored from blue (favorable), to yellow (moderate), to red (unfavorable) computed by
the M07, M12, and M19 energy functions, respectively.

low energy wells at realistic peptide orientations. Here, a
reasonable orientation is when the peptide vertically spans
the transmembrane region. Interestingly, the M07 energy
landscape features were different for the VPU-forming domain
(Fig. S5C) and WALP23 (Fig. S5D) targets. While the
landscapes remain rugged, there is an unfavorable energy
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Fig. 3. Comparison between computationally predicted and experimentally measured ∆∆Gmut values. For all correlation plots (B-D), proline is not shown due to steric clashes
resulting in a large ∆∆Gmut value. The dotted gray line is the line of best fit and the solid gray line is y = x. In addition, amino acids are colored according to the following
categories: charged (orange), nonpolar (red), aromatic (blue), polar (purple), special case (green). (A) Structure of the PagP scaffold (PDB 3gp6) with the mutation site V111
highlighted in dark grey. The implicit solvent phases in A are colored in a similar manner to Fig 1. The ∆∆Gmut predictions for mutations in PagP by M07, M12, and M19 are
shown in panels B, C, and D respectively.

gradient from the aqueous to the lipid phases. It is unsurprising
that WALP23 is a compatible peptide with M07 because it is
the only non-naturally occurring peptide in the group. Rather,
the sequence was engineered to favorably partition into a wide
variety of membrane mimetics (52). While it is less clear why
VPU-forming domain is compatible, likely the shorter peptide
length reduces the barrier to inserting charged termini.

We also evaluated the ability of M19 to discriminate na-
tive and non-native orientations in the membrane. Initially,
we compared experimentally measured tilt angles (53) with
calculated tilt angles corresponding to energy minima (see
Methods). However, no energy function could reproduce tilt
angles within five degrees. We hypothesized this is because we
do not evaluation the entropic contribution to peptide tilt (54).
Instead, we asked if the minimum energy orientation is native
like: the peptide tilt angle is under 45°and its membrane depth
is ±5Åfrom the center, as supported by solid-state NMR stud-
ies that demonstrate native peptides are slightly tilted relative
to the membrane normal while still spanning the membrane
(55). M19 found a reasonable orientation for four of five tar-
gets (Table S9). The M12 identified a reasonable orientation
for three of five peptides and M07 only identified a reasonable
orientation for WALP23. Thus, M19 demonstrated the best
performance.

Test #2: Predicting the ∆∆G of mutation. Predicting changes in
protein stability upon single amino acid substitutions at lipid
exposed positions informs predictions of the effects of genetic
mutations and de novo protein design. We evaluated the
ability of M19 to capture the change in protein stability
upon mutation, called ∆∆Gmut, by comparing experimentally
measured values with computational predictions. Here, we
used a dataset of mutations at position 111 on outer membrane
palmitoyl transferase (PagP) (56)). The dataset contains
mutations from the host amino acid to all 19 other canonical
amino acids. A summary of prediction accuracy relative to
the experimentally measured values is given in Fig. 3. The
raw predicted values are also listed in Table S10 for PagP.
Calculated energies are given in Rosetta Energy Units (REU).

The correlation between M19 predicted and experimentally
measured ∆∆Gmut values was R2 = 0.85. Note, the ∆∆Gmut

for proline was excluded for all three energy functions because
steric clashes resulted in large values. While prediction ac-
curacy was improved relative to M12 (R2 = 0.77), accuracy

was comparable to M07 (R2 = 0.84). We were surprised
that M07 and M19 demonstrated similar predictive ability.
This is because a second set of measurements in OmpLA (45)
correlates well with PagP measurements but not with M07
predictions (57). According to Marx et al., the largest devia-
tions were for side chains containing polar atoms. We therefore
recalculated the correlation coefficient for polar and charged
side chains. Here, the correlations were 0.78, 0.58, and 0.94
for M07, M12, and M19 respectively. We were encouraged
by these results because they demonstrate the ability of our
scale to capture the behavior of polar side chains within the
bilayer.

