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Abstract

Causal effect estimates for the association of obesity with health care costs can be biased by
reversed causation and omitted variables. In this study, we use genetic variants as instrumental
variables to overcome these limitations. We estimate the effect of body mass index (BMI) and
waist-to-hip ratio (WHR) on total health care costs using data from a German observational
study. We find that the model using genetic instruments identifies additional annual costs of
189€ for a one unit increase in BMI, and additional 1165€ for a 0.1 unit increase in WHR.
This is more than two times higher than estimates from linear regression without instrumental
variables. We found little evidence of a non-linear relationship between BMI or WHR, and
health care costs. Our results imply that the use of genetic instruments can be a powerful tool
for estimating causal effects in health economic evaluation that might be superior to other
types of instruments where there is a strong association with a modifiable risk factor.

1 Introduction

Overweight and obesity are global public health concerns in terms of economic costs and effect on
health (Wang et al., 2011). The projected global prevalence of obesity will reach 18% in men and
surpass 21% in women in 2025 (NCD Risk Factor Collaboration, 2016). Higher body mass index
(BMI), expressed in units of kg/m?, is a risk factor for type II diabetes mellitus, cardiovascular
diseases and certain types of cancer, resulting in shortened life expectancy (Hu et al., 2004).
According to the World Health Organization (2000), individuals are classified as obese with a BMI
> 30 kg/m? or a waist-to-hip ratio (WHR) > 0.85 for women and > 0.9 for men. While life style
factors like physical activity and nutrition are important drivers of obesity, there is also a significant
genetic component: at least 34% of BMI variation can be explained by genetic loci (Yang et al.,
2011; Maes et al., 1997).

Accurate estimates of health care costs are crucial to judge the trade offs between medical
possibilities, their financial viability, as well as quality and fairness in any health care system.
Because of practical and ethical issues, many health risk conditions (e.g. obesity) cannot be
assessed in randomized controlled trials (RCTs) and cost data collected in RCTs often has limited
generalizability (Drummond et al., 2015). On the other hand, observational studies can estimate
the relation between health care costs and health conditions, but generally cannot identify causal
effects (Cawley and Meyerhoefer, 2012). Many previous studies that estimated the association
of obesity with health care costs arise from observational studies (e.g. Finkelstein et al. (2009);
Trasande et al. (2009)) that are unable to fully account for unmeasured confounders. For example,
factors like social deprivation or bias by self-reported height and weight measures are often not
accounted for. In addition, the direction of the omitted variable bias is usually unclear. Cawley
and Meyerhoefer (2012) discuss that some people became obese after suffering an injury or chronic

depression, and have higher medical costs because of the injury or depression. Carreras-Torres
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et al. (2018) find that higher BMI increases the risk of being a smoker, but smoking itself lowers
BMI (Dare et al., 2015).

The presence of reverse causation and omitted variables motivated the use of instrumental vari-
able (IV) analysis. The aim of the IV method is to exclude a correlation between the explanatory
variables and the error term in a regression analysis. This is done by replacing the explanatory
variables with other variables that are closely related to them but do not correlate with the error
term or are a linear combination of other explanatory variables.

For example, in the case of health care costs of obesity, Cawley and Meyerhoefer (2012) used
the BMI of a biological relative as an IV. Compared to a standard ordinary least squares (OLS)
model, the authors found a fourfold increase of marginal costs of obesity, and a threefold increase in
the marginal costs of one unit of BMI. Studies by Black et al. (2018) and Kinge and Morris (2018)
found similar differences between OLS and IV models. They both used the BMI of a biological
relative as an IV.

However, a potential concern with this approach is that unobserved characteristics may be
correlated with both a person’s own BMI and their relative’s BMI, for example when they live in
the same household (Béckerman et al., 2019).

In this paper, we use an IV approach called Mendelian Randomization (MR). MR is originally a
concept from genetic epidemiology that uses genetic variants as instrumental variables to overcome
some limitations in cases where genetic polymorphisms have a well-known effect on modifiable risk
factors like BMI (Thomas and Conti, 2004). If the IV assumptions hold, genetic variants can be
used to estimate the effect of BMI and WHR on health care costs. Because genotypes are assigned
randomly when passed from parents to offspring, the population genotype distribution is assumed
to be unrelated to confounders and can therefore serve as valid instruments. This random segrega-
tion of alleles, according to Mendel’s law of independent assortment, mimics a natural experiment
in which individuals are randomly assigned into groups based on their exposure (Ebrahim and
Davey Smith, 2008).

