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1 Abstract 

A large amount of brain imaging research has focused on group studies delineating 

differences between males and females with respect to both cognitive performance as 

well as structural and functional brain organization. To supplement existing findings, 

the present study employed a machine learning approach to assess how accurately 

participants’ sex can be classified based on spatially specific resting state (RS) brain-

connectivity, using two samples from the Human Connectome Project (n1 = 434, n2 = 

310) and one fully independent sample from the 1000BRAINS study (n=941). The 

classifier, which was trained on one sample and tested on the other two, was able to 

reliably classify sex, both within sample and across independent samples, differing 

both with respect to imaging parameters and sample characteristics. Brain regions 

displaying highest sex classification accuracies were mainly located along the 

cingulate cortex, medial and lateral frontal cortex, temporo-parietal regions, insula 

and precuneus. These areas were stable across samples and match well with 

previously described sex differences in functional brain organization.  While our data 

show a clear link between sex and regionally specific brain connectivity, they do not 

support a clear-cut dimorphism in functional brain organization that is driven by sex 

alone. 

 

 

2 Keywords 

classification, functional magnetic resonance imaging, machine learning, resting state 

brain connectivity, sex differences,  
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3 Introduction 

 
A large amount of brain imaging research has focussed on delineating differences 

between males and females with respect to both cognitive performance as well as 

structural and functional brain organization. However, while the terms “male brain” 

and “female brain” are often used both in scientific and popular writing, it is so far 

unclear if a sexual dimorphism in the human brain actually exists. In a strict sense the 

term “dimorphism” should only be used for those aspects of differences that come in 

two strictly distinct forms like the male and female genitalia (Joel D and A Fausto-

Sterling 2016). In contrast, it has been suggested that most differences in brain and 

behaviour are not actually dimorphic, since they show a high degree of overlap 

between males and females (Joel D and A Fausto-Sterling 2016). With respect to 

brain structure, some literature (Joel D et al. 2015) even argues that any particular 

brain might comprise certain features that are statistically more typical of females and 

others which are more typical for males. In that sense, these authors suggested (Joel D 

et al. 2015), that most brains are comprised of “mosaics” of features, some more 

common in females, some more common in males, and some common in both. They 

showed that brains with structural features that are consistently at either end of the 

“maleness-femaleness” continuum are rare and an extensive overlap exists between 

the distributions of females and males for grey matter, white matter, and structural 

connectivity (Joel D et al. 2015).  However, several other authors have criticized this 

conclusion by showing that multivariate classifiers can be trained to classify male and 

female brains based on structural data with a high accuracy of roughly 80% 

(Chekroud AM et al. 2016; Del Giudice M et al. 2016; Rosenblatt JD 2016). These 
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data suggest that despite the absence of dimorphic differences and lack of internal 

consistency observed by (Joel D et al. 2015), multivariate analyses of whole-brain 

structural patterns are able to reliably classify the sex of a subject. Of note, these two 

results are not mutually inconsistent (Chekroud AM et al. 2016). While a strict 

dichotomy between the brains of  males and females might not exist, this does not 

mean that statistical differences cannot or should not be considered (Chekroud AM et 

al. 2016).  

Recent group studies also reported structural differences between the sexes. For 

example, the so-far largest single-sample study on sex differences in the brain, 

comprising more than 5200 participants (Ritchie SJ et al. 2018), found that males had 

higher cortical and sub-cortical volumes, cortical surface areas and white matter 

diffusion directionality while females had thicker cortices and higher white matter 

tract complexity. Furthermore, these authors identified some subregional differences 

that were not fully attributable to differences in total volume, total surface area, mean 

cortical thickness, or height. Similarly, a meta-analysis of more than 100 studies 

(Ruigrok AN et al. 2014) showed that, on average, males have larger total brain 

volumes than females and identified regional sex differences in volume and tissue 

density in the amygdala, hippocampus and insula. 

Despite these structural differences, it is unclear, if and how structural brain variations 

translate into differences in functional brain organization. While a large body of 

literatures has aimed to delineate the cognitive domains in which males and females 

differ, assessment of brain function using functional imaging techniques has so far 

mostly revealed relatively small and inconstant group-level differences between 

females and males. Historically, sex differences have been reported across a wide 

variety of cognitive tasks (Miller DI and DF Halpern 2014) and a variety of brain 
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imaging studies have been conducted to identify the brain basis of these difference. 

Implicitly assuming that there actually is a binary distinction between the male and 

female brain, the vast majority of these studies are based on group comparisons 

between males and females. However, results so far have been inconclusive (Hyde JS 

and EA Plant 1995; Del Giudice M 2009). For certain cognitive domains, especially 

language and emotional processing, there has been some evidence of sex differences 

in cognition and functional brain organization. However, more recent, larger analyses 

have not found any conclusive sex effects in these domains (Russell TA et al. 2007; 

Wallentin M 2009). 

Further trying to elucidate the neuronal basis of sex differences, more recent 

functional magnetic resonance imaging (fMRI) research has considered functional 

brain connectivity in the absence of any specific cognitive task (Weis S et al. 2017; 

Ritchie SJ et al. 2018; Zhang C et al. 2018). Resting state (RS) fMRI provide an 

estimate of the functional connectivity of the brain at rest, i.e. the intrinsic brain 

connectivity. Some studies have identified specific networks, in which RS 

connectivity seems to differ between the sexes (Biswal BB et al. 2010; Zuo XN et al. 