To dive deeper, we examined the incorrect predictions, de-
fined as cases where the calculated ∆∆Gmut deviates by more
than 1.5 REU from the measured value. For M19, we found
that G, T, V, and L were inaccurate. From the component
energies (Tables S12-14), we learned that the predictions are
incorrect due to a large Lazaridis-Karplus solvation energy
and our water-to-bilayer energy. In the future, we anticipate
that improved experimental techniques will provide more data
to re-balance these energy terms.

Test #3: Discrimination of native structures from decoys. Identifi-
cation of native-like structures in an ensemble of candidate
structures is a key function of biomolecular modeling energy
functions. We evaluated native structure discrimination on
molecular-dynamics-based ensembles of five targets: bacteri-
orhodopsin (Brd7), fumarate reductase (Fmr5), lactose per-
mease (LtpA), rhodopsin (RhoD), and V-ATPase (Vatp) (58).
The root-mean-squared-deviation (RMSD) between the na-
tive and the candidate models ranged between 4-15Å. First,
we compared the scores of refined native models and decoys.
We found that for all targets except LTPA, all of the energy
functions distinguished the native structure from the decoys.
Qualitatively, we observed that R15 and M19 decoys formed
deeper energy funnels with near-native decoys at lower ener-
gies than distant decoys. To quantitatively evaluate decoy
discrimination, we computed the WRMS for all targets (Ta-
ble 2). In addition, a mapping of energy vs. RMSD for each
target refined by each energy function is given in Fig. S8.

The WRMS data confirmed poor discrimination by M12
with an average WRMS of 5.83Å. This is consistent with the
funnel plots in Fig. S8 where M12 does not assign low energies
to near-native decoys. Interestingly, the remaining energy
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Table 2. Weighted RMSD of refined and rescored candidate models
by each energy function

Target R15 M07 M12 M19

Brd7 4.76 4.94 6.38 5.15
Fmr5 5.31 5.21 9.78 4.98
LtpA 4.53 4.47 4.69 4.62
RhoD 4.38 4.16 4.10 4.43
Vatp 4.30 4.37 4.22 4.35

Average 4.66 4.61 5.83 4.70

functions demonstrate similar performance, with WRMS values
differ by less than 1Å. The averageWRMS values are also within
1Åof the lowest RMS decoy. Thus, M07, M19, and R15 can
reliably distinguish near-native from non-native decoys.

We were surprised that the new implicit membrane model
did not have a larger impact on native structure discrimination.
For this, we provide two hypotheses. First, there may be
insufficient near-native decoys to fully capture the energy
landscape. This is likely because there were less than 130
decoys for each target, whereas 1,000-5,000 are required for
sufficient conformational sampling. A second hypothesis is
that the non-membrane energy terms drive high-resolution
decoy discrimination.

Test #4: Native sequence recovery. A fourth test evaluates se-
quence recovery: the fraction of amino acids recovered after
performing complete redesign on naturally occurring proteins.
High sequence recovery has long been correlated with strong
energy function performance for soluble proteins (59). We
therefore repeated this test in the context of our membrane
protein energy function. We computed low free energy se-
quences for a test set of 133 α-helical and β-barrel membrane
proteins. Overall, 31.8% of the amino acids designed by M19
were identical to the native amino acid (Fig. 4A). The soluble
protein energy function R15 recovered the second highest
percentage of amino acid positions at 29.9%. In contrast, the
two existing implicit membrane models lagged behind with
M07 at 26.5% and M12 at 26.7% (Fig. 4A). The individual
amino acid recovery rates were also revealing. Here, M19
and R15 recovered all 20 amino acids at rates above random;
whereas M12 recovered 19 and M07 only recovered 14.

To examine the influence of different solvent environments,
we recomputed recovery over subsets of residues. First, we
compared buried vs. solvent-exposed side chains (Fig. 4B).
For all energy functions, recovery was significantly higher for
buried side chains than solvent-exposed side chains, as noted
in previous studies due to higher packing density (59). On
the surface, M12 recovered 25% of acid positions, slightly
higher than the 22% recovery rate by M19. However, M19
recovered 16 amino acids at rates above random; whereas,
M12 recovered only 12 amino acids. In essence, M19 gets
the overall answer correct slightly less frequently; however, it
is better at getting more amino acid types correct.

