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SUMMARY: 

Here, we describe the dissociation and sorting of a specific cell population from the Drosophila 

male accessory glands (Secondary cells), followed by RNA extraction for sequencing and RT-

qPCR. The dissociation consists of dissection, proteases digestion and mechanical dispersion, 

followed by FACS purification of GFP-expressing cells. 
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ABSTRACT: 

To appreciate the function of an organ, it is often critical to understand the role of rare cell 

populations. Unfortunately, this rarity often makes it difficult to obtain material for study. This 

is the case for the Drosophila male accessory gland, the functional homolog of mammalian 

prostate and seminal vesicle.  In Drosophila, this gland is made up of two morphologically 

distinct cell types: the polygonally-shaped main cells, which compose 96% of the organ, and the 

larger, vacuole-containing secondary cells (SCs), which represent the remaining 4% of cells (~40 

cells per lobe). Both cell types are known to produce accessory gland proteins (Acps), which are 

important components of the seminal fluid and are responsible for triggering multiple 

physiological and behavioral processes in females, collectively called the post-mating response 

(PMR). While a few genes are known to be specific to the SCs, the relative rarity of SCs has 

hindered the study of their whole transcriptome.  Here, a method allowing for the isolation of 

SCs is presented, enabling the extraction and sequencing of RNAs from this rare cell population. 

The protocol consists of dissection, protease digestion and mechanical dissociation of the 

glands to obtain individual cells. Then, the cells are sorted by FACS, and living GFP-expressing SC 

singulets are isolated for RNA extraction. This procedure is able to provide SC-specific RNAs 

from ~40 males per condition in the course of one day. Given the speed and low number of flies 

required, this method enables the use of downstream RT-qPCR and/or RNA sequencing to the 

study gene expression in the SCs from different genetic backgrounds, ages, mating statuses or 

environmental conditions. 

 

INTRODUCTION:  

Organs are composed of multiple cell types that have discrete functions and express different 

sets of genes. To get a precise idea of the functioning of an organ as a whole, it is critical to 

study the distinct cell types that compose this organ. Transcriptome analysis is a powerful 

approach to tackle cell function, providing a snapshot of genome expression and revealing 

active processes and pathways. But accessing the transcriptome of rare cell populations 

without contamination from more-abundant neighboring cells can be challenging. Drosophila 

accessory glands are a simple, secretory organ made up of only two secretory cell types. The 

rarer of the two cell types accounts for only 4% of the cells of this gland. For this reason, it has 

been difficult to access the full transcriptome and function of these cells. 
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Accessory glands (AGs) are key components of the male reproductive tract in insects, being 

responsible for the production of most of the seminal fluid proteins (SFPs) that are known to 

induce the physiological and behavioral processes in females collectively called the post-mating 

response (PMR). The PMR includes, but is not restricted to, increased ovulation and egg-laying, 

sperm storage and release, diet changes and gut growth, and decreased receptivity to 

secondary courting males 1,2. As such, AGs and SFPs are topics of intense interest to better 

understand the basic biological questions related to mating, reproduction, and evolution. Also, 

they have important impacts on major societal issues related to human health (some insects 

are vectors of deadly diseases) and agriculture (insects are both considered pests and critical 

for pollination and soil quality). Drosophila melanogaster is a prominent model for the study of 

AGs and ACPs, having brought many insights into the biology of these organs and the role of 

individual proteins regarding the PMR. The discoveries in fruit flies have largely affected the 

work in other species such as the disease vector Aedes aegypti 3,4, and other insects 1,5. 

Furthermore, the fact that the AGs secrete SFPs to be transferred to females during mating 1,6 

makes the AGs the functional analog of mammalian prostate gland and seminal vesicle. Due to 

the functional and molecular similarities between the two tissue-tpyes, the AGs  have been 

used as a model for the prostate gland in flies 7. 

 

Drosophila accessory glands are composed of two lobes consisting of a monolayer of secretory 

cells surrounding a central lumen, and wrapped by smooth muscles.  The secretory cells 

comprise two morphologically, developmentally and functionally distinct cell types: most of the 

gland is composed of polygonally-shaped main cells (~96% of the cells), while larger and 

rounded secondary cells (SC), make up the remaining 4% (~40 cells per lobe). Both cell types 

produce distinct sets of ACPs and work interdependently to induce and maintain the PMR. 