2010; Tian L et al. 2011; Ritchie SJ et al. 2018). However, other studies have not 

found any effect of sex in RS fMRI data (Weissman-Fogel I et al. 2010). Furthermore, 

a more recent study, employing repeated RS measurement across different menstrual 

cycle phases in women and time-matched tests in men, identified sex differences in 

some RS networks, while in others, the sex difference was dependent on the cycle 

phase of the women (Weis S et al. 2017), suggesting that sex is not the only factor 

influencing individual differences in RS connectivity.  
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3.1 Sex Classification 

Altogether, evidence for sex differences in functional brain organization is 

inconsistent. Importantly, existing results based on group studies are fundamentally 

compromised by being based on the questionable assumption of a clear-cut sexual 

dimorphism of the human brain. Thus, more advanced computational methods seem 

to be more appropriate for the characterization of the complex patterns that 

characterize differences between the sexes.  To this end, machine-learning methods 

can be used to delineate how accurately the sex of an individual, out-of-sample 

subject can be predicted from neuroimaging data (Bzdok D 2017). In this approach, a 

classifier learns the relationship between a set of features, which are extracted from 

brain imaging data, and a particular outcome, in this case the sex of the subject, using 

a sample of observations. In the next step, this classifier can be used to predict the sex 

of a previously unseen subject given its features.  

To date, there are not many studies that have adopted a classification approach based 

on structural (Feis DL et al. 2013; Chekroud AM et al. 2016; Rosenblatt JD 2016) or 

functional (Smith SM, D Vidaurre, et al. 2013; Ktena SI et al. 2018; Zhang C et al. 

2018) brain imaging data. In general, these studies employed whole brain structural 

and or functional connectivity based on pre-defined regions of interest (ROIs) or brain 

parcellations. Based on whole-brain connectivity patterns, they have achieved a sex 

prediction accuracy of roughly 80% both based on brain structure and function. While 

these findings suggest that multivariate analyses of whole-brain structural patterns are 

able to reliably classify the sex of a subject based on brain imaging data, whole brain 

functional connectivity does not appear to be the optimal approach to characterize the 

brain basis of sex differences.  
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From a methodological point of view, machine-learning approaches based on whole 

brain connectivity are extremely vulnerable to the so called “curse of dimensionality”. 

Features based on whole-brain connectivity are of extremely high dimensionality. 

Even if the connectivity patterns are computed based on a parcellation of only a few 

hundred parcels, the dimension of connectivity feature vectors ranges on the order of 

several tens of thousands – much higher than the dimensionality of the data sets 

which usually contain far less than a thousand subjects. To avoid overfitting resulting 

in deflated classification accuracies, dimensionality reductions need to be applied. 

Furthermore, whole brain connectivity complicates the interpretability of the results, 

as it is difficult to conclude which specific parts of the brain are most distinct between 

males and females. As classification performance can usually not be linked to specific 

brain regions, it is impossible to draw any conclusions as to those cognitive domains 

in which males and females differ most. Thus, it is impossible to put sex classification 

findings in relation to findings from classical group studies.  

To avoid the curse of dimensionality, while at the same time aiming to identify 

spatially specific effects, we employed a novel approach that is based on spatially 

specific connectivity for individual ROIs across the brain, instead of being based on 

whole brain connectivity. The examination of spatially specific effects is based on the 

assumption that sex differences in the performance within specific cognitive domains 

can be taken to suggest some rather selective neural differences restricted to specific 

brain regions. As opposed to most previous studies, which employed on whole brain 

connectivity for classification, we chose a parcelwise approach to assess how many 

and which brain regions’ connectivity is best able to classify sex with highest 

accuracies. Identifying those brain parcels that achieve high accuracies based on their 

connectivity patterns allows for straight-forward interpretations, especially when 
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putting the present results in relation to classical group studies on sex differences. 

Furthermore, our parcelwise approach avoids the curse of dimensionality, which 

typically leads to worsened predictions in very high dimensional data sets like the 

whole brain connectome. 

Altogether, the present study aimed to show that parcelwise connectivity patterns 

allow the classification of previously unseen subjects sex with accuracies that 

approach those that can be achieved based on whole brain connectivity. Based on 

spatially specific effects, functional decoding, i.e. meta-analyses based analysis of 

structure-function relationships (Fox PT et al. 2014), can be employed to identify the 

cognitive domains that these brain regions are related with. Only the assessment of 

such spatially specific effects makes it possible to directly link sex classification 

results to sex differences in specific cognitive domains as suggested by existing group 

studies.  

Additionally, we aimed to examine if these spatially specific effects generalize across 

samples, differing both with respect to imaging parameters and sample characteristics 

like age. To this end, we trained a classifier on one set of imaging data and applied 

this classifier to an independent data set. If the classifier performs well on 

independent samples, this can be taken as strong support for the generalizability of 

spatially specific brain differences between the sexes.  

4 Materials and Methods  

4.1 Samples 

Two mutually exclusive samples of unrelated subjects were constructed from data 

provided by the Human Connectome Project (HCP S1200 release, Van Essen et al., 

2012). Sample 1 contained 434 subjects (age range: 22-37, mean age: 28.6 years, 217 

males), sample 2 comprised 310 subjects (age range: 22-36, mean age: 28.5 years, 
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155 males). Within each of the two samples, males and females were matched for age, 

twin-status and education. Twins were not included in the samples. Resting state (RS) 

BOLD data comprised 1200 functional volumes per subject, acquired on a Siemens 

Skyra 3T scanner with the following parameters: voxel size= 2 x 2 x 2 mm³, FoV= 

208 x 180 mm², matrix = 104 x 90, 72 slices, TR = 720 ms; TE= 33.1 ms, flip 

angle =52°. The data were collected using a novel multi-band echo planar 

imaging pulse sequence that allows for the simultaneous acquisition of multiple 

slices (Xu J et al. 2013). For RS data acquisition, subjects were asked to lie with eyes 

open, with “relaxed” fixation on a white cross (on a dark background), think of 

nothing in particular, and not to fall asleep (Smith SM, CF Beckmann, et al. 2013). 