Next, we examined sequence recovery differences between
side chains facing the water and lipid phases (Fig. 4C). In the
lipid phase, all membrane energy functions recovered nearly
the same fraction of amino acids. The main differentiating
feature is the number of amino acids recovered with greater
than random probability. Whereas M07 and M12 recovered

four and five amino acids respectively,M19 recovered 14 amino
acids. We observed a similar trend in the water phase. Here,
M12 has the highest overall sequence recovery rate of 27%,
next to M19 with a recovery rate of 23%. However, M12 only
recovers 10 amino acid types whereas M19 recovers 14. These
results reveal that early energy functions used a rudimentary
design strategy: prioritizing only some amino acid types. In
contrast, M19 is capable of designing more chemically diverse
sequences.

Designed membrane proteins exhibit native-like features.
The sequence recovery experiment enables us to study proper-
ties of in silico designed membrane proteins. These properties
are crucial for demonstrating that the implicit model has na-
tive membrane properties and is capable of facilitating realistic
design experiments. Below, we examine various sequence and
structural features important for membrane protein stability
and function.

Amino acid distribution in designed proteins mirrors the native dis-
tribution. We examined the distribution of amino acids in design
protein sequences relative to their native counterparts. Specif-
ically, we measured the Kullback-Leilber (DKL) divergence
(Eq. 9, see Methods) on our membrane protein dataset. A neg-
ative DKL value indicates that sequences are under-enriched
in specific amino acid types; whereas, a positive DKL value
indicates that sequences are over-enriched. An ideal KL value
is zero. Remarkably, sequences designed by M19 are near-
native with DKL = −2.7. This is in stark contrast to sequences
designed by M07 and M12 which are strongly divergent from
native membrane protein sequences, with DKL = −24.6 and
DKL = −26.6 respectively.

To learn more about the design implications of each en-
ergy function, we computed the KL for each amino acid type
(Fig. 4D-G) and compared to the composition of amino acids
in the native set. The M07 sequences are over-enriched in non-
polar amino acids and under-enriched in all other categories.
The deficits are large with under-enrichment values ranging
from 10−2 to 10−4. The M12 sequences are less skewed with
the magnitude of under-enrichment deficits ranging between
10−1 and 102. However, there is still a large over-enrichment
of non-polar amino acids including I, L, and M, as well as
W and T. In contrast, the distribution of amino acids in
M19 sequences is comparable to the native distribution, with
the magnitude of under- and over-enrichment values ranging
between 101 and 10−1. Thus, M07 and M12 employ a rudi-
mentary design strategy: only choosing non-polar amino acids
guaranteed to be compatible with the greasy membrane envi-
ronment. The M19 model does not rely on this assumption
and can design every amino acid type within each phase. As
a result, M19 designs proteins with an amino acid distribu-
tion that is close to the native membrane protein sequence
composition. We thus expect that M19 will more accurately
evaluate the effects of genetic mutations on protein stability.
Further, the diversified sequences will enable designed mem-
brane proteins to achieve a broader range of architectures and
functions.

Three-dimensional membrane geometry enables design of polar
pores. We were interested to see whether a three-dimensional
implicit membrane shape facilitates accurate protein design.
To do so, we investigated the native and designed sequence
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of the scaffold protein voltage-dependent anion channel 1
(VDAC1; PDB 3emn; Fig. 5). The native sequence of this
β-barrel protein pore is rich in charged amino acids. In the
two-dimensional membranes used by M07 and M12, the pore-
facing residues are designed as if they are in the lipid phase;
and as a result, the designed sequences are rich in non-polar
amino acids. In contrast, the three-dimensional implicit mem-
brane geometry treats pore-facing residues as exposed to the
water phase; thus, the designed sequence contains both polar
and charged amino acids. These positive features are reflected
in the sequence for this specific target. Here, M19 exhibits
the highest recovery over all surface residues, lipid-facing, and
aqueous-facing residues when compared with other energy func-
tions. This results suggests the potential of M19 to perform
accurate design on both the lipid-facing and water-filled-pore
facing surfaces.

Biologically-relevant lipid composition parameters improve per-tar-
get sequence recovery. Finally, we were eager to explore whether
implicit membrane parameters for different lipid compositions
can improve design outcomes. This question is difficult to
evaluate because the host membrane composition of proteins
is not always known. At the same time, this question is crucial
because of the long-standing criticism that implicit membrane
models do not accurately capture the properties of different
lipid membrane compositions. In this work, we investigated
this question anecdotally by examining two examples from our
membrane protein design dataset.

