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1. Abstract 

 

The emergence of multicellular organisms that exhibit cell differentiation and stereotypic spatial 

arrangements has been recognized as one of the major transitions in evolution. Myxobacteria 

have emerged as a useful study model to investigate multicellular evolution and development. 

Here, we propose a multiscale model that considers cellular adhesion and movement, molecular 

regulatory networks (MRNs), and cell-to-cell communication to study the emergence of cell fate 

determination and spatial patterning of Myxococcus xanthus fruiting bodies. The model provides 

a dynamic accounting of the roles of MRN multistability, intercellular communication and 

conglomerate size in determining cell fate and patterning during M. xanthus development. It also 

suggests that for cell fate determination and patterning to occur, the cell aggregate must 

surpass a minimum size. The model also allows us to contrast alternative scenarios for the C-

signal mechanism and provides stronger support for an indirect effect (as a diffusible molecule) 

than a direct one (as a membrane protein). 

 

 

2. Introduction 
 

The emergence of multicellular organisms that exhibit cell differentiation and stereotypical 

spatial arrangements has been recognized as one of the major transitions in evolution 

(Maynard-Smith and Szathmáry, 2000), and it is estimated to have evolved independently 

about 25 times (Grosberg and Strathmann, 2007). While division of labor by cellular 

differentiation is recognized as a central feature of multicellular organisms, the evolutionary 

origin of cell fates during the transition to multicellularity remains unclear. Some authors have 

postulated that multicellular masses appeared first and only later gradually acquired different 
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cell fates and patterns, thus generating spatial differentiation (referred to as “patterning”, 

Haeckel, 1874; Arendt, 2008).  Alternatively, other authors have proposed that even unicellular 

organisms were capable of differentiation by alternation of cell fates over time, a view derived 

from a dynamic perspective of development. Thus, as a result of the formation of multicellular 

masses, organisms spontaneously exhibited the coexistence and patterning of these cell fates. 

In turn, these cell fates may correspond to stable states enabled by the dynamics of multistable 

molecular regulatory networks already present in single cells. Under this view, as cells are 

incorporated into a conglomerate, new local chemical and mechanical microenvironments may 

bias cells to spontaneously reach different cell fates (Kauffman, 1969; Furusawa and Kaneko, 
2002; Newman et al., 2003; Mora van Cauwelaert et al., 2015). Importantly, the formation of 

such microenvironments may require a minimum conglomerate size, and conglomerate size 

may in turn be constrained by the accumulation of metabolic waste released by the cells (Asally 
et al., 2012) or by mechanical forces acting over the whole conglomerate and the individual 

cells (Jacobeen et al., 2018; Rivera-Yoshida et al., 2018). 

 
In broad terms, multicellular organisms develop through either a clonal (“stay-together”) or 

aggregative (“come-together”) mechanism (Tarnita et al., 2013). While multicellular 

development and its evolution have been most extensively studied in organisms in which 