Sample 3, a fully independent sample covering a different age range, was obtained 

from the population-based 1000BRAINS study (Caspers S et al. 2014). It comprised 

300 volumes per subject, scanned on a Siemens TRIO 3T scanner with the following 

parameters: voxel size= 3.1 x 3.1 x 3.1 mm³, FoV= 200 x 200 mm², matrix = 64 x 

64, 36 slices, TR = 2200 ms; TE= 30 ms, flip angle =90°. This sample comprised 941 

subjects (age range: 18 – 88, mean age: 62.8 years, 512 males). During RS data 

acquisition, participants kept their eyes closed and were instructed to let the mind 

wander without thinking of anything in particular (Caspers S et al. 2014).  

To examine the influence of volumetric differences between males and females, an 

additional sample (sample 4) was created from sample 1 and 2 (both HCP samples), 

in which males and females were matched for grey matter volumes. This new sample 

comprised 260 participants (age range: 22 – 37, mean age: 28,48, 130 males).  

4.2 Pre-processing  

For sample 1 and sample 2, we employed the pre-processed and FIX-denoised data 

provided by the Human Connectome Project (HCP S1200 release), for which also the 
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spatial  normalization to the MNI152 template had already been performed before 

download. Thus, no further motion correction was performed. Movement parameters, 

as provided in the HCP S12000 release, indicated that movement in the scanner, 

measured as mean framewise displacement (FD, (Power JD et al. 2014)) did not differ 

between males and females in sample 1 (females:  mean(FD) = 0.164, SD(FD) = 

0.063, males: mean(FD) = 0.171, SD(FD) = 0.073,  t = 1.038, p >0.05) or sample 2 

(females:  mean(FD) = 0.166, SD(FD) = 0.053, males: mean(FD) = 0.157, SD(FD) = 

0.055,  t = 1.364, p >0.05). 

For sample 3, to ensure that physical noise and effects of within scanner motion are 

minimized as much as possible, RS fMRI data were cleaned of structured noise 

through the Multivariate Exploratory Linear Optimized Decomposition into 

Independent Components (MELODIC) method from the FSL toolbox 

(www.fmrib.ox.ac.uk/fsl). This process combines independent component 

analysis with a more complex automated component classifier referred to as FIX 

(FMRIB's ICA-based X-noisifier) to automatically remove artefactual components 

(Salimi-Khorshidi G et al. 2014). The FIX-denoised data were further pre-processed 

using SPM12 (Statistical Parametric Mapping, Wellcome Department of Imaging 

Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm/), running under Matlab 

R2014a (Mathworks, Natick, MA). For each participant, the first four echo-planar 

imaging (EPI) volumes were discarded prior to further analyses. Then EPI images 

were corrected for head movement by affine registration using a two-pass procedure: 

in the first step, images were aligned to the first image, and in the second step to the 

mean of all volumes.  
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Movement in the scanner, measured as mean framewise displacement (FD, (Power JD 

et al. 2014)) did not differ between males and females (females:  mean(FD) = 0.132, 

SD(FD) = 0.001, males: mean(FD) = 0.130, SD(FD) = 0.001,  t = 0.321, p >0.05). 

The mean EPI image was spatially normalized to the MNI152 template (Holmes CJ et 

al. 1998) by using the “unified segmentation” approach in order to account for inter-

individual differences in brain morphology (Ashburner J and KJ Friston 2005). This 

approach was chosen, as several recent studies have indicated increased registration 

accuracies of this approach as opposed to normalization based on T1 weighted images 

(Calhoun VD et al. 2017; Dohmatob E et al. 2018). 

4.3 Connectome Extraction  

Instead of using whole brain connectivity, as previous studies have done, our novel 

approach is based on training classifiers on individual brain regions’ connectivity with 

the rest of the parcels. This approach allows the computation of sex classification 

accuracies individually for each of the regions to find out which brain areas’ 

connectivity achieve the best classification accuracies.  

For each parcel, an activation time course was computed and correlated with those of 

each of the other parcels. Then, for each parcel individually, the connectivity pattern 

with the rest of the brain was used as features to train a classifier to distinguish 

between males and females. Finally, by using cross-validation, for each parcel the 

out-of-sample accuracy of sex classification was determined. This novel approach 

thus offers a straightforward way to delineate spatially specific effects.  

Individual RS connectomes were created based on a novel whole-cortex parcellation 

reported by (Schaefer A et al. 2017), comprising 400 parcels. Since this atlas does not 

cover subcortical structures, we added 36 subcortical parcels taken from the 

Brainnetome atlas (Fan L et al. 2016). The Schaefer parcels have been shown to agree 
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with the boundaries of certain cortical areas defined using histology and visuotopic 

fMRI, revealing neurobiologically meaningful features of brain organization. The 

Brainnetome atlas is fine-grained and cross-validated containing information on both 

anatomical and functional connections. The time-series of each parcel 

was cleaned by excluding variance that could be explained by mean white matter and 

cerebrospinal-fluid signal (Satterthwaite TD et al. 2013). For each parcel, the subject-

specific time-series was then computed as the first eigenvariate of 

the activity time courses of all voxels within the parcel. For each parcel, we then 

computed pairwise Pearson correlations between the parcel’s time series with those of 

all other parcels, which were then transformed to Fischer’s Z-scores. Each parcel’s 

connectivity with the 435 other parcels across the whole brain for each subject was 

used as features in the classification analysis for this specific parcel.  

4.4 Sex Prediction  

For each brain parcel individually, nonlinear SVM (LibSVM toolbox, (Chang CCL, 

C.L. 2011)) with RBF kernel was employed to train a model for classification of the 

subject’s sex from the corresponding connectome. SVM learns the relationship 

between a set of input variables or features (the connectivity pattern of each 

individual parcel), and a particular outcome (the sex of the subject) across a set of 

observations. Our goal here was to fit a function that approximates the relation 

between the features and the outcomes, which can be used later on to infer the sex of 

new subjects from their connectome. Effects of age were adjusted using betas fitted 

only in the training.  In an inner loop, the hyper-parameters gamma and C of the 

model were optimized by employing a cross-validation on the training set for each 

fold and the final model was created by averaging the hyperparameters across folds. 
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For each parcel individually, we trained the classifier on sample 1 and determined 

within sample accuracy by a 10-fold cross validation, where the classifier was trained 

on 90% on the sample and tested on the remaining 10%. The same analysis was 

conducted for sample 4.  

