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Abstract 

Background: A substantial number of infants infected with RSV develop severe 

symptoms requiring hospitalization. We currently lack accurate biomarkers that are 

associated with severe illness.  

Method: We defined airway gene expression profiles based on RNA sequencing from 

nasal brush samples from 106 full-tem previously healthy RSV infected subjects during 

acute infection (day 1-10 of illness) and convalescence stage (day 28 of illness). All 

subjects were assigned a clinical illness severity score (GRSS). Using AIC-based model 

selection, we built a sparse linear correlate of GRSS based on 41 genes (NGSS1). We 

also built an alternate model based upon 13 genes associated with severe infection 

acutely but displaying stable expression over time (NGSS2).  

Results: NGSS1 is strongly correlated with the disease severity, demonstrating a naïve 

correlation (ρ) of ρ=0.935 and cross-validated correlation of 0.813. As a binary classifier 

(mild versus severe), NGSS1 correctly classifies disease severity in 89.6% of the 

subjects following cross-validation. NGSS2 has slightly less, but comparable, accuracy 

with a cross-validated correlation of 0.741 and classification accuracy of 84.0%.  

Conclusion: Airway gene expression patterns, obtained following a minimally-invasive 

procedure, have potential utility for development of clinically useful biomarkers that 

correlate with disease severity in primary RSV infection. 
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Introduction 

Respiratory Syncytial Virus (RSV) is the most important cause of respiratory illness in 

infants and young children, accounting for more than 57,000 bronchiolitis and 

pneumonia hospitalizations in the US annually.[1] Worldwide, 33.1 million acute lower 

respiratory infections and 3.2 million hospitalizations in children under 5 years of age are 

attributed to RSV each year.[2] In the US ~1-2% of newborns are hospitalized during 

their first winter, with rates greatest in the first two months of life (25.9 per 1000).[3] Risk 

factors for severe disease include gestational age < 29 weeks, bronchopulmonary 

disease and symptomatic congenital cardiac disease, while less well defined risks 

include lack of breast feeding, and exposure to tobacco smoke. However, the majority of 

hospitalized infants are full-term infants whose only risk factor is young age at the time of 

infection.[3]  

 

A number of severity scores using clinical parameters, including cutaneous oximetry, 

have been used to grade illness severity for use in management and as an outcome in 

therapeutic, or potentially, vaccine trials. [4-13] However, none of the clinically based 

severity scores have been universally adopted.[14] Reasons may include heterogeneity 

in the scope and purpose of the score, the ages to which it is applied and concerns 

about inter-observer variability and subjectivity in interpreting clinical signs, including 

oximetry, that often are temporally dynamic over short intervals. Identification of an 

objective biomarker that accurately correlates with, or potentially predicts, disease 

severity could be highly useful.[15, 16] 

 

We and others have reported a relationship between disease severity and host gene 

expression in peripheral blood cells and nasal swab samples during infection.[17-20] 

These results suggest such an approach may allow development of biomarkers to 
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accurately categorize RSV disease severity. As part of the AsPIRES study[21] we 

recently reported on the feasibility of measuring gene expression of airway cells 

collected by nasal swab in healthy infants in order to study RSV disease 

pathogenesis.[22] However, in this manuscript, we describe the use of this gene 

expression data during RSV infection to develop two airway gene expression-based 

classifiers that are highly correlated with clinical disease severity. This represents a first 

step in developing a biomarker using gene expression responses capable of accurately 

classifying clinical severity in primary RSV-infection that could be used in conjunction 

with clinical evaluation. 

Methods 

Study Subjects: Subjects included RSV infected infants enrolled in the AsPIRES study at 

the University of Rochester Medical Center (URMC) and Rochester General Hospital 

(RGH).[21] The Institutional Review Boards of both institutions approved the study, and 

all parents provided written informed consent. RSV-infected infants came from three 

cohorts during three winters (October 2012 through April 2015); one cohort included 

infants hospitalized with RSV, a second cohort was recruited at birth and followed 

through their first winter for development of RSV infection, and the third cohort was RSV 

infected infants seen in pediatric offices and emergency departments and managed as 

outpatients. All subjects were full-term infants undergoing a primary RSV infection during 

their first winter season. Nasal samples were collected from the inferior nasal turbinate, 

by gentle brushing with a flocked swab as previously described [22], during the acute 

illness visit (visit 1) and at a convalescent visit ~28 after illness onset (visit 2). Illness 

severity was graded from 0-10 using a Global Respiratory Severity Score (GRSS), that 

uses nine parameters (age adjusted respiratory rate, chest retractions, wheezing, 

rales/rhonchi, apnea, cyanosis, room air oxygen saturation, lethargy and poor feeding) 
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as previously described.[23] We defined a GRSS >3.5 as severe disease as it is highly 

correlated with illness requiring hospitalization.   