First, we examined the β-barrel protein scaffold outer mem-
brane transporter FecA from Escherichia coli. The outer
membranes of gram-negative bacteria are significantly thinner
than eukaryotic plasma membranes. We therefore hypothe-
sized that sequence recovery of lipid-facing residues in this

protein would be higher in a thinner membrane. To test this
hypothesis, we again searched for low energy sequences in
an M19 membrane with either DLPC or POPC parameters.
Encouragingly, the recovery of lipid facing residues in this pro-
tein was 33% in DLPC in contrast to 28% in POPC. We also
repeated this test on the α-helical protein scaffold VCX1 cal-
cium/proton exchanger from Saccharomyces cerevisiae. Here,
we expected the reverse trend: improved design in a POPC
membrane over DLPC. Again, the design results followed: 22%
sequence recovery in DLPC and 29% in POPC. These results
demonstrate that lipid composition parameters facilitate more
biologically-realistic structure prediction and design.

In addition, there was an inevitable question that we wanted
to ask about our β-barrel protein scaffold. Experimental stud-
ies have long demonstrated that β-barrel membrane proteins
have high concentrations of aromatic side chains near the in-
terfacial head groups (60). While the thermodynamics of this
phenomena are not completely understood, it is suggested that
stacking of the aromatics nearby polar head-groups stabilizes
the protein (61). Thus, we asked the questions: does M19
also design aromatics near the anisotropic phase representing
interfacial head groups? To answer, we calculated the appar-
ent membrane thickness according to the average positions
of aromatic side chains in native and designed FecA (Fig. 6).
We found that M19 designed with a larger apparent thick-
ness in POPC rather than DLPC membranes. Notably, the
DLPC aromatic thickness is near the native aromatic thickness.
While still anecdotal, these results suggest that M19 designs
proteins with native-like features.
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Discussion

In this work, we developed, implemented, and tested a
biologically-realistic energy function for membrane protein
structure prediction and design. The energy function, called
franklin2019, uses an implicit approach to represent the
anisotropic structure, water-filled pore shape, and nanoscale
dimensions of membranes with varied lipid composition.
Through computational benchmarking, we demonstrated that
the model can replicate experimentally measured protein sta-
bilities and accurately perform biomolecular modeling tasks.
Franklin2019 outperforms both the Rosetta soluble protein
and membrane protein energy functions.

In addition, we investigated the properties of native and
designed membrane protein sequences. Remarkably, the distri-
bution of amino acids in sequences designed with franklin2019
is comparable to the amino acid distribution in native mem-
brane protein sequences. This result is in stark contrast to se-
quences designed by prior membrane energy functions that are

over-enriched in non-polar amino acids. Proteins designed by
franklin2019 exhibit other native-like features including polar
pores, aromatic amino acids near interfacial head groups, and
hydrophobic match with specific lipid compositions. Together,
these features demonstrate the potential of franklin2019 to ad-
vance high-resolution membrane protein structure prediction
and design.

Our goal was to develop an implicit model that captures
features of biological membranes. We built upon several prior
studies that improved the realism of the hydrophobic slab to
make it behave like a native bilayer. For instance, Lazaridis
added a cylindrical pore (47), parameters for anionic lipid
compositions (62), and corrections for charged and buried
groups (63). Panahi & Feig developed a generalized born
membrane model with adjustable thickness (33). An important
differentiating feature of our work is that our model was
developed using data from native proteins in native bilayers,
thus removing a layer of assumptions and closes gaps in the
design cycle of experiment and computation.
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In the future, more detail may improve the realism of
implicit models. For instance, the lipid composition of the
outer membrane of gram-negative bacteria is asymmetric (64).
The membrane also bends and curves to accommodate the
hydrophobic surface of proteins (65). A further challenge is
accounting for local properties such as specific protein inter-
actions with lipids and cholesterol, which may be captured
by a hybrid implicit-explicit approach such as SPadES (66)
or HMMM (67). An open question is how to account for
mechanical properties such as lateral pressure and strain due
to local curvature. In these scenarios, it is most likely that
implicit membrane simulations will compliment information
from emerging membrane protein modeling tools and MD
simulations to investigate structure, dynamics, and function.