To characterize the statistical significance of the results an approximate permutation 

test approach was employed, in which associations between features and labels (sex) 

were randomized. That is, the labels were randomly permuted while the feature 

matrix was kept unchanged. 10-fold cross validation was repeated for each 

permutation and accuracies for 5000 permutations were used to construct an empirical 

null distribution. To control for multiple comparisons across the 436 parcels, the 

maximum accuracies across all brain parcels were obtained, resulting in 5000 null 

values obtained from the 5000 permutations, which were then used to compute FWE 

corrected p-values. 

In the second step, the classifier was trained on the full sample 1 and then tested on 

sample 2 and sample 3. The brain networks were visualized with the BrainNet Viewer 

(http://www.nitrc.org/projects/bnv/) (Xia M et al. 2013). 

4.5 Functional decoding  

By training independent SVMs or each parcel of the brain, we are able to identify, to 

what extend connectivity of each parcel differentiates between males and females. 

These spatially specific effects were then used to determine which cognitive domains 

most strongly distinguish between males and females. In this way, our results can be 

directly related to findings from classical group studies.  The highly predictive regions 

identified by the classification analysis were functionally characterised using the 

‘Behavioural Domain (BD)’ categories available in the BrainMap database 

(http://brainmap.org/scribe/). Behavioural domains comprise main categories 
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cognition, action, perception, emotion, and interoception, as well as their related sub-

categories (Fox PT et al. 2014). Forward and reverse inference approaches were 

employed to determine the functional profile of the parcels with high classification 

accuracies. While forward inference is defined as the probability of observing activity 

in a brain region given knowledge of the psychological process, reverse inference is 

the probability of a psychological process being present given knowledge of 

activation in a particular brain region.  

5 Results 

5.1 Sex Prediction 

5.1.1 Within sample cross validation 

For sample 1, across all parcels in the brain, the highest prediction accuracy reached 

75.1%.  All except five parcels’ accuracies were significant at p < 0.05 (FWE 

corrected for multiple comparisons) with a minimum accuracy of 63.1% and a mean 

prediction accuracy of 68.7% (S.D. 2.6%). The five non-significant parcels 

(accuracies between 61.5% and 62.9%) were located in right middle occipital gyrus, 

bilateral precuneus and right postcentral gyrus. The spatial distribution of 

classification accuracies across the whole brain is depicted in Figure 1 (a). 

5.1.2 Between sample validation for sample 2 

Across all parcels in the brain, the highest prediction accuracy reached 72.6%, with a  

minimum accuracy of 55.4% and a mean prediction accuracy of 64.3% (S.D. 3.0%). 

The spatial distribution of classification accuracies across the whole brain is depicted 

in Figure 1 (b). 

5.1.3 Between sample validation for sample 3 

Across all parcels in the brain, the highest prediction accuracy reached 65.7%., with a 

minimum accuracy of 53.4% and a mean prediction accuracy of 60.0% (S.D. 2.5%). 
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The spatial distribution of classification accuracies across the whole brain is depicted 

in Figure 1 (c). 

*** insert Figure 1 about here *** 
 
Table 1 lists all those parcels, for which classification accuracy fell within the top 3% 

in all three analyses. The table lists the localization of all cortical regions that cover 

more than 10% of the respective parcel. Notably, the parcels with the highest 

classification accuracies were very similar across the within sample cross validation 

and the out-of-sample prediction for both samples. Consistency in the spatial 

distribution of highest classification accuracies in across sample validation can be 

taken to indicate the stability of the classification across samples with different 

characteristics. The stability of the spatial pattern of highly predictive parcels was 

further assessed by computing the rank correlation of within sample CV accuracy in 

sample 1 and between sample classification accuracy in samples 2 and 3 respectively. 

For both samples, correlation was highly significant (sample 2: rs = 0.99, p > 0.0001; 

sample 3: rs = 0.99; p< 0.0001). The scatterplots are shown in Figure 2. 

 
*** insert Figure 2 about here *** 

 
Furthermore, to examine the consistency of the classification patterns across samples, 

we computed the mean parcelwise connectivity pattern for females and males 

respectively within each of the three samples. By subtracting female mean 

connectivity from male mean connectivity per parcel, the mean sex difference in 

connectivity was computed as a 1 x 435 (number of parcels – 1) vector for each of the 

three samples. Then the sex difference in connectivity for sample 1 was correlated 

with those for sample 2 and sample 3 respectively. For both samples, the correlation 

was significant, indicating comparable patterns of connectivity between parcels 
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(sample 1 / sample 2: r = 0.601, p < 0.001; sample 1 / sample 3: r = 0.259, p < 0.001). 

The difference in correlation strengths between sample 2 und sample 3 presumably 

reflects the fact that sample 1 and sample 2 were both drawn from the same samples, 

while sample 3 constituted a fully independent sample with different participant and 

scanning characteristics. 

5.2 Prediction accuracies for the whole brain connectome 

To compare the parcelwise classification performance to accuracies that can be 

achieved based on the whole brain connectome, respective analyses were run on the 

full connectome derived from the 436 parcels. While within-sample cross-validation 

within sample 1 achieved an accuracy of 74.81%, the between sample validation 

showed an accuracy of 70.39% for sample 2 as well as of 51.13% for sample 3. 