The major trigger of the PMR is the Sex Peptide, a small 36 amino acid protein secreted by main 

cells and known to cause most PMRs in females 8-10. But many other ACPs produced by main 

and Secondary cells also affect different aspects of the PMR 11-17. Based on our current 

knowledge, it seems that SCs and their products are required to perpetuate the effects of SP 

past one day 18. 

 

Thus far, most of the knowledge that we have accumulated on SC biology comes from 

candidate approaches, finding the expression of one particular gene or protein in these cells 

and determining its role in the development and/or function of the SCs. These genes include 

the homeodomain protein Defective proventriculus (Dve, 19), the lncRNA MSA 20, Rab6, 7, 11 

and 19 21, CG1656 and CG17575 11,15,21 and the homeobox transcription factor Abdominal-B 
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(Abd-B) 18. A mutant line deficient for both the expression of Abd-B and the lncRNA MSA in 

secondary cells has been used to determine that secondary cells are required for Sex Peptide to 

be properly stored in the female reproductive tract, which results in a shortened PMR (from 

~10 days to one day) 12,18,20. At the cellular level, the SC of this mutant almost lose their 

characteristic vacuole like structures 18,20,21. This mutant line was successfully used to identify 

some genes involved in these phenotypes by comparing transcriptomes of wild type versus 

mutant accessory glands 12. 

Unfortunately, it was difficult to access the full genetic program of SC, because of their relative 

rareness in an organ made up primarily of main cells. For qPCR validation of genes suspected to 

be induced under particular conditions, the abundance of main cells would often hide the 

variation in gene expression, and performing in situ hybridization on glands proved to be tricky. 

We thus decided to develop a method for isolating purified SC RNA that was easy and fast 

enough to perform in a variety of different genetic backgrounds or environmental conditions.  

 

Abd-B and MSA expression in SCs relies on the D1 enhancer, a 1.1kb piece of DNA located in the 

iab-6 regulatory region of the Bithorax complex 18,20. GAL4 drivers containing this sequence are 

expressed in secondary cells and, when associated with a UAS-GFP, give a strong GFP signal in 

live SCs, allowing clear visualization and FACS sorting of these cells. The iab-6cocuD1 chromosome 

has a small deletion of this specific D1 enhancer, abrogating Abd-B and MSA expression in SC, 

and causing the phenotypes described above 20. We performed this protocol on wt and iab-

6cocuD1 mutant accessory glands as a proof of principle that this approach can not only provide 

the wild type transcriptome of this rare cell type, but also to identify mis-regulated genes 

involved in SC function. 

 

PROTOCOL: 

 

1. Drosophila line generation and male collections 

 

1.1. Sorting SCs using this protocol requires that males express GFP in the SCs but not 

in main cells. Use an AbdB-GAL4 or other appropriate driver (described in 18) recombined with 

UAS-GFP (on chromosome 2) for this method. Other mutations can be added along with these 

transgenes, if required.  
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1.2. Collect healthy, virgin males and place them into vials with food in groups of 20-

25. Typically, the protocol requires 2 batches of 20 males for each genotype. 

NOTE: The age, mating status, food and social environment affect accessory gland biology. To 

control for these parameters, males aged for 3-4 days after pupal eclosion at 25°C with a 

12h/12h light/dark cycle, on regular food with yeast, in groups of 20-25 males were used here. 

  

2. Solutions and material preparation   

 

2.1. Solutions and aliquots 

 

2.1.1. Prepare Serum Supplemented Medium (SSM). Add 10% heat inactivated 

fetal bovine serum and 1% Penicillin-Streptomycin into Schneider’s Drosophila medium. 

 

2.1.2. Prepare aliquots of 1X TrypLE Express Enzyme, keep at room 

temperature. 

 

2.1.3. Prepare aliquots of papain [50U/mL], store at -20 °C and thaw only once. 

 

2.1.4. Prepare 1X PBS, keep at room temperature. 

 

2.2. Material 

 

2.2.1. Standard lab equipment including micropipettes, tips, Eppendorf tubes, 

24-well plates, single depression and 3 depressions “glass spot plates”, ice buckets and 

Bunsen burners should be accessible. 