We evaluated our implicit membrane model using sparse,
high-resolution experimental data. This approach contrasts
soluble protein energy function evaluation, where there is an
abundance of thermodynamic and spectroscopic measurements
of small molecules (68–70) and high-resolution protein struc-
tures (71). To overcome the possibility of over-fitting, we
limited the validation data to high-quality measurements. For
instance, we did not use crystal structures ≥ 3Å resolution
or ∆∆Gmut values that were not measured in a reversible
system. Further, we benchmarked our energy function against
both thermodynamic and structure prediction data. Previous
studies have evaluated membrane energy functions on a single
test such as tilt angles (53), native structure discrimination
(58, 72), predicting hydrophobic lengths (73), ∆∆G prediction
(74) and sequence recovery (75). Simultaneously performing
the benchmarks enables a well-rounded evaluation of the en-
ergy function for diverse biomolecular modeling tasks. As
more high-quality data emerges, we envision the application
of more robust fitting techniques including machine learning
and optimization (51, 76).

Through the goal of developing a new energy function,
our study interrogated fundamental questions about the de-
sign rules for native membrane proteins. First, the transfer
energies are derived from a thermodynamic hydrophobicity
scale measured in phospholipids. The high sequence recovery
rate demonstrates the importance of thermostability and bulk
phospholipid chemistry in constraining membrane protein se-
quences. Further, previous work relied on narrow membrane
protein design rules such as enrichment of leucine side-chains
in the hydrophobic core. We demonstrated that native mem-
brane protein sequences are diverse and not constrained to
hydrophobic amino acids. As a result, the energy function
uses the full palette of amino acid chemistries during design.

In summary, we developed a biologically-realistic energy
function for membrane protein structure prediction and de-
sign. The energy function is implemented within the Rosetta
software and can be used for a wide range of macromolecular
modeling tools. By pursuing a balance of efficiency and ac-
curacy, we anticipate that the implicit membrane will enable
high-throughput and high-resolution membrane protein struc-
ture prediction and design. Importantly, this model transforms
once protein-centric tools to techniques that can predict and
design structures tied with varied biological lipid compositions.

Materials and Methods

Development of the implicit membrane model.

Derivation of ∆Gatom
w,l values. The Moon & Fleming hydrophobicity

scale provides a set of water-to-bilayer transfer energies ∆Gaa
w,l

for the 20 canonical amino acids (45) measured in the reversibly
folding OmpLA scaffold. We used regression to derive energies that
correspond to atom types (Table S1), called ∆Gatom

w,l . Specifically,
least-squares fitting was applied solve the equation Ax = b; where,
A is a matrix of atom type stoichiometric coefficients (Table S2), b
is the vector of ∆Gaa

w,l values, and x is the desired vector of ∆Gatom
w,l

values. Matrix rows for glycine, alanine, and proline were excluded
to avoid over fitting. The resulting ∆Gatom

w,l values are in Table S3.

Molecular dynamics simulations of phospholipid bilayers. All-atom
molecular dynamics simulations were performed to extract proper-
ties of membranes with different phospholipid compositions. We
simulated phospholipid bilayers with hydrocarbon tails between
12-18 carbons long and either a phosphatidylethanolamine (PE),
phosphatidylcholine (PC) or phosphatidylglycerol (PG) head group
(Table S4). The exceptions were DPPC and DMPG because the
liquid-to-gel phase transition temperatures are above physiological
temperature (77, 78). CHARMM-GUI (79) was used to configure
each bilayer system with 75 lipids in each leaflet, 22.5Å of water on
each side, and 0.1 M NaCl. Simulations were performed using the
NAMD molecular dynamics engine (80) at a constant pressure of
1 atm and a temperature of 37°C. We used the CHARMM36 (13)
force field for lipid and the TIP3 model for water. The simulations
were equilibrated with restraints according to the procedure outlined
by Jo et al. (79, 81). Then, each system was simulated for 50 ns.