Nasal RNA processing:   

The process for nasal RNA recovery was previously described.[22] Briefly, following 

flushing of the nares with 5 milliliters of saline to remove mucus and cellular debris, a 

flocked swab was used to recover cells at the level of the turbinates. The swab was 

immediately placed in RNA stabilizer (RNAprotect, Qiagen, Germantown, MD) and 

maintained at 4 °C.  Cells were recovered by filtering through a 0.45 uM membrane filter. 

Recovered cells were lysed and homogenized using the AbsolutelyRNA Miniprep kit 

(Agilent, Santa Clara, CA) according to the manufacturer’s instructions. 1 ng of total 

RNA was amplified using the SMARter Ultra Low amplification kit (Clontech, Mountain 

View, CA) and libraries were constructed using the NexteraXT library kit (Illumina, San 

Diego, CA). Libraries were sequenced on the Illumina HiSeq2500. Sequences were 

aligned against human genome version of hg19 using STARv2.5, counted with HTSeq, 

and normalized by Fragments Per Kilobase of transcript per Million mapped reads 

(FPKM). A total of 6,844 transcription profiles (genes) were reported after quality 

assurance analysis and preprocessing. Additional technical details on data 

preprocessing can be found in Supplementary Text. 

Statistical methods:  

Descriptive statistics are reported in Table 1. Discrete variables are summarized in 

percentages, and continuous variables were summarized as Mean (SE). For continuous 

variables, we performed 2-sample Welch t-tests to check the equality between the mild 

and severe groups; for categorical variables, Fisher’s exact test was used instead. The 

nasal gene-expression severity scores we developed in this study were based on 

multivariate regression analysis with bi-directional stepwise model selection based on 

Akaike Information Criterion (AIC). Technical details of model development and cross-
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validation (CV) can be found in Supplementary Material. All analyses were conducted 

using SAS 9.3 (SAS Institute Inc., Cary, NC, USA) and the R programming language 

(version 3.5, R Foundation for Statistical Computing, Vienna, Austria). 

Results 

Of the 139 RSV-infected infants enrolled in the AsPIRES study, nasal samples were 

available from 119 subjects during acute infection (day 1-10 of illness) and 81 subjects 

during convalescence (day 28 of illness).  Among these 200 samples, 175 samples (106 

acute samples and 69 convalescent samples) met sufficient quality to be used for 

subsequent analyses. Demographic and clinical information for these 106 subjects are 

provided in Table 1. The clinical severity score (GRSS) for these subjects ranged from 0 

to 10, with 42 subjects considered to have mild disease (GRSS ≤3.5; mean  SE GRSS 

of 1.63  0.15) and 64 to have severe disease (GRSS >3.5; mean GRSS of 6.13  0.22). 

There were no significant differences between the mild and severe groups in gender, 

race, delivery type, breast feeding, or exposure to tobacco smoke. There also was no 

difference in age at time of infection or in duration of illness at the time of evaluation.  

Nasal gene expression correlates of clinical severity during acute illness 

The 6,844 genes remaining after data preprocessing and filtering were subjected to the 

Pearson correlation test to select genes that were significantly correlated with GRSS 

during acute infection. After controlling the false discovery rate (FDR) at the 0.05 level, 

66 significant genes were identified.[24] Using these genes, we applied model selection 

procedures (see Supplementary Text for more details) to select an initial multivariate 

regression model for GRSS (Model 1), which was comprised of 39 genes and had 

relatively good predictive power (77.4% accuracy, or 24 misclassifications) for the 

dichotomous clinical outcome (mild vs. severe illness) in leave-one-out cross-validation 