5.3 Confounding effects of grey matter volume 

To examine the influence of volumetric differences between the sexes, a standard 

analysis pipeline of the CAT12 toolbox (http://www.neuro.uni-jena.de/cat/) was used 

to compute GMV for each parcel in each participant within sample 1, based on their 

T1-weighted anatomical scan (3D MPRAGE, TR = 2400ms, TE = 2.14ms, FOV 

224mm x 244mm, voxel size = 0.7 mm isotropic). This data was used to compute the 

mean sex difference in GMV in each parcel by subtracting, for each parcel, mean 

GMV across females from mean GMV across males. Then, a rank correlation was 

computed between the mean sex difference in GMV and RS-based classification 

accuracy across parcels. This was done for both the directed as well as the absolute 

mean sex difference in GMV. Both correlations were non-significant (directed sex 

difference: r =0.0374, p =0.4364; absolute sex differences:  r = -0.0320, p = 0). 

Similar correlations were computed across those parcels for which classification 

accuracy was significant. Again, both for directed and absolute sex differences these 
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correlations were non-significant (directed sex difference: r = 0.0264; p = 0.5851; 

absolute sex difference: r = -0.0210, p = 0.6641). Finally, the correlations were 

computed across the parcels with top 10% classification accuracies, again not 

revealing any significant correlations (directed sex difference: r = 0.0909; p = 0.5561; 

absolute sex difference: r = -0.0519, p = 0.7374). 

Furthermore, for each parcel, an independent samples t-test was used to compare 

GMV for those subjects which were correctly classified to those which were 

misclassified. While 21 of the comparisons were significant at p < 0.05, none 

remained significant after FDR correction for multiple tests across the 436 parcel, 

indicating that parcel-wise GMV was not significantly different between correctly and 

incorrectly classified subjects. 

Additionally, we repeated the cross-validation analysis on sample 4, in which groups 

were matched for grey matter volume. Overall, classification accuracies in sample 4 

were lower than in sample 1. Considering that sample 4 was constructed from subsets 

of sample 1 and sample 2, similar SNR can be expected in these samples. Thus, it is 

assumed that that lower accuracies observed for sample 4 are based on the smaller 

sample size, as  it has been shown that, when a sample is fixed then smaller random 

sub-samples will show a lower accuracy as there is simply less data to learn from 

(Provost K et al. 1999). Therefore, while smaller sample sizes tend to lead to higher 

variance in accuracies, they also, on average, result in lower accuracies. Even though, 

sex classification could still be achieved across the whole brain with accuracies 

between 55.6% and 71.8% (mean accuracy 64.7%). Furthermore, the overall pattern 

of parcels with highest classification accuracies was comparable to our original results 

as shown in Supplementary Figure 1. 
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5.4 Functional Decoding 

Functional characterization according to the BrainMap meta-data was performed for 

all parcels that appear within the top 3% of parcel accuracies in the within sample CV 

as well as the between sample classification. 

5.4.1 Anterior cingulate and medial frontal areas 

Parcels that covered regions in the right medial frontal cortex as well as anterior and 

middle cingulate cortex were mainly associated with behavioural domains (BDs) 

emotion, specifically fear and reward, cognition, especially social cognition and 

reasoning, perception, including gustation and pain and interoception, especially 

thirst, as well as action inhibition.  

5.4.2 Middle and posterior cingulate and precuneus 

The parcel in the right middle cingulate gyrus and precuneus was associated with BDs 

of emotion, as well as social cognition and explicit memory. Similar BDs were 

associated with the parcel in the left posterior cingulate cortex and precuneus. 

5.4.3 Left lateral frontal areas  

Parcels in the left lateral frontal cortex were associated with BDs of working and 

explicit memory, as well as speech and language (especially semantics), social 

cognition and emotion (disgust) as well as action inhibition.  

5.4.4 Left angular gyrus 

The parcel centred in the left angular gyrus was associated with BDs of explicit 

memory. 

In summary, those parcels for which connectivity patterns with the rest of the brain 

achieved highest sex classification accuracies were associated with different types of 

emotion, social cognition, memory and language.  The BDs associated with the top 

accuracy parcels are summarized in Figure 3. 
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*** insert Figure 3 about here *** 

6 Discussion 

Our data revealed that classification of an out-of-sample subjects’ sex from the RS 

connectivity profiles was possible with high accuracies across the whole brain, 

indicating that each individual parcel’s RS connectivity carries enough information to 

reliably identify a previously unseen subject’s sex. However, and most importantly, 

there were pronounced differences in the prediction accuracies of specific brain 

regions, indicating spatially specific effects. Of note, those spatially specific parcels 

with high prediction accuracies were stable across within and between samples 

classification, indicating the generalizability of these predictions independently of the 

specific characteristics of the sample as well as the specific imaging parameters used. 

These results strongly indicate, that it is the functional connectivity of specific regions 

in the brain that is most characteristically different between males and females. 

We employed a functional decoding approach to examine which cognitive domains 

were related to those brain regions that most clearly differentiate between the sexes. 

As opposed to group studies comparing brain activations and cognitive performances, 

our approach does not rest on the assumption of a clear-cut sexual dimorphism in 

functional brain organization, but is suitable to characterize multi-layered differences 

in functional connectivity of certain brain regions, while making it possible to assess 

cognitive domains in which males and females differ most.  

Of note, functional connectivity in itself is obviously not spatially specific. Thus, high 

classification accuracy for a given parcel does not result from the intrinsic function of 

that parcel, but rather from its pattern of connectivity with other parcels across the 

brain. However, there is general consensus that mental functions arise from the 

coordinated activity within distributed networks rather than any individual brain 
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region (Park HJ and K Friston 2013). A high classification accuracy for a given parcel 

indicates differences in this parcel’s connectivity, which in turn can be taken as 

evidence that those cognitive domains, for which the parcel is typically activated, is 

organized in different ways in males than in females or at the very least that the 

pattern of that cognitive function is more “typical” (i.e. less variable) in one of the 

sexes as opposed to the other. 