Recent literature suggested that MR can be a powerful tool for economic evaluation (Dixon
et al., 2016), however few studies have yet used it (Ding et al., 2009; Fletcher and Lehrer, 2011;
Norton and Han, 2008; Cawley et al., 2011; Willage, 2017; von Hinke et al., 2016; Bockerman et al.,
2019).

In this study we use Mendelian Randomization to estimate the effect of BMI and WHR on
total annual health care costs and compare the results to a simple OLS model.

The rest of the paper is organized as follows. In Section 2 we first outline our data in Subsec-
tion 2.1. We then detail the MR approach in Subsection 2.2 and potential problems regarding the
validity of this approach in Subsections 2.3 to 2.5. We present results in Section 3. Finally, we

conclude in Section 4 with implications of the results.

2 Material and Methods

2.1 Data

We use data from the KORA (Cooperative Health Research in the Augsburg Region) F4 study
(2006-2010, n=3080). KORA is a population-based research platform in the region of Augsburg,
a city in the south-west of Germany, and two surrounding districts running population-based epi-
demiological studies. A more detailed description of KORA can be found in Holle et al. (2005).
Participants were interviewed at the study center regarding demographic and disease-related pa-

rameters, health care utilization and medications. Weight and height measurements were per-
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formed by trained staff. Education was classified in 3 groups: basic education (< 9 years of
schooling), medium education, and higher education (> 12 years of schooling, required to enter
university). Alcohol consumption was measured as average daily dose (in grams), physical activity
was categorized in high (>2h/ week), moderate (up to 2 hours/week), and no activity. The groups
of working status were: working, unemployed, retired, and other.

Resource utilization regarding physician visits, in- and out-patient hospital treatments, reha-
bilitations and medication were assessed by extrapolating the utilization of the asked time horizon
(7 days — 12 months) to one full year. Health care costs were estimated by multiplying utilization
of physician visits, in- and out-patient hospital treatments, and rehabilitations with the unit costs
provided by Bock et al. (2015). The costs of prescription medication was estimated using pharmacy
retail prices, based on patient information on medication name and national drug codes. All costs
were adjusted to 2011 prices in €. Table 1 presents an overview of the data set. Underweight
individuals (BMI < 18.5, n = 10) were removed because this group is especially vulnerable to bias
due to other pre-existing disease (Kent et al., 2017). Observations with missing or implausible
information were also removed, resulting in a sample size of n = 2779.

Single nucleotide polymorhpisms (SNPs) were available from Affymetrix Axiom genotyping for
all participants. These genotypes were entered into imputation via the Michigan imputation server
with HRC reference panel version r1.1 (McCarthy et al., 2016). We selected the 97 genetic loci
that are highly associated (p < 5 x 10~8) with BMI variation, based on a recent consortium-based
genome-wide association study (GWAS) by Locke et al. (2015). For WHR, we used the 48 SNPs
found by the GWAS study by Shungin et al. (2015). Some SNPs are relevant for both BMI and
WHR. Gene selection based on large GWAS make ideal candidates for MR studies (Taylor et al.,
2014). All analyses were conducted in R (R Core Team, 2019; Kleiber and Zeileis, 2008).

2.2 (One sample) Mendelian randomization and two-stage least-squares

Mendelian randomization is a type of IV analysis that uses genetic variants as instruments. The
random allocation of genetic variants at conception mean that these variants are less likely to
violate some of the assumptions of IV analysis than non-genetic instruments, even describing it as
nature’s randomized controlled trial (Smith, 2006).

To estimate the impact of BMI and WHR on medical spending, we used a two-stage least-
squares (2SLS) model. In the first step of the 2SLS approach, the endogenous regressor of interest
(BMI or WHR) is regressed on all valid instruments. Since the instruments are exogenous, this
approximation of the endogenous variables will not correlate with the error term.

In the second step, the outcome (total annual health care costs) is regressed on the fitted values

of obesity from the first stage.