 

2.2.2. Thermo shaker (37°C 1000rpm, then 65°C). 
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2.2.3. Fine dissection forceps. 

 

2.2.4. Binocular for accessory gland dissection. 

 

2.2.5. Binocular with fluorescence source to see GFP. 

 

2.2.6. Low retention pipet tips (200μl and 1000μl). 

 

2.2.7. Fluorescence Activated Cell Sorter. 

 

2.3. Flame-round multiple pipet tips for handling and physically dissociating 

accessory glands. 

 

NOTE: Using low binding tips is important for handling accessory glands because they tend to 

adhere to untreated plastic. Flame rounding narrows the tip opening while smoothening the 

edge of the tip. This is critical to ensure smooth yet efficient dissociation after peptidase 

digestion. 

 

2.3.1. Cut one 200μl tip with a razorblade and flame round it so that the 

opening is wider and smooth for handling at step 3.7. 

 

2.3.2. For mechanical trituration (steps 5.2. and 5.3.) the opening of 1000μl tips 

is reduced. Prepare a few 1000μl tips by putting the narrow opening near the Bunsen 

flame for less than one second. Rotating helps avoiding clogging or over-melting. Test 

them by pipetting water and sort them from wider to narrower based on the speed of 

aspiration. Test the efficacy of each tip by using them on a small scale sample before 

using them for the real experiment (especially the narrowest tips). Verify that the tip 

allows complete dissociation of a treated sample while preserving cell viability (see 

below). 
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NOTE: Good flame-rounded pipet tips are washed with water at the end of the procedure, dried 

and reused to provide reproducible dissociation, from one day to another. 

 

3. Accessory glands dissection 

 

3.1. Place 20-25 males in a glass dish on ice. 

 

3.2. Dissect one male at a time in SSM. Reproductive tracts are taken off, and AG 

pairs are cleared from other tissues with the exception of the ejaculatory duct.  

 

NOTE: The testes should be removed, as the released sperm can create clumps that disturb the 

dissociation process.  The ejaculatory bulb must also be removed, as it tends to float, making 

handling more difficult. 

 

3.3. Using forceps, transfer AGs to a glass “3 spot plate” containing SSM (room 

temperature). Repeat steps 3.2 and 3.3. until 20 pairs of AGs are pooled in a single well with 

SSM. 

 

NOTE: This step should be achieved in 15-20 minutes. Glands should look healthy, and the 

muscle layer around glands should continue their peristaltic movements. GFP can be checked 

with a fluorescent binocular. 

 

NOTE: Dissecting batches of 20 males is a good balance between manageability and efficiency; 

flies do not spend too much time on ice and the glands do not spend too much time in SSM 

prior dissociation. Working with smaller sample of 5 to 10 males is good for troubleshooting, 

but results in more cell loss during transfers (from plate to tube to plate to dissociation to 

tube).  
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3.4. Transfer AGs into 1X PBS at room temperature for 1-2 minutes. 

NOTE: Rinsing glands with PBS results in better dissociation. However, this step should be short 

as accessory glands seem to be stressed in this solution. Placing dissociated secondary cells into 

PBS results in a rapid increase in SC size followed by the death of most SC, indicating that PBS is 

not an homeostatic solution for these cells. 

 

3.5. Prepare dissociation solution by diluting 20μl papain [50U/mL] into 180μl TrypLE 

1X (i.e. 9μl TrypLE + 1μl papain per male). Transfer AGs into this solution. 

 

3.6. Isolate the distal part of AGs (containing SCs) from the rest by pinching and 

cutting with fine forceps. Hold the middle of the gland firmly and cut with one sharp tip 

of the other forceps. Remove ejaculatory duct and the proximal part of the glands to 

improve dissociation and reduce cell sorting time. 

 

3.7. When all gland tips are isolated, carefully transfer them to a 1.5 mL Eppendorf 

tube using a pre wet cut and flame-rounded low binding 200μl tip (cf. 2.3.1) 

 

NOTE: Dissection of 20 pairs of gland tips should take ~15-20 minutes, during which digestion 

by Trypsin and Papain starts at at room temperature. 