Similarly, as the present analyses are based on connectivity patterns across the whole 

brain, there is a large amount of shared information between parcels, due to the fact 

that connectivity with other brain parcels is used as features in the analysis. This 

dependency between parcels presumably is reflected in a relatively uniform 

classification performance across the brain with only very few parcels displaying non-

significant discrimination. Still, our parcelwise classification approach clearly 

identified a subset of parcels that most strongly distinguished between males’ and 

females’ brain connectivity patterns and thus allowed for an identification of 

cognitive domains which can be assumed to most strongly differentiate between the 

sexes.  

6.1 Spatially specific effects 

Across all analyses, the majority of the highly predictive parcels were located along 

the cingulate cortex, in right anterior mid-cingulate cortex as well as left posterior 

cingulate cortex. Other highly predictive parcels were located in bilateral medial 

frontal cortex, in bilateral precuneus as well as left lateral frontal cortex, left temporo-

parietal regions and insula.  

Interestingly, the majority of parcels showing highest classification accuracies in the 

present study match well with brain areas that have been related to the default mode 

network (Buckner RL et al. 2008; Biswal BB et al. 2010). One of the largest studies 
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conducted on the topic (Biswal BB et al. 2010) indicated that women exhibited 

stronger connectivity than men in the posterior cingulate cortex, medial prefrontal 

cortex and the inferior parietal lobe, but weaker connectivity in the dorsal anterior 

cingulate cortex, insula, superior temporal gyrus, superior marginal gyrus and 

occipital regions. Our results are in line with these findings (Biswal BB et al. 2010), 

as most of the regions reported in their study exhibit high classification accuracies 

here. Furthermore, given that the methods employed in both studies to assess 

functional connectivity patterns in the RS are different, the overlap of results further 

speaks to the generalizability of our findings. 

Additionally, the importance of the DMN in the classification of participant’s sex 

based on RS fMRI data replicates findings from (Zhang C et al. 2018). These authors 

employed whole brain connectivity in their classification approach and subsequently 

identified those connections, which contributed most to the successful classification. 

While our approach is different in that it is based on spatially specific connectivity, 

both studies identified the importance of the DMN in successful sex classification. 

The present results also match with findings from a large-scale group comparison 

based study (Ritchie SJ et al. 2018) which showed that connectivity within the DMN 

is more pronounced in females than in males.   

Further brain regions which play an important role in successful sex classification are 

associated with cognitive domains for which sex differences have previously been 

identified. For examples, brain regions displaying high accuracies in differentiating 

between males and females in the present study closely match with those reported in 

classical studies suggesting language processing as the key cognitive domain to differ 

between males and females (Halpern D 1992). For example, previously reported brain 

regions which were also identified in the present study include the angular gyrus, the 
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prefrontal and retrosplenial cortex (Frost JA et al. 1999), as well as the (pre-)cuneus 

and cingulate areas (Clements AM et al. 2006). Thus, our results support the existence 

of differences in the brain basis for language processing as one of the most 

distinguishing features between the sexes.  

Further high prediction accuracies were identified for medial brain regions, 

specifically in the frontal cortex. In accordance with our results, a meta-analysis of the 

neural correlates of sex differences in emotion processing (Stevens JS and S Hamann 

2012) identified several of the brain regions which provided highly accurate sex 

prediction in our study, like the medial frontal and anterior cingulate regions. 

Finally, the high classification accuracy in bilateral precuneus might be linked to the 

established male advantage in visuo-spatial working memory, which has recently 

been demonstrated based on a large meta-analysis (Voyer D et al. 2017). 

Altogether, similar to (Zhang C et al. 2018), our findings show that accurate sex 

prediction is possible on the basis of brain connectivity at rest. However, in addition 

to their findings, our novel approach enabled identification of brain regions, for which 

the connectivity with the rest of the brain is most distinctive between males and 

females. Functional decoding of these regions identified the cognitive domains 

associated with these regions. Speaking to the reliability of our findings, these 

domains match well with those, for which sex differences have previously been 

reported based on group comparison. However, importantly, our results emphasize the 

importance of these areas for sex differences in a much more direct way.  

However, it needs to be noted that spatial differences in the signal-to-noise ratio 

(SNR) of the fMRI data might influence the results. For example, for regions with 

low SNR we might not be able to achieve good accuracies, even if biologically 

speaking, they are important for distinguishing male versus female. Future studies 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627711doi: bioRxiv preprint 

https://doi.org/10.1101/627711


 23

might want to take into account measures of SNR across the brain. While this 

problem is not specific to the approach employed here but rather exists for any 

analysis of fMRI data, it underlines the importance of a thorough quality control of 

the data, specifically for these types of studies.  

6.2 Accuracy and Generalizability of sex classification 

Firstly, our samples specifically excluded pairs of related subjects. We could therefore 

make sure that classification accuracies are not optimistically biased because subjects 

are related. Due to this selection, the sample on which our model was trained is much 

smaller than the sample employed in (Zhang C et al. 2018), in fact is contains only 

about half as many subjects. Furthermore, we decided to base our predictions on the 

first of the available RS runs only. While for the HCP data four runs of RS data are 

available, this is not the case for most other data sets, to which this method might be 

applied. We aimed to not mainly identify the maximum accuracy that can be achieved 

– for example by combining several RS runs as done by (Zhang C et al. 2018) did, but 

rather to show that successful classification is possible based on just one run of RS 

data. Indeed, our results show, that high classification accuracies can be achieved 

based on relatively small samples and just about 10 minutes of RS data. 

More importantly, we could show that the ability of spatially specific brain regions to 

predict sex is stable not only within sample but also across different samples. The 

HCP sample and the 1000BRAINS sample differ with respect to both imaging 

parameters and sample characteristics. For example, while the HCP sample contains 

only relatively young participants, the 1000BRAINS sample comprised a much wider 

age range including older subjects. Still, the highest within-sample and between-

sample accuracies were found in highly similar brain regions, underlining the 

reliability of our findings. Furthermore, average sex differences in spatially specific 
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brain connectivity patterns appear to be comparable across sample, indicating that not 

only the capacity to classify, but also the underlying connectivity patterns show 

similarities across samples with different characteristics. Still, with the availability of 

more large data set, it would further strengthen the results if other groups could 

independently replicate the same spatial patterns. 