(LOOCV). 
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Not unexpectedly, there is a strong correlation among the 66 genes, which might 

reduce the diagnostic performance of Model 1. Using a novel method based on principal 

component analysis (PCA), we identify ten supplementary genes as additional features 

to model GRSS (see Supplementary Text for more details).  With these additional 

features and using the same model selection strategy, we developed two additional 

models: Model 2 comprised of 41 genes and Model 3 comprised of 42 genes. The 

performance of these models was evaluated by LOOCV (Table 2). We found that the 

incorporation of the supplementary genes into Model 2 (CV prediction accuracy of 

89.6%; 11 misclassifications) significantly improved the accuracy compared to Model 1 

(24 misclassifications) and Model 3 (23 misclassifications). Of note, Model 2 contained 5 

supplementary genes, and we defined it as NGSS1 (nasal gene expression severity 

score 1). As shown in Figure 1, NGSS1 is highly associative with GRSS (naïve ρ=0.935; 

CV ρ=0.813). For the population of subjects in the AsPIRES study, the sensitivity and 

specificity for identifying severe disease were high (sensitivity 90.1%, specificity 88%) 

which would translate to a positive predictive value (PPV) of 92% and a negative 

predictive value (NPV) of 86%.  

Validation of NGSS1 at the Convalescence Phase 

NGSS1 was trained exclusively from data collected at the acute phase (visit 1). For a 

subset (n=54) of subjects, we also had their nasal transcriptome profiles at the 

convalescence phase (day 28 after illness onset), a time when most infants had 

completely recovered from their illness. If NGSS1 is a valid surrogate for disease 

severity, we hypothesized that NGSS1 calculated from the severely ill subjects at visit 2 

would converge to those of the mildly ill subjects. Compared with the acute visit, the 

calculated NGSS1 at the convalescent visit predicted a significantly lower mean severity 

score for severe subjects (n=29, 6.22 vs. 2.82, p<.001). In contrast, there was no 

significant difference in NGSS1 between the two visits for the mildly ill group (n=25, 1.96 
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vs. 2.31, p=0.45), nor between the severe and mild groups at visit 2 (2.82 vs. 2.31, 

p=0.40). These results are illustrated in Figure 2A. 

Exploratory Association Analysis Based on Stable Nasal Genes  

In the process of developing NGSS1 we observed that a large number of genes had 

expression levels that remained stable between the acute and convalescent visits. We 

speculated that a NGSS based on stable genes that were correlated with GRSS could 

potentially be predictive of disease severity prior to illness onset. Thus, we next 

developed an NGSS based on genes displaying stable expression across acute illness 

and convalescence in the 54 subjects with samples from both time points. Specifically, 

we included only genes whose mean expression levels correlated with disease severity 

during acute illness, and whose expression did not change significantly from the acute to 

convalescent stage.  

We identified 2127 genes in subjects with mild illness and 1531 genes in subjects with 

severe illness, based on paired two sample t-test (p > 0.5) and fold change increases or 

decreases within 10%. Of the total 3658 genes, 689 stable genes were common in both 

groups (Figure 3A). A quality assurance analysis based on IQR showed that a small 

subset (n=14) of these genes had relatively small dynamic range in the combined 

dataset, and were excluded. We applied marginal screening based on Pearson 

correlation with GRSS to the remaining 675 stable genes and identified 44 marginally 

significant genes. As in developing NGSS1, we added 5 supplementary genes with  

strong marginal associations with GRSS. Model selection identified 13 genes as Model 4 

(designated as NGSS2). The performance of NGSS2 is provided in Table 2 and 

illustrated in Figure 3B. NGSS2 showed a significant correlation with GRSS (ρ=0.741), 

and a CV accuracy of 84% (17 misclassifications out of 106 cases, Table 2). Of note, 

NGSS1 and NGSS2 do not contain any commonly selected gene, which is expected due 

to different screening criteria. Figure 2B shows that on average, NGSS2 did not change 
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between visit 1 and visit 2, which is the key difference between these two classifiers. A 

full list of genes used in NGSS1 and NGSS2, as well as their estimated linear 

coefficients in the models, are listed in Supplementary Tables E2 and E3. 

Discussion 

Several approaches have been proposed for quantifying RSV disease severity in young 

infants.[4-13] A variety of clinical parameters have been included in several described 

severity scores, with incomplete agreement on the optimal factors to select.[14] One 

reason is that many clinical signs of RSV infection in young infants, including cutaneous 

oximetry, can fluctuate frequently and rapidly during the course of illness, making 

consistent assessment difficult. An objective biomarker reliably correlated with clinical 

severity could prove useful for clinical management and as a classifier and/or an 

outcome measure in vaccine or therapeutic trials.   