Stage 1: Regress independent variable X (BMI or WHR) on instruments Z (genetic loci):

X=Z6+e¢

Stage 2: Regress Y (medical expenditures) on the predictions X = Z§ = Z(Z%Z)~'ZTX from the
first stage:
Y =XB+1.

The 2SLS estimates are then

BasLs = (XTZ(ZTZ)*IZTX)_1 XYz(z%z) 1 z%y.
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Overall

Annual total health care costs (mean (sd))

BMI (mean (sd))
WHR (mean (sd))
Age (mean (sd))
Sex
Female (n (%))
Male (n (%))
Alcohol consumption g/day (mean (sd))
Education
basic (n (%))
medium (n (%))
higher (n (%))
Working status
working (n (%))
unemployed (n (%))
retired (n (%))
other (n (%))
Physical activity
not active (n (%))
moderate (n (%))

active (n (%))

1,559 (3,645)

27.7 (4.8)
0.88 (0.9)

56.2 (13.2)

1,410 (50.7)
1,369 (49.3)

14.42 (19.5)

1,447 (52)
675 (24)

657 (24)

1,829 (66)
55 (2)
574 (21)

321 (12)

1,829 (66)
55 (2)

574 (21)

Observations n

2,779

Table 1: Summary statistics for the KORA F4 data set. Health care costs are expressed in 2011-€.
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All 2SLS models control for age, sex, alcohol intake, education, working status, and physical
activity.

Our approach, using individual level data, is called one-sample MR. Another popular approach
is two-sample MR, using summarized data from GWAS consortia in a meta analysis. The main
advantage of two-sample MR is increased statistical power, but the quality of the pooled results is
dependent on that of the individual studies. That means, two-sample MR has to use the summary
results presented, even when they have been adjusted for covariates that you would rather they
had not been adjusted for. It is important to not view genetic susceptibility for complex conditions
in isolation but along with lifestyle and environmental factors (Sugrue and Desikan, 2019), a major
advantage of one-sample MR. See Lawlor (2016) for a detailed comparison of one-sample and
two-sample MR.

For comparison, we compute linear OLS non-IV models that regress health care costs on BMI
and WHR and again adjust for the same covariates as before. We use the Durbin-Wu-Hausman
endogeneity test (Hausman, 1978) to evaluate whether there is any evidence that the instrumen-
tal variable estimate differs from the OLS estimate. In this test, a significant results indicates

disagreement between OLS and IV estimates.

2.3 Pleiotropy

A common problem in MR analyses is the presence of pleiotropic effects, i.e. a genetic variant has
associations with more than one risk factor on different causal pathways (Lawlor et al., 2008). This
can be especially problematic for polygenic risk factors like BMI, where the influence of genetic
variants is less specific (VanderWeele et al., 2014). To test violations of the IV assumptions, we
used three approaches. First, we checked, in the Phenoscanner database (Staley et al., 2016),
if genes related to BMI and WHR are also significantly associated with other determinants of
health care costs. We found that some SNPs are related to obesity-related illnesses like type 2
diabetes and high blood pressure. As in Bockerman et al. (2019) we assume that the associations
with obesity-related conditions occur because of the SNPs’ association with high BMI and WHR,
but we cannot definitely rule out other pathways. In a second check, we used the MR-Egger
method (Bowden et al., 2015) to test for pleiotropy. The MR-Egger method performs a regres-
sion of the SNP-outcome associations on the SNP-exposure associations with the intercept left
unconstrained to test for evidence of bias-generating pleiotropy. As a third test for pleiotropy we
conducted Sargan’s test for overidentification (Sargan, 1958). The null hypothesis in this test is
that all exogenous instruments are in fact exogenous and uncorrelated with the model residuals,

and all over-identifying restrictions are therefore valid.