 

NOTE: Always pre-wet tips with the appropriate solution, and rinse them carefully between 

each sample by pipetting up and down twice to avoid contamination. Keep a dedicated tube of 

TrypLE and a tube of SSM for this purpose.  

 

NOTE: One single trained person can process 4x20 males in one morning, to obtain secondary 

cells’ RNAs from 2 conditions in one day. However, two (or more) persons can participate in the 

initial steps of accessory glands collection (3.1. to 3.3.) in order to obtain several samples from 

the same day, which is desired for comparing multiple samples. Preferentially, steps 3.4. 

onwards should be performed by a single experimenter to improve reproducibility. 
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4. Cells dissociation 

 

4.1. Place the tube in a Thermo Shaker at 37°C with 1000rpm rocking, for 60 minutes. 

NOTE: The digestion time and the agitation are both critical for the success of the dissociation. 

Reducing time or immobile digestion will result in poor dissociation, probably because 

accessory gland cells are protected from peptidases by the outer muscle layer and inner viscous 

seminal fluid. 

 

4.2. Stop the digestion by adding 1mL of SSM (room temperature). Quickly proceed 

to step  

 

5. Mechanical disruption 

 

5.1. Transfer each sample to a well in a 24-well plate using a wide, rounded 1000μl 

tip, pre-wet with SSM. Check GFP fluorescence under the binocular, some SC should be 

detached but most gland tips should look intact. 

 

5.2. Mechanically disrupt the gland tips by pipetting up and down 3-5 times with a 

rounded narrow pipet tip. 

 

5.3. Repeat the process of pipetting up and down 1-2 times with a rounded very 

narrow pipet tip. 

NOTE: Check fluorescence and repeat the mechanical disruption process if required. After step 

5.2. big tissue patches should be broken up.  After step 5.3., individual cells should 

predominate. Once a few samples have been processed and satisfactory result have been 

achieved (perfect-looking dissociation with healthy looking secondary cells), these pipetting 

steps can be performed in the Eppendorf tubes for practical reasons.  The use of 24-well plates 

is good as a first step because they allow for an easy monitoring of the process. 
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5.4. Let the cells settle down in the plastic well for ≥15 minutes, and remove the 

excess SSM to reduce the FACS time. 

NOTE: Letting cells settle proved superior to alternative approaches such as 

centrifugation, and allows one to visually inspect the cells to make sure they are not lost 

in the process. 

 

5.5. Pool the identical samples (2 batches from 20 males each) and transfer them 

into a clean 1.5mL tube. Rinse the well with a small volume of SSM to retrieve remaining 

cells, and add them to the tube. 

 

5.6. Prepare tubes containing 300μl Cell Lysis Solution with 1μl [50μg/μl] Proteinase 

K for each sample (provided in the RNA extraction kit). Prepare one tube for the main 

cells and one for the secondary cells sorted from each sample. 

 

6. Fluorescence-activated Cell Sorting (FACS) 

 

6.1. Add 0.3mM Draq7 (viability marker) to each sample to be sorted. This can be 

done a few minutes ahead of time. 

CAUTION: Draq7 should be handled with caution. 

 

6.2. Sort GFP-positive Draq7-negative cells. They should be a homogeneous 

population of live Secondary cells. In a different tube, sort a homogeneous population of 

smaller GFP-negative Draq7-negative cells.  These should be the main cells. We used the 

following gating strategy for FACS: 

 

6.2.1. Select total cells based on FSC-SSC in order to exclude debris. 
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6.2.2. Remove dead cells by gating out Draq7-positive cells. Draq7 was excited 

with a 640 nm laser and fluorescence emission was collected with a 795/70 band-

pass filter.      

 

6.2.3. Exclude doublets using a double gating on FSC-A vs FSC-H and SSC-H vs 

SSC-W. 

 

6.2.4. Sort ~550 GFP-positive cells into a 1.6 mL Eppendorf tube containing Lysis 

buffer with Proteinase K, they are considered Secondary cells (SC). GFP was 

excited at 488 nm and fluorescence emission was collected with a 526/52 band-

pass filter. 

 

6.2.5. Sort ~1000 non-GFP-positive cells composing a population of small cells 

homogeneous in size into a 1.6 mL Eppendorf tube containing Lysis buffer with 

Proteinase K, they are considered main cells (MC). 