It needs to be noted that total brain volume is one variable demonstrating a consistent 

sex difference and thus might have influenced prediction accuracies as observed here.  

This issue has been previously addressed by (Zhang C et al. 2018), who showed that 

both sex and brain volumes could be predicted from resting state brain connectivity 

across the whole brain. Based on showing that features (i.e. functional brain 

connections) in sex and brain volume predictions overlap by less than 20%, these 

authors concluded that the sex difference in brain volume is not dominating in gender 

sex prediction. However, this analysis does not address spatially specific sex 

differences in GMV, which might have influenced the parcelwise classifications 

examined here. While spatially specific sex differences exist in the data used in the 

present analyses, these local differences in GMV are unrelated to parcelwise 

classification accuracies, indicating that the quality of the classification is independent 

of local volumetric differences between the sexes. There was also no systematic 

association between parcelwise GMV and individual classification performance, 

further suggesting that local GMV did not influence our results.  

Finally, a classification analysis in a sample that was matched for grey matter 

volumes between males and females, displayed slightly lower accuracies, but a 

similar spatial pattern of highly predictive parcels as the original analysis, again 

indicating that grey matter volume did not influence the classification.  
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6.3 Does a sexual dimorphism of functional brain organization exist? 

Our results show that accurate prediction of the sex of an out-of-sample subject is 

possible based on individual brain regions’ RS connectivity. The spatially specific 

effects identified here are closely linked to sex differences in cognition.  

Our data show that classification based on specific brain regions can achieve 

classification accuracies that are comparable or even higher than what can be 

achieved based on the whole brain connectome. What is more, when considering the 

whole brain classification accuracies, the drop in accuracy between within-sample 

cross validation and across sample performance (especially in the independent 

sample) is more pronounced than for the parcelwise analysis, which might indicate an 

overfitting based on the extremely high dimensionality of the whole brain 

connectome. 

While the vast majority of parcels distinguish between males and females with 

significant accuracy, for none of the parcels’ prediction accuracies were approaching 

100%. One reason for the non-perfect prediction accuracies might be based on the 

fact that our approach ignores functional brain networks. Thus, while we cannot 

exclude that this might be based on methodological choices with respect to the 

machine learning approach, it might also add further support to the recent suggestion 

(Joel D et al. 2015), that, even for specific regions, brains falling on the ends of the 

male-female continuum are rather rare. While we cannot directly test this assumption 

based on the present data sets, it is conceivable that where a brain falls on this 

continuum, might be modulated by effects of each individual’s experience, education, 

and culture or a combination of these (Jancke L 2018).  

Thus, our results do not support an actual sexual dimorphism of the human brain. 

Same as for brain structure (Joel D et al. 2015), features based on RS connectivity 
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appear to substantially overlap between males and females. Specifically, our data 

indicates, that while some regions of the brain distinguish better between the male and 

the female brain, it appears to be impossible to actually identify dimorphic features 

that justify a clear sex distinction. In fact, this is not surprising but rather might 

suggest that the functional organization of each individual brain is related to the 

individual’s sex, but is also shaped by additional factors. Further research needs to 

elucidate the biological and social factors contributing to each individual’s specific 

brain organization pattern.  

For example, one of the most obvious biological factors influencing sex differences in 

functional brain organization might be hormonal differences, for example fluctuating 

sex hormones across the menstrual cycle in women. In fact, a variety of studies have 

shown hormonal effects on functional brain connectivity RS fMRI studies 

(Hjelmervik H et al. 2012; Petersen N et al. 2014; Arelin K et al. 2015; De Bondt T et 

al. 2015; Weis S et al. 2017). With locally specific functional brain organization 

varying with hormonal chances, females might be expected to exhibit increased 

variability in those regions that contribute most to sex classification. This in turn 

might have a profound influence on classification performance, with classification 

accuracies possibly depending on the female participants’ cycle phase. It might also 

mean that successful classification can only be achieved in specific cycle phases. This 

is a limitation of the present study, and in fact any study assessing sex differences 

without consideration of the females’ menstrual cycle. Unfortunately, so far none of 

the large-scale data sets necessary for the analyses like those presented here, has 

collected information on hormone levels. If this could be done in the future, hormonal 

information might in fact further inform the models and thus increase classification 

accuracies. Furthermore, it would be highly interesting to examine if hormonal 
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changes are region specific or affect classification performances across the whole 

brain. 

Also, there might be social factors influencing classification accuracies and regionally 

specific effects, such as  individual learning experiences, culture, or gender 

stereotypes. In fact, it might be the individual pattern of interaction between 

biological and social factors that is picked up by the classifier. Based on our data 

alone, it is not possible to disentangle these modulating effects. Thus, future studies, 

should take into account not only the biological sex and biological modulators like 

genetics and hormones, but also social factors like the self-perceived gender of the 

participants. Presumably, only the combination and interaction of all these factors will 

enable a more detailed characterization of individual variations in functional brain 

organization. 

6.4 Conclusions  

Our results show that sex classification based on RS fMRI data is possible with high 

accuracies, which are significantly different from chance across more or less the 

whole brain. The results also show that classification can be reliably extended to 

independent samples, differing both with respect to imaging parameters and sample 

characteristics. Those regions that display high prediction accuracies are stable across 

samples, indicating that the spatial pattern of regions that best distinguish males from 

females generalizes across samples and age-ranges. This is further underlined by the 

fact that these regions confirm sex differences that have been shown in classical group 

comparison. In addition, they match well with areas that have been related to specific 

clinical conditions for which prevalence differs between the sexes. 