2.4 Invalid instruments

As the number of biomarker-associated variants is constantly increasing through GWAS, selection
of the most appropriate instruments is an important issue (Swerdlow et al., 2016). Using too
many genetic variants as instruments can lead to spurious estimates and increased type 1 error
rates. This implies that, even if a set of multiple instruments is valid, (i.e. they are not associated
with confounding factors, have no direct effect on the outcome, and are at least weakly associated
with the exposure) the 2SLS estimator can still be biased towards the conventional regression
estimate (Davies et al., 2015; Bound et al., 1995). A weak instrument only explains a small
proportion of the variation in the risk factor. Using many weak instruments can still result in weak
instrument bias (Bound et al., 1995; Staiger and Stock, 1997).
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For this, Belloni et al. (2012) suggest selecting optimal instruments in the first stage regression
by least absolute shrinkage and selection operator (LASSO) variable selection. A similar approach
with explicit application to MR was propsed by Kang et al. (2016). Additional work by Windmeijer
et al. (2018) recommends to use the adaptive LASSO to retain the oracle properties (Zou, 2006).
In the adaptive LASSO for the first stage, the goal is to minimize

) 1
in { 5 1 = 2015+ Al }.
sck? | n

where A is a penalization parameter obtained by cross-validation, and w = 1/ § is an initial esti-
mate of ¢ (e.g., obtained by least squares). The LASSO procedure shrinks many § parameters to
effectively zero, pruning them out of the regression. According to Keele and Morgan (2016) we

additionally perform an F-test on the first stage regression to test for weak instruments.

2.5 Non-linearity

Previous research found evidence of a non-linear relationship between BMI and health care costs (Laxy
et al., 2017; Cawley and Meyerhoefer, 2012), and MR is often unable to detect such non-linearities
because genetic variants usually only explain a small percentage of the variance in the risk factor
(Staley and Burgess, 2017). To test for non-linear effects of BMI and WHR on health care costs
in our sample, we fit a generalized additive model (GAM) (Hastie and Tibshirani, 1986) where
we regress the linear predictor (health care costs) linearly on unknown smooth functions of some
predictor variable (BMI or WHR), adjusted for the same covariates as in the MR model.

3 Results

LASSO selects 64 valid genetic instruments for BMI and 15 for WHR. The relevant SNPs and their
first stage regression estimates are shown in Figure 1. In both IV analyses, we find little evidence
of weak instruments, because the weak instruments test p-value is < 0.0001 in both cases and the
F-statistics are above the traditional threshold of 10 (Stock and Yogo, 2005).

The Sargan test does not provide evidence of pleiotropic effects in both BMI and WHR IV
models (see p-values in Table 2 and Table 3). This is supported by the MR Egger intercept test
(see Figure 2). The Durbin-Wu-Hausman test, however, suggests no strong evidence of differences
between the OLS and IV estimates.

Table 2 presents the results of the association between BMI and health care costs and Table 3
the results of WHR and health care costs. In the case of BMI, the OLS model finds an effect of
75.5€ for a one unit increase of BMI. In contrast, the IV model estimates an effect of 188.5€ for
a one unit increase of BMI.

For WHR, a 0.1 increase of WHR is associated with increased costs of 487€ for the OLS model
and 1165€ for the IV model. In both cases, the IV model using genetic instruments estimates
the effect on costs almost 2.5 times higher than the OLS model. Other significant cost drivers or
savers are age and higher education for the BMI model, and, in addition, sex in the WHR model.
Especially in the WHR, case (see Table 3), many associations lose its significance at the 0.05 level
when moving from OLS to IV analysis.

We also detect no proof of strong non-linear effects of BMI or WHR on health care costs in our

sample, according to the GAM models, see Figure 3.
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4 Discussion

This paper is one of the first that uses a one-sample MR approach to estimate the marginal health
care costs of a prevalent clinical condition. MR offers new opportunities for reliable causal inference
in health economic research within the framework of observational research designs. Using MR,
our findings indicate that a one unit increase of BMI increases total medical spending by 188.5€
and a 0.1 unit increase of WHR increased total medical spending by 1165€. The OLS model,
that doesn’t use instrumental variables, only finds additional spending of 75.5€ for BMI and 487€
for WHR. This demonstrates that a MR study with genetic instruments may detect more hidden
bias than a non-IV analysis, leading to higher estimated effects. It is important to note that
OLS estimates average treatment effects, while IV estimates local average treatment effects. This
may partially account for the differences in the effect estimates (Imbens and Angrist, 1994). Our
study confirms the results in Cawley and Meyerhoefer (2012), Black et al. (2018), and Kinge and
Morris (2018) that imply much higher costs of obesity in the IV analysis compared with the non-IV
analysis. These studies use the BMI of the respondent’s oldest child as instrument and report that
the IV-estimate for the association between BMI and health care costs is between two to four times
higher than the non-IV approach. One possible explanation for the even greater difference between
the IV and non-IV estimates in the US by the Cawley and Meyerhoefer (2012) study might be
that subgroups with higher obesity prevalence have reduced access to health care in the US, while
Germany has a social insurance system covering almost all citizens (Davis and Ballreich, 2014).
However, as it is likely that, due to the shared environmental exposures, a child’s BMI is correlated
with relevant covariates (Dubois et al., 2012), the use of such non or quasi genetic IVs is discussed
controversial and might lead to biased estimates as well.