 

6.2.6. Vortex samples. 

 

NOTE: The pressure on the MoFlo Astrios was set at 25 PSI and the cells were passed through a 

100µm nozzle. The rate of sorting was about 2.000cells/sec.  

 

NOTE: Stringently remove cell doublets using a double gating, as main cell contamination must 

be reduced as much as possible. 

 

NOTE: From 40 males (~40*80 = 3200 SC), yields generally range from 600 to 800 live, singulet 

secondary cells (around 20-25% efficiency). We stop sorting around 550 Secondary cells and 

1000 Main cells to normalize samples. 
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NOTE: The cells can be sorted into RNAlater instead of lysis buffer if one wants to extract RNAs 

another day of pool samples from different days. We did not do this ourselves. 

 

7. RNA extraction 

 

NOTE: RNA extraction is performed using Epicentre MasterPure RNA Purification Kit, with 

following adaptations. Other kits might be used as long as the yield is high enough to prepare a 

library for sequencing from ~500 cells (2ng RNAs in our case). 

 

7.1. Cell lysis: cells in lysis buffer containing proteinase K are heated at 65°C for 15 

minutes. Vortex the samples every 5 minutes. 

 

7.2. Place samples on ice for 5 minutes, and proceed with nucleic acid precipitation, 

following manufacturer’s recommendations in: “Precipitation of Total Nucleic Acids” 

and “Removal of Contaminating DNA from Total Nucleic Acid Preparations”. 

 

7.3. Resuspend the RNA pellet in 10μl RNase-free TE buffer. 

 

7.4. Add 1μl RNases inhibitor (optional). 

 

7.5. Keep samples at -80°C. 

 

8. Quality controls (RNA quality, quantity, specificity)  

 

8.1. Estimate RNA quality and concentration. Due to the small volume and 

concentration, we use Agilent RNA 6000 Pico chips. Good quality RNA is defined as non-

degraded, visible as a low baseline with sharp peaks corresponding to rRNAs. 

 

8.2. RT-qPCR to control the identity of sorted cells 
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8.2.1. Reverse transcription is performed using 2ng total RNAs using random 

hexamers as primers. Perform RT on Secondary Cell RNA and Main Cell RNA.  

NOTE: cDNAs can be diluted, aliquoted, and kept frozen for later use. 

 

8.2.2. Real Time quantitative PCR is performed using appropriate primer pairs 

to quantify housekeeping genes (alpha-Tubulin, 18S rRNA), Secondary cell 

specific genes (MSA, rab19, Abd-B) and Main cell specific gene (Sex peptide). 

 

9. Sequencing (Library preparation, Sequencing, data analysis) 

 

9.1. cDNAs are synthesized from 2ng total RNAs with polydT primers, using 

the SMARTer technology allowing subsequent amplification 

(https://www.takarabio.com/products/cdna-synthesis/cdna-synthesis-

kits/smarter-cdna-synthesis-kits). 

 

9.2. Preparation library using Nextera XT kit 

(https://emea.illumina.com/products/by-type/sequencing-kits/library-prep-

kits/nextera-xt-dna.html).  

 

9.3. Sequence with multiplexed, single reads of 100 nucleotides (although 50 

nucleotides reads are enough for most purposes). We obtained around 30 million reads 

and a yield 2500–3000 Megabases per sample. 

 

10. Data analysis 

 

10.1. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
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10.2. Reads are mapped to the reference Drosophila genome (UCSC dm6) using the 

STAR aligner and .bam files are generated for subsequent visualization of reads on 

Integrative Genomics Viewer (IGV). 

 

10.3. Gene count was performed using HTSeq. 

 

10.4. Normalization, statistical analysis of differential expression, PCA and MA plots 

were performed using edgeR. The Trimmed Mean of M-values (TMM) method was used 

to normalize gene counts 22. 

 

10.5. Statistical analysis of gene expression using General Linear Model, quasi-

likelihood F-test with False Detection Rate (FDR) and Benjamini & Hochberg correction 

(BH). 
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REPRESENTATIVE RESULTS:  

The method presented here allows, in the course of one day, for isolating GFP-expressing 

secondary cells from Drosophila accessory glands, and extracting their RNA for sequencing.  