 

Transcriptomic analysis of host cells has proven informative in the study of several 

respiratory viral infections, including RSV, with the emphasis on disease 

pathogenesis.[17-20] Unlike this report that focuses on nasal epithelial cell samples, 

most reports have described gene expression correlates of disease severity in peripheral 

blood mononuclear cells during infection since RSV pathogenesis is thought to be 

closely linked to the host’s immune response.[25] In two publications from the same 

group, RSV infection was associated with overexpression of innate immunity genes 

(neutrophil and interferon genes) and suppression of adaptive T and B cell genes. [17, 

19] The investigators used the results to develop a gene-expression based illness score 

(designated Molecular Distance to Health [MDTH]) that was significantly correlated with 

a clinical disease severity score, duration of hospitalization and need for supplemental 

oxygen. Recently, Jong et al described an 84 gene signature that was highly predictive 
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of RSV disease severity in infants.[16] Similarly, we reported that gene expression 

patterns in purified blood CD4 T cells during infection were correlated with clinical 

disease severity.[18] Gene expression results from nasal swabs collected from 

hospitalized infants during RSV infection have also been recently reported by another 

group, with differentially expressed genes correlated with clinical severity.[20]  

 

In this report we describe the use of RNAseq analysis of gene expression data from 

nasal specimens collected during RSV infection to develop two nasal gene-expression 

severity scores (NGSS1 and NGSS2) that are highly correlated with a clinically derived 

disease severity score (GRSS). Although the nasal brush samples from the AsPIRES 

study were collected to investigate molecular pathways and disease mechanisms 

involved in pathogenesis (presented in a separate manuscript [26]), we also considered 

that the data could be useful for the development of a gene based biomarker of RSV 

severity. We used marginal screening of all genes followed by PCA analysis and step-

wise model selection to develop NGSS1, a multivariate linear classifier of severity. In CV 

analysis, NGSS1 was strongly correlated with GRSS and was a relatively accurate 

classifier of binary disease severity. Furthermore, the score tracked well with clinical 

improvement 28 days after illness onset. Of particular note, we found that including 

uncorrelated supplementary genes enhances the accuracy of the models, and 

recommend this approach as a routine for future classification/prediction analyses based 

on high-throughput data with substantial correlation. As noted, in the population enrolled 

in our study the operating characteristics of NGSS1, including sensitivity, specificity, 

PPV and NPV, were quite good. However, it should be recognized that the proportion of 

mildly ill to severely ill subjects was determined by the recruiting strategy used, and that 

the PPV and NPV would vary depending on the population to which NGSS1 was 
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applied.[21]  If  mildly ill subjects are increased by a factor of 3-5 this would reduce the 

PPV to 40-70% although the NPV would remain >90%.   

 

Although the aim of this report is not to describe molecular mechanisms operative during  

RSV infection, it should be noted that the 41 NGSS1 genes include cytokines 

(TNFSF10, IL6, and CXCL2), extracellular matrix proteins (VIM, MMP19, RPS15A, 

FKBP1A, and VCAN), inflammation regulators (CXCL2, CD163), and components of 

various signaling processes (GNS, HAVCR2, PTPRC, CTSL, INHBA, IL6, MMP19, 

CXCL2, SLC39A8, CCDC80, VCAN, CD163). Some genes are only known to be 

involved in fundamental biological processes and are therefore novel in RSV research, 

including ST3GAL1 (a type II membrane protein) and ATP10B (ATPase Phospholipid 

Transporting 10B). Note that only two genes (TNFSF10, RABGAP1L) have been 

associated with disease severity in our recent study based on purified CD4 T cells.[18] In 

addition, IL-6 Signaling is the only significant canonical pathway identified from the CD4 

T cells that contains an NGSS1 gene (IL6).  