Another advantage of our data is that height, weight, waist and hip measurements of indi-
viduals in the sample were performed by trained staff. This is more accurate than self-reported
measurements where people tend to under-estimate their weight and over-estimate their height,
resulting in an under-estimation in BMI (Gorber et al., 2007).

Because participants in our study were asked to self-report their health service usage over
the past 3-12 months, recall bias cannot be excluded. Health care utilization was priced with
average reference value, therefore actual costs might deviate. However, this should not influence the
validity of the study results (Evans and Crawford, 1999). In addition, we were unable to consider
cost, categories such as presenteeism, premature death or out-of-pocket payments for medication.
Although the problem of recall bias and average unit costs are likely to lead to an underestimation
of absolute costs, this should not strongly influence the cost increase between BMI and WHR units
that were the focus of this study.

Other studies found similar results. Within the BMI range of 25 to 45 kg/m?, a study in the
United States by Wang et al. (2006) described an increase in medical and pharmaceutical costs
of $202.3 per BMI unit. A review of 75 international studies by Kent et al. (2017) reported a
median increase in mean total annual health care costs of 36% for obese individuals compared with
individuals of healthy weight. All of these studies rely on traditional non-IV estimation.

Having weak or invalid instruments can be a problem in MR analysis. Davies et al. (2015)
show that 2SLS is especially vulnerable to weak instrument bias in MR and propose the limited
information maximum likelihood and the continuously updating estimator as unbiased alternatives
to 2SLS. However, these methods are difficult to implement and interpret. For this reason, we
used the adaptive LASSO variable selection in the first state of 2SLS to rule out invalid and weak
instruments. The SNPs we used have been discovered in GWAS and should be valid.

The Durbin-Wu-Hausman test p-value suggests no significant difference between OLS and IV
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estimates. However, the effects being estimated by the two methods may not be the same-the
MR estimate reflects the effects of lifelong perturbations in the risk factor, whereas OLS regression
results may reflect more acute effects (Davies et al., 2018). According to Burgess and Thompson
(2015), it would be fallacious to assume that a non-significant result means the OLS estimate is
unconfounded. MR estimates are almost always less precise and have wider confidence intervals
than OLS regression, so tests for difference often have low statistical power.

It must also be noted that the KORA F4 study was part of the GWAS consortium that dis-
covered the relevant SNPs for BMI in the study by Locke et al. (2015). Because the same data
was used at the GWAS discovery stage and in our analysis, it is possible that chance correlation
between SNPs and confounders can lead to overestimation of the SNP-trait effect (Haycock et al.,
2016). This is the so-called winner’s curse or Beavis effect (Goring et al., 2001). However, the
KORA F4 study was only a small fraction of the more than 300,000 individuals in this GWAS, so
it should not strongly affect the power of our analysis.

There are alternative ways to include genetic information into the IV model. For example, an
allele score can be generated from the genetic variants and included as a single instrument in the
association model. This allele score is calculated per individual as the weighted or unweighted sum
of the number of risk or trait increasing alleles (Teumer, 2018). However, Palmer et al. (2012)
showed that an unweighted score has lower power than adding multiple IVs into the 2SLS, and
using an appropriately weighted allele score performs similarly to adding each valid SNP as an
instrument. The effect estimate is a little less biased when using a weighted allele score but has
less precision (and power) compared to the multiple IV 2SLS estimator that we used.

Burgess et al. (2014) note that instrumental variable estimates using a linear model may not
reflect causal effects for large changes in the exposure. In our case we find the relationship between
BMI and costs and WHR and costs approximately linear and therefore the linear model is justified.