 

Figure 1: Overview of the 

protocol 

Key steps of the protocol 

are shown, with the 

timeline on the right side. 

This procedure allows one 

starting with live 

Drosophila in the morning 

to have dissociated 

accessory gland cells by 

noon, sort them based on 

GFP expression, and get 

their RNAs extracted by 

the end of the working 

day. RNA sequencing and 

data analysis will typically 

take a few weeks. 
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We use here the Abd-B-GAL4 construct described in 18 to express GFP in secondary cells (SC) 

but not in main cells (MC) (Figure 2A). The first objective of the method is to get the 

transcriptome of “wild type” SC (wild type is put in quotation marks because these flies are 

transgenic animals carrying a GAL4 driver express GFP). The second objective is to be able to 

obtain SC RNA quickly and easily enough so it is possible to compare their transcriptomes in 

different conditions. To test for this, we performed this protocol from “wild type” and “iab-

6cocuD1” mutants carrying a deletion of 1.1kb removing the SC enhancer of Abd-B as well as the 

promoter of the MSA transcript, known to be critical for SC development, morphology and 

function 18,20 (Figure 2B and C). We repeated this protocol 3 times on different days to generate 

the triplicates of each genotype presented here throughout the figures (hereafter referred as 

wt-1,-2,-3 for the wild type and D1-1,-2 and -3 for the iab-6cocuD1). 

The method described herein allows dissociating MC and SC from Drosophila accessory glands 

in only a few hours (Figure 2D). These cells are then sorted by FACS into two distinct tubes to 

isolate MCs and SCs. The FACS gating strategy is presented in Figure 2E to G. The addition of 

Draq7 allows the estimation cell viability, which is around 70% for the whole sample (Figure 2F). 

The singulets - estimated by double gating on FSC-A vs FSC-H and SSC-H vs SSC-W - represent 

over 90% of the SC population, and over 80% of the MC population, reflecting the efficiency of 

dissociation (exemplified in Figure 2H). 10 to 12% of SC sortings were aborted due to the 

presence of another cell or debris in the droplet. Starting with 40 males, we typically stop 

sorting after collecting 550 SCs and 1000 MCs. With one out of 6 samples, we did not reach the 

objective of 550 SC: the wt-1 sample was prepared with only 427 SC, but gave equally good 

results. 

SC and MC are sorted into lysis buffer and RNA extraction is performed as soon as all samples 

are ready in order to obtain RNA pellets by the end of the same day. RNA quality and quantity 

are estimated on a Bioanalyser using an appropriate chip to work with small volumes and low 

concentrations. Since estimated concentrations were quite variable between samples (ranging 

from 344pg/μl to over 1300pg/μl, see Figure 3A), the starting material for both RT-qPCR and 

cDNA library synthesis was roughly adjusted to 2ng (the measured concentration is not very 

precise). The expression of specific genes was quantified by Real Time qPCR on SC and MC 

extracts of the “wt” condition to control for the identity of the sorted populations. The results 

shown in Figure 3B are relative quantifications normalized to alpha-tubulin for each sample. As 

expected, housekeeping genes alpha-tubulin and 18S rRNA are detected in all samples. On the 

contrary, the SC-specific gene rab19 is only detected in SC extracts, while the MC-specific gene 

Sex Peptide is only detected from MC. As expected, the SC-specific transcript MSA whose 

promoter is deleted in Iab-6cocuD1 is detected only from wt SC and not from mutant SCs. 
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Together, the quality controls presented in Figure 3 show that the RNAs obtained with this 

procedure are not degraded and that SC and MC populations are successfully sorted, from both 

wt and mutant accessory glands. We sequenced only secondary cells’ RNAs, but note that this 

protocol allows for concomitant RNA profiling of both SC and MC. 

 

 

The RNA-sequencing was performed using standard protocols. For the purpose of this method, 

we will only discuss here the pertinent quality control analysis.  After sequences were obtained, 

the reads were mapped to the reference genome, attributed to genes, counted and 

normalized. Principal Component Analysis (PCA) was performed on all 6 samples (three “wild 

type” replicates and three iab-6cocuD1 replicates). PC1 accounts for as much of the variability in 

the data as possible, and PC2 accounting for as much of the remaining variability as possible. As 

presented in Figure 4A, the 3 wt replicates cluster together, and far away from Iab-6cocuD1 

samples, showing that wt samples are similar to each other, but different from mutant samples. 