 

A unique and very preliminary result from our analysis is the development of NGSS2 

using differentially expressed genes associated with GRSS that did not change between 

the acute and the convalescent time points. It is possible that these genes may simply 

be slow to return to baseline expression levels, in contrast to those genes selected for 

NGSS1. Although speculative, it occurred to us that “stable” genes might possibly be 

predictive of severity regardless of when a nasal sample was obtained, thus raising the 

possibility of infants at risk prior to or early in infection. While NGSS2 is slightly less 

accurate than NGSS1 in predicting GRSS during acute illness, the association between 

NGSS2 and GRSS is still relatively strong. Interestingly, the 13 NGSS2 genes were 

broadly related to cytoplasmic activities (EXOSC10, PLK2, PPIC, CLDN10, MAP3K13, 
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MT1G, PXN), ATP binding (SEPHS2) and phosphoprotein regulation (BCKDK, PLK2, 

MAP3K13); activities that may be less directly responsive to acute RSV infection. These 

observations suggest that the best nasal transcriptome predictors of respiratory 

symptoms are not necessarily limited to those genes that directly regulate the immune 

response to RSV infection.  

 

The use of nasal brush specimens for development of a severity biomarker in infants is 

attractive for a number of reasons. Nasal respiratory epithelial cells are the first cells 

infected and directly initiate early innate immune responses to RSV. The mucosa is also 

the site of migration of both innate and adaptive immune cells during infection. 

Importantly, we have shown that gene expression in nasal respiratory epithelial cells is 

highly concordant with published gene expression in lower respiratory tract epithelial 

cells, and thus should be a reasonable proxy for lung responses to RSV infection.[22] Of 

practical importance, collection of nasal epithelial cells is relatively non-invasive and 

simple to perform with minimal discomfort.   

 

There are several important limitations to our study and conclusions. First, we do not 

have an independent cohort to validate our findings; the only publically available nasal 

gene expression data during RSV infection used microarray technology that did not 

identify many of the genes we identified by RNAseq. Due to the lack of independent 

samples for validation, we applied cross-validation techniques to prevent model 

overfitting and validate the accuracy of prediction for both NGSS1 and NGSS2 at the 

acute visit. CV estimator for prediction accuracy is known to be asymptotically unbiased 

[27] under very weak statistical assumptions, namely, the training and testing data are 

independent and identically distributed (which can even be relaxed further, see [28, 29]). 
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Additionally, we further validated the NGSS1 trained at the acute visit with the 

convalescence data, and the results conformed with our prediction remarkably well. 

Although the NGSS1 declined for the severely ill infants when clinical symptoms had 

resolved, it would be useful to determine if NGSS1 tracked closely over the full course of 

an illness. However, validation of our findings with an independent prospective cohort 

will be required.  In addition, the results may not be valid for infants older than 10 months 

of age when infected with RSV, nor for infants with prematurity or other underlying 

medical conditions. 

Another possible limitation is that all data used in these analyses were generated on the 

same technical platform and processed by the same team, therefore the validation 

results do not reflect the impact of “artifacts” in transcriptomic studies such as batch 

effects and platform differences, which can be reduced but not entirely eradicated by 

advanced normalization methods.[30-33]  

Importantly, speculation that NGSS2 might predict disease severity prior to infection 

demands careful prospective validation. Finally, to extend the utility of time-intensive 

gene expression assays beyond a research tool and use it as a clinically useful 

biomarker of RSV disease severity, will require translation of these results to a rapid 

readily performed multiplex reverse transcription polymerase chain reaction (RT-PCR) 

assay, similar to those that have recently been developed for microbial diagnostics in 

respiratory secretions.[34]  

In conclusion, we demonstrate that analysis of gene expression data obtained from an 

easily and safely obtained nasal brush specimen in young infants with acute RSV 

infection shows promise for development of composite molecular biomarkers that closely 

correlate with clinical severity score. Further studies to refine and validate the potential 

of predictive gene expression data from readily collected nasal samples are needed.  
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Tables and Figures 

 
Table 1. Demographic data of subjects. P-values reported in the last column were either 

based on Fisher’s exact test (if the variable is categorical) or Welch t-test (if the variable 

is continuous). 