Derivation of depth-dependent water density profiles. MDAnalysis
(82) was used to extract water density information from each lipid
bilayer simulation trajectory. For each frame, the system was
first re-centered on the lipid center-of-mass. Then, we computed
a normalized histogram of TIP3 z-coordinates with 1Å bins to
capture the distribution of water molecules. The time-averaged
histogram was computed by averaging the histograms representing
each frame (Fig. S2).

To generate analytic profiles, we used nonlinear regression to fit
each histogram to the logistic function, fthk:

fthk = 1
1 + τexp(−κz)

. [3]

The function fthk depends on membrane depth (z) and has two
adjustable parameters: steepness κ and width τ . We derived κ and
τ for all simulated lipid compositions. The resulting parameters are
listed in Table S5 and the analytic water density profiles are shown
in Fig. S3.

Calculation of water-filled pore shapes. For proteins with more than
three transmembrane segments, we introduced a pore into the
implicit membrane model. To determine the pore shape, we created
a new method to transform discrete structural information into a
smooth geometry described by differentiable functional forms. First,
we used the convex-hull algorithm described in Koehler Leman et
al (83) to identify backbone and side chain atoms that are in the
transmembrane region (|z| ≤ T ), face the protein interior, and are
not buried. A side-chain was defined as buried if it had 23 or more
neighboring atoms within 12 Å of its Cα atom (59). Next, we
computed a histogram of the z-coordinates of pore facing atoms
with a bin size of 1

3T . For each bin, the (x, y) coordinates of the
atoms were collected. Then, the Khachiyan algorithm (84) was used
to compute the minimum-area ellipse that bounds these coordinates.
Each ellipse is defined with the following parameters: major radius
(a), minor radius (b), rotation angle (θ), and center (x0,y0). The
radius of the ellipse, gradius, is calculated using rotation matrix M :

M =
[
sin(θ(z)) cos(θ(z))
cos(θ(z)) −sin(θ(z))

]
[4]

gradius = M ·
[( (x− x0(z))

a(z)

)2
;
( (y − y0(z))

b(z)

)2]
[5]

Cubic spline interpolation was used to fit polynomials to de-
scribe the depth-dependence of each parameter. The result is five
continuous and differentiable parametric functions: a(z), b(z),θ(z),
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x0(z), and y0(z). The transition between the water-filled pore and
lipid phase is defined by gradius given the transition steepness n:

fpore = 1−
gnradius

1 + gnradius
. [6]

Validation of model parameters.

∆Gatom
w,l values. To verify ∆Gatom

w,l values, we first recalculated the
side chain transfer energies by solving Ax = b. The Pearson correla-
tion coefficient between the calculated and experimentally measured
side chain transfer energies was R2 = 0.99 (Fig. S1). In addition,
we used the procedure outlined in the Scientific Benchmarks section
of Methods to estimate the ∆∆Gmut values from Moon & Flem-
ing (45). Specifically, we sought to verify that ∆Gaa

w,l trends were
preserved in context of the full energy function. The correlation be-
tween predicted and experimentally measured ∆∆Gmut values was
R2 = 0.84. Note, the ∆∆Gmut for proline was excluded from the
correlation coefficients because steric clashes resulted large energies.

Membrane thickness. We validated the water-density profiles com-
puted from Molecular Dynamics simulations by comparing the
derived membrane thickness parameters with thickness measured at
various temperatures via x-ray and neutron scattering experiments
(85–87). First, we computed the membrane half thickness t from
each logistic curve as the Gibbs dividing surface between the water
and lipid phases (f(z) = 0.5). We then calculated a line of best
fit through the experimental measured thickness values at each
temperature (Fig. S4).

Evaluation through scientific benchmarks.

Test #1: Prediction of transmembrane helical peptide orientation.
Low-free-energy peptide orientations were identified by calculating
an energy landscape: a mapping between all possible peptide orien-
tations relative to the membrane and their energies. Orientation
was defined by two coordinates: (1) distance between the membrane
center and peptide center of mass, d and (2) angle between the
membrane normal and helical axis, θ. To compute the mapping, we
first applied side-chain packing and minimization to resolve steric
clashes in the peptide structure. Then, we applied rigid-body moves
to sample all combinations of θ and d values. Membrane depths
were sampled between −60 Å and 60 Åwith a 1 Å step size and
tilt angles were sampled between 0° − 360°with a 1°step size. In
addition, the water-to-bilayer transfer energy ∆Gw,l was computed
for each peptide as the difference in energy between the aqueous
phase (∆Gw: peptide at (60 Å,270 °)) and the lipid phase (∆Gl:
peptide at (0 Å, 270°)): ∆Gw,l = ∆Gl −∆Gw.