This shows the reproducibility of the method, and its ability to characterize the divergent 

genetic program of mutant SC. We note that while D1-2 and D1-3 samples cluster together, the 

D1-1 sample is quite different. As all quality controls for this sample are good and similar to all 

other samples, we can exclude a problem in sample preparation (29 million total reads of which 

>76% align uniquely to the genome and >77% of them are attributed to a gene, >90% mRNAs, 

<3% rRNA). This variance could thus reflect that gene expression in iab-6cocuD1 SC is unstable, 

although more replicates would be necessary to test this hypothesis. 

 

Visualization of reads on the genome at particular genes allows a direct and visual estimation of 

the quality of the data. In Figure 4 a selection of genes is shown, with one representative 

replicate of each genotype. As expected housekeeping genes such as Act5C (Figure 4B) are 

expressed in both conditions, as well as the SC genes Rab19 and Dve (Figure 4C-D). The absence 

of reads in introns shows that polydT reverse transcription successfully selected the mature 

spliced mRNAs to prepare cDNA library. Importantly, we can see strong and significant 

variations in some genes’ expression levels comparing wild type and iab-6cocuD1. This is 

exemplified by the MSA gene presented in Figure 4E whose expression is strong in wild type 

and absent from iab-6cocuD1. This gene is shown as a proof of principle that this method allows 

identifying significantly mis-regulated genes which could shed light on the mechanisms 

responsible for the phenotypes observed in this mutant and give new insights into normal SC 

function. 
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Figure 2: Isolating and sorting GFP-expressing secondary cells 

A-Confocal image of Abd-B:GAL4 UAS-GFP accessory gland expressing GFP in secondary cells 

(SC), but not in main cells (MC). B and C show enlarged views of accessory gland distal part with 

SC expressing GFP, in wild type (B) or iab-6cocuD1 (C) background.  

Panel D shows dissociated cells at low magnification under the GFP binocular.  

Panels E to H displays FACS gating strategy to purify SC and MC. Red dots on all panels show SCs 

as defined by GFP expression (G). First, debris are excluded (E, step 6.2.1.) as well as the Draq-7 

positive dead cells (F, step 6.2.2.). GFP-positive cells are selected (SC) as well as an 

homogeneous population of GFP-negative cells (MC) (G, steps 6.2.4. and 6.2.5.). Doublets are 

excluded from both MC and SC population (step 6.2.3., only the SSC-H vs SSC-W gating for SC is 

shown on panel H as an example). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/630335doi: bioRxiv preprint 

https://doi.org/10.1101/630335
http://creativecommons.org/licenses/by/4.0/


 

Figure 3: QC on RNAs: quality, quantity, and cell type specificity 

A- Control of RNA quality and concentration estimation on PicoChip. The 25nt peak is the 

control for quantification. Low baseline indicates low degradation and the 2 major peaks are 

the ribosomal RNAs. The 3 samples used for RT-qPCR are shown, their quality is representative 

of all RNA samples used in this study, and their estimated concentrations reflect the variation in 

total RNA we obtained between samples. 

B- RT-qPCR demonstrate the specificity of the sorting of secondary cells (SC) and main cells 

(MC). Gene expression quantification is done using the q=2^(40-Cq) formula. Each triplicate of 

each gene in each condition is normalized to the mean quantity of alpha-Tubulin RNA to 

compensate for total RNA variation. Error bars show standard deviation. Wt means wild type 

and D1 refers to the iab-6cocuD1 mutant.  
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Figure 4: QC on RNA sequencing data 

A-Principal Components Analysis (PCA) on wt-1,-2,-3 (green dots) and D1-1,-2,-3 (blue dots) 

RNA sequencing datasets. 