  mild (n=42)a severe (n=64)a 

p value   n Mean (SE) 
or % 

n Mean (SE) 
or % 

Global Severity Score 42 1.63(0.15) 64 6.13(0.22) <0.001 

Visit Age (months) 42 3.52(0.31) 64 3.24(0.3) 0.5122 

Gestational Age (weeks) 42 39.05(0.19) 64 38.8(0.18) 0.3437 

Birth Weight (kg) 42 3.32(0.11) 64 3.36(0.07) 0.7468 

Family Size 42 4.43(0.44) 64 3.98(0.22) 0.3703 

Days Since Disease Onset 42 4.31(0.27) 64 4.86(0.22) 0.1209 

Breast Feeding Summary 42 1.56(0.19) 63 1.53(0.16) 0.8979 

Sex 

23 44.23 29 55.77 0.4275       Male 

      Female 19 35.19 35 64.81 

Ethnicity 

8 42.11 11 57.89 0.8018       Hispanic or Latino 

Non-Hispanic or Non-Latino 34 39.08 53 60.92 

Race 

23 37.1 39 62.9 
0.3115 

      Caucasian 

      Other race 19 47.5 21 52.5 

      Missing - 0 4 100 

Delivery Type 

29 36.71 50 63.29 0.3634       Vaginal 

      C-section 13 48.15 14 51.85 

Smoking Exposure 

14 38.89 22 61.11 1        Yes 

       No 28 40 42 60 

RSV Group 

23 38.98 36 61.02 
1 

       A 

       B 18 39.13 28 60.87 

       Missing 1 100 - 0 

 
a based on GRSS ≤3.5 (mild) or > 3.5 (severe)  
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Table 2. Performance of four models used in developing NGSS1 and NGSS2. Naïve and CV RSS are the mean residual sums of 

squares of the predictive model in the original and cross-validation analyses, respectively. Correlation are the Pearson correlation 

coefficient between the predicted severity scores and the clinically defined GRSS. Prediction accuracy is the percentage of correctly 

predicted mild (NGSS ≤3.5) or severe (NGSS >3.5) symptoms, compared with the same phenotype defined by the GRSS (mild: 

GRSS≤3.5; severe: GRSS>3.5).  

  
number of genes 

selected 
Naïve RSS 

Naïve 

Correlation 

Naïve 

misclassified 

subjects  

(out of 106) 

CV RSS 
CV 

Correlation 

CV prediction 

accuracy 

CV 

misclassified 

subjects  

(out of 106) 

Model 1 39 genes 1.234 0.909 15 2.743 0.797 77.4% 24 

Model 2* 41genes 0.884 0.935 9 2.681 0.813 89.6% 11 

Model 3 42 genes 0.920 0.933 13 2.119 0.844 78.3% 23 

Model 4** 13 genes 2.549 0.800 16 3.215 0.741 84.0% 17 

   * designated NGSS1. ** designated NGSS2  
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Figure 1. Correlating NGSS1 (severity score predicted by Model 2) with GRSS. Left: naïve Pearson correlation 

between GRSS and NGSS1 is 𝝆 = 𝟎.𝟗𝟑𝟓. Right: cross-validated Pearson correlation between GRSS and 

NGSS is 𝝆 = 𝟎.𝟖𝟏𝟑. Solid dots are subjects with severe symptoms (defined by GRSS>3.5) and empty dots are 

those with mild symptoms (GRSS≤3.5). 
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Figure 2. Paired comparisons between visit 1 and visit 2 using NGSS1 (panel (A)) and NGSS2 (panel (B)). A 

total of n=54 subjects with samples in both visits were used. Solid dots represent severe subjects and empty 

dots represent mild subjects. The solid line represents the mean trend of severe subjects and the broken line 

represents the mean trend for mild subjects. (A): At visit 1, there was a significant difference in mean NGSS1 

between the severe (n=29) and mild (n=25) groups (6.22 vs. 1.96, p<0.001). Mean NGSS1 of the mild group 

was virtually unchanged between two visits (1.96 vs. 2.31, p=0.45). In comparison, mean NGSS1 of the severe 

group declined significantly at visit 2 (6.22 vs. 2.82, p<.001). (B): In contrast to NGSS1, the differences in 

NGSS2 was virtually unchanged between the two visits, due to the fact that NGSS2 were built with stable 

genes. 
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Figure 3. (A). Diagram indicating the stable genes for the mild (GRSS ≤3.5) and severe (GRSS >3.5) groups 

and the 689 intersecting stable genes common to both groups. (B). Correlating NGSS2 (severity score 

predicted by Model 4) with GRSS. Naïve Pearson correlation between GRSS and NGSS2 is 𝝆 = 𝟎.𝟖𝟎𝟎. Right: 

cross-validated Pearson correlation between GRSS and NGSS is 𝝆 = 𝟎.𝟕𝟒𝟏. Circles are subjects with correct 

cross-validated classification based on NGSS2; solid triangles are misclassified subjects. 
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