We computed energy landscapes for five transmembrane helical
peptides (53): acetylcholine receptor segment (1a11), M2 proton
channel segment (1mp6) NMDA glutamate receptor (2nr1), VPU-
forming domain of HIV-1 (1pje), and WALP23. Coordinates for the
first four peptides were downloaded from the Protein Data Bank
(88). The structure of WALP23 was modeled as an ideal helix with
φ = −47°and ψ = −57°. For calculations with the new implicit
membrane model, we chose lipid composition parameters that were
consistent with the lipid composition used for the experimental
measurement (Table S8).

Test #2: ∆∆Gmut predictions. ∆∆Gmut values were computed using
the protocol described in Alford et al. (57). Here, a mutation
is introduced at the host site and the side chains are optimized
within 8Å of the mutated residue. The ∆∆Gmut was calculated as
the difference in energy between the mutant (∆Gmutant) and na-
tive (∆Gnative) conformations: ∆∆Gmut = ∆Gmutant −∆Gnative.
∆∆Gmut prediction was evaluated on mutations in position 111
in outer membrane palmitoyl transferase (PagP; 3qd6) (56). The
dataset included mutations from the native amino acid to all 19
other canonical amino acids. For calculations with the new implicit
membrane model, parameters for DLPC membranes at 20° were
chosen to match experimental conditions.

Test # 3: Native structure discrimination. Native structure discrimi-
nation is the ability of an energy function to distinguish near-native
from non-native conformations. To measure discrimination, we used
ensembles of five α-helical proteins generated by Dutagaci et al.

(58): bacteriorhodopsin (BRD7; 1py6), fumarate reductase (FMR5;
1qla), lactose permease (LTPA; 1pv6), rhodopsin (RHOD; 1u19),
and V-ATPase (VATP; 2bl2). Structures in each ensemble were
between 1-11Å from the coordinates of the crystal structure. We
refined each conformation using RosettaMPRelax (57) with con-
straints to the starting Cα coordinates. Then, we computed the
Boltzmann-weighted average root-mean-squared-deviation (RMS)
WRMS (89). Here, WRMS is computed over N refined candidates
with scores ∆G and distances from the native RMS at a given
temperature T (Eq. 7):

Wrms =

∑N

i
(RMSi)exp

(∆Gi
kT

)∑N

i
exp
(∆Gi
kT

) . [7]

Test #4: Native sequence recovery. The fourth benchmark test was
sequence recovery: the fraction of amino acids recovered after
performing complete redesign of naturally occurring proteins. To
evaluate recovery, we used a benchmark set of 133 α-helical and β-
barrel proteins, each between 40-10,000 residues with less than 25%
sequence identity and better than 3.0 Åresolution (83). The protein
coordinates were downloaded from the Orientations of Proteins in
Membranes database (90). Then, the fixed-backbone Rosetta Design
protocol (91) was used to search for low-free energy-sequences.
Sequence recovery, Rseq, was calculated as the number of correct
positions Ncorrect relative to the number of available positions Nall:

Rseq = Ncorrect

Nall
. [8]

In addition, we examined sequence recovery rates for individual
amino acid types, relative the background probability of guessing a
random amino acid type (1 in 20 types, or 5%). This metric, NAA
is the fraction of amino acid types recovered with rates higher than
random.

Properties of in silico designs. We examined properties of the in
silico designed proteins using the Kullback-Leibler (KL) divergence.
This metric quantifies the divergence between the distribution of
amino acid types (i) in the native (Nnat,i) and designed (Ndes,i)
sequences:

DKL = −
∑

ln
(
Ndes,i

Nnat,i

)
. [9]

Data Availability. The energy function and benchmark methods avail-
able in the the Rosetta Software Suite. Rosetta is available to
non-commercial users for free and to commercial users for a fee.
The detailed command lines are provided in the Supplementary
Information.
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