In the 2SLS estimator, we assume normal distribution of cost data which is not present because
of skewness, positivity, and heavy tails. This can also affect the validity of the standard errors and
confidence intervals (Guo et al., 2018; Kang et al., 2018). Still, the use of a linear model is justified
because the skewness and tail distribution are not extreme and the large sample size guarantees
near-normality of sample means because of the Central Limit Theorem (Mihaylova et al., 2011).
However, more sophisticated generalized linear models using different error distributions could be
examined (Duan et al., 1983; Kurz, 2017).

In conclusion, we showed that MR can be a viable tool in health economic analyses. We found
more than two times higher costs for BMI and WHR one unit increases in our IV model than in
the OLS model. Because the association of genetic variants with BMI and WRH is still weak,

results have to interpreted carefully.
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Figure 1: Forestplot for the parameter estimates and 95% confidence intervals of the first stage
regression for (A) BMI and (B) WHR. Only genetic variables (SNPs) are shown.
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OLS v
Dependent variable: Annual total health care costs Annual total health care costs
Age 39.2%** 32.6"*
(5.8) (7.6)
Sex = Female 188.5 255.5
(149.9) (159.2)
BMI 75.5%"* 188.5**
(14.9) (84.3)
Education
basic Ref. Ref.
medium —19.2 108.9
(171.9) (197.5)
higher —400.7** —205.2
(178.9) (230.8)
Alcohol consumption —-1.2 —-1.3
(3.7) (3.7)
Working status
working Ref. Ref.
unemployed 368.6 303.2
(488.5) (495.9)
retired 187.5 130.5
(182.8) (189.4)
other 47.2 —4.2
(225.4) (230.8)
Physical activity
not active Ref. Ref.
moderate —59.4 29.7
(160.4) (174.8)
active —116.6 61.8
(185.6) (228.7)
Constant —2,895.6"** —5,894.1"*
(586.6) (2,279.4)
Observations 2,779 2,779
Weak instruments test p-value <0.0001
First stage F-statistic 12.9
Durbin-Wu-Hausman test p-value 0.17
Sargan test p-value 0.67
Note: *p<0.1; **p<0.05; ***p<0.01

Table 2: The effect of BMI on annual total health care costs using an OLS model (left column)
and an IV model with genetic variants (right column). The IV results are from the second stage
of the 2SLS approach. Standard errors in parenthesis.
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OLS v
Dependent variable: Annual total health care costs Annual total health care costs
Age 34.1 20.9
(6.1) (16.7)
Sex = Female 684.3*** 1,436.3
(195.6) (904.9)
WHR 4,872.17** 11,649.9
(1,133.2) (8,042.3)
Education
basic Ref. Ref.
medium —48.5 29.8
(171.8) (195.8)
higher —431.2"* —292.2
(178.8) (243.0)
Alcohol consumption —2.2 -3.6
(3.7) (4.1)
Working status
working Ref. Ref.
unemployed 313.5 176.0
(489.6) (518.5)
retired 176.9 109.2
(183.2) (200.7)
other 13.5 —80.9
(226.1) (253.2)
Physical activity
not active Ref. Ref.
moderate —74.2 —12.1
(160.5) (177.3)
active —134.0 7.4
(185.8) (250.1)
Constant —5,517.9"** —11,949.9**
(586.6) (2,279.4)
Observations 2,779 2,779
Weak instruments test p-value <0.0001
First stage F-statistic 12.0
Durbin-Wu-Hausman test p-value 0.39
Sargan test p-value 0.97
Note: *p<0.1; **p<0.05; ***p<0.01

Table 3: The effect of WHR on annual total health care costs using an OLS model (left column)
and an IV model with genetic variants (right column). The IV results are from the second stage
of the 2SLS approach. Standard errors in parenthesis.
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Figure 2: Plot of the gene-outcome vs gene-exposure regression coefficients for (A) BMI and (B)
WHR. The dashed line represents the MR Egger regression estimate. Some outliers are not shown.
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Figure 3: Plots of the smooth function from the GAM for (A) BMI and (B) WHR. The shaded
area represents the 95% confidence band.
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