Panels B to E show sequencing reads mapped to the Drosophila reference genome using the 

IGV software. Only one representative sample of each genotype is shown for clarity sake (wt-1 

and D1-2), and only a few specific loci are shown. Gene names are written on top of each panel, 

> and < symbols refer to their orientation. Numbers in brackets represent for each track the 

scale for the number of reads per DNA base pair. This scale is the same for both conditions for a 

given gene, but varies between genes for better visualization. Blue bars at the bottom of each 

panel show genes’ introns (thin line), exons (wide line) and ORF (rectangles with >>). Note that 

Rab19 and Arl5 are overlapping, convergent genes (C). 
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Table1: Primers sequence 

 

 

Table 2: Materials used 
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DISCUSSION:  

Secondary cells represent a minor cell type of the Drosophila accessory gland, yet play a critical 
role in male fertility by maintaining the post-mating response in females. In this protocol, we 
present a quick and efficient method to access the full transcriptome of these cells that account 
for only 4% of the organ, i.e. ~80 cells per individual. This method is based on dissection, 
peptidase digestion and FACS sorting, and can be performed in one day for multiple samples 
(except the RNA sequencing part). 
 
Methods to dissociate cells from Drosophila tissue such as imaginal discs were described 
previously 23. However, our attempts to simply use these methods with accessory glands failed, 
prompting us to develop this method. For a successful dissociation, the peptidases have to 
access the accessory gland cells, which are protected by an outer muscle layer and an inner 
viscous seminal fluid. Thus, cutting the glands open (step 3.6.) and digesting for at least 60 
minutes with vigorous shaking (step 4.1.) is critical to success. TrypLE allowed gentle 
dissociation, conserving the integrity of the gland and viability of the cells until mechanical 
dissociation. While papain and collagenase were not sufficient to dissociate the cells, we found 
that both of those enzymes improved the dissociation in association with TrypLE (less pipetting 
was required to obtain perfect dissociation, resulting in better survival). The trituration with 
narrow, rounded tips (steps 5.2. and 5.3.) is a key step and should be optimized in pilot 
experiments due to the way these tips are created (see step 2.3.2. and the Note after step 5.3. 
for guidelines). 
 
This method allows one to isolate around 500-800 individual, live Secondary cells from 40 males 
(we stop sorting around 550 cells per sample to normalize material for RNA extraction). This 
corresponds to ~20% (±5%) efficiency assuming a starting material containing ~ 3200 SC (40 
males x 80 SC). 20% recovery was enough for our purpose as we could obtain several samples in 
one day. However it might be improved by different means, including: working in larger batches 
and reducing transfers (doing trituration in the digestion tube, skipping step 5.4. and going 
straight to the FACS); performing a more gentle trituration (a significant proportion of 
dissociated GFP+ cells visible after step 5.3. die in the hour following trituration, as they are 
probably damaged in the process); reducing the digestion duration (using a more concentrated 
TrypLE might be an attractive option); reducing the stringency of singulet selection (step 6.2.3.); 
reducing time between time between dissociation and FACS… 
 
Secondary cells have unique cell morphology, having two polyploid nuclei and a vacuole-filled 
cytoplasm, consistent with a role in producing, modifying, and secreting a large quantity of 
proteins into the seminal fluid 24. These secretory cells fulfill non-redundant functions essential 
for male fecundity 12,20,25, and having a global view of all the genes that they express gives new 
insights into their normal function. We show here that the transcriptome of these cells can be 
obtained from a relatively small number of males, allowing for the comparison of different 
conditions. Here we use one mutant known to affect secondary cells morphology and function, 
and show that its transcriptome is significantly changed, suggesting that this method will allow 
identification of new important secondary cell genes. Previously in the lab a similar analysis of 
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wt and iab-6cocuD1 SC had been done by manually picking the cells, and produced good quality 
RNA sequencing data as well, but the method was too labor intensive to be extended to other 
conditions. In a separate manuscript, currently in preparation, we will extensively present and 
compare our datasets, and more importantly analyze them regarding their biological 
significance and how they help us understanding the normal function of SC. 
 
As the morphology, vacuolar content and the number of Secondary cells has been shown to 
change with age, mating status, and diet 21,26,27, it would be interesting to compare SCs under 
different conditions.  Having a simple and fast protocol will allow one to study SC under all of 
these different conditions. It is noteworthy that this protocol allows simultaneous isolation of 
main cells from the same individuals, and thus could also be used without modification to see 
how the different genetic and environmental parameters affect mains cells at the same time. 
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