However, our results also indicate that sex alone cannot perfectly explain each 

individual’s specific patterns of functional brain organization. Thus, these data do not 
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support the existence of a sexual dimorphism with respect to functional brain 

organization and they strongly support the notion that terms such as “female brains” 

or “male brains”, which are frequently used especially in popular writing, are not 

appropriate. While some patterns of brain organization might be driven by sex, more 

complex pattern of brain organization are most likely shaped by each individual’s 

environment and experiences and thus cannot be explained by sex alone.  
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9 Tables 

 

Table 1:  ROI based classification accuracies for brain regions with highest classification accuracies across analyses and significance values 
for forward and backward inference of the associated behavioral domains. Only domains significant at p < 0.05 (FDR-corrected) are given. 

 

Localization Parcel 

Size 

(voxels) 

Accuracy 

(within 

sample 1) 

Accuracy 

(sample1 -> 

sample 2) 

Accuracy 

(sample1 -> 

sample 3) 

Mean 

accuracy 

Parcel 

Nr. 

 Domains P(Activation

/ Domain) 

Likelihood 

Ratio 

P(Domain/

Activation) 

Probability 

R MCC (67.4%) 

R ACC (19.4%) 

516 75.1% 72.6% 65.7% 71.1% 312 Perception.Somasthesis.Pain 

Action.Inhibito 

2.19 

2.00 

0.0466 

0.0402 

R Precuneus (67.2%) 

R MCC (29.4%) 

241 74.4% 72.3% 65.7% 70.8% 363 Cognition.Social Cognition 

Cogniton.Memory.Explicit 

Emotion.Other 

3.34 

1.95 

1.93 

0.764 

0.1027 

0.0933 

L Middle Frontal Gyrus 

(99.0)% 

397 74.4% 71.3% 65.6% 70.4% 181 Cognition.Memory.Working  1.85 0.0856 

L Precuneus (67.8%) 

L PCC (29.7%) 

205 74.6% 70.7% 65.7% 70.3% 154 Cognition.Social Cognition 

Cognition.Language 

 4.10 

3.60 

 0.0947 

0.0194 
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Emotion.Other 

Cogniton.Memory.Explicit 

2.36 

2.33 

0.1149 

0.1240 

R Mid Orbital Gyrus 

(64.3%)  

R Rectal Gyrus (13.3%) 

R ACC (10.5%) 

600 74.6% 70.7% 65.3% 70.2% 368 Interoception.Thirst 

Perception.Gustation 

Emotion.Fear 

Cognition.Social Cognition 

Emotion.Reward 

Cognition.Reasoning 

6.97 

4.14 

3.85 

2.86 

2.64 

1.80 

0.0104 

0.0453 

0.0398 

0.0634 

0.1373 

0.1169 

L Mid Orbital Gyrus 

(71.2%) 

L Rectal Gyrus (23.2%) 

344 74.0% 70.7% 65.4% 70.0% 161 Emotion.Reward 

Cognition.Social Cogniton 

2.87 

2.44 

0.1511 

0.0548 

R ACC (70.6%) 

R Superior Medial 

Gyrus (13.5%) 

435 74.2% 71.0% 64.8% 70.0% 370 Perception.Gustation 

Emotion.Reward 

Cognition.Social Cogniton 

4.15 

2.33 

2.16 

 0.0470 

0.1256 

0.0497 

L IFG p. Orbitalis 

(19.8%) 

L IFG p. Triangularis 

343 74.0% 70.7% 65.2% 70.0% 186 Cognition.Language.Syntax 

Cognition.Language 

Cognition.Language.Semantics 

3.35 

2.75 

2.57 

0.0275 

0.0154 

0.1764 
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(77.6%) Cognition.Language.Speech 

Cognition.Memory.Explicit 

1.91 

1.49 

0.0867 

0.0826 

L Superior Frontal 

Gyrus (90.2%) 

246 73.9% 70.4% 64.9% 69.7% 152  Cognition.Social Cognition 

Action.Inhibition 

 3.34 

2.73 

0.0756 

0.0496 

L IFG (p. Orbitalis 

(67.9%) 

L Insula Lobe (19.0%) 

L Temporal Pole 

(12.3%) 

 358 74.0% 69.7% 65.0% 69.6% 183  Emotion.Disgust 

Cognition.Social Cognition 

Cognition.Language.Semantics 

 2.82 

1.85 

1.69 

 0.0180 

0.0448 

0.1170 

 

 

L Angular Gyrus 

(60.9%) 

L Inferior Parietal 

Lobule (20.9%) 

L Middle Occipital 

Gyrus (12.5%) 

 297 73.7% 70.4% 64.5% 69.5% 150 Cognition.Memory.Explicit  1.89  0.1046 
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10 Figure Legends 

 

Figure 1: ROI based classification accuracies for within sample cross validation in 

sample 1 (a) as well as for across sample classification with the model trained on 

sample 1 and tested on sample 2 (b) and sample 3 (c). Across all analyses, the 

majority of the highly predictive parcels were located along the cingulate cortex, in 

right anterior mid-cingulate cortex as well as left posterior cingulate cortex. Other 

highly predictive parcels were located in bilateral medial frontal cortex and in 

bilateral precuneus. Further parcels with high prediction accuracy were located in left 

lateral frontal cortex, as well as left temporo-parietal regions and insula. The spatial 

distribution of parcels with highest classification accuracies were very similar across 

the within sample cross validation and the out-of-sample prediction for both samples, 

indicating the stability of the classification across samples with different 

characteristics. 

Figure 1: Scatter plot of classification accuracies for CV within sample one (HCP) 

versus out of sample classification in sample 2 (HCP, blue) and sample 3 

(1000BRAINS, red) across the 436 parcels covering the whole brain. 

Figure 2: Behavioural domains associated with the brain parcels that achieved 

highest sex classification accuracies, as defined by functional decoding. 

Supplementary Figure 1: ROI based classification accuracies for within sample 

cross validation in sample 4. While the classification accuracies are lower than for 

sample 1, the spatial distribution is comparable to the within-sample cross validation 

in sample 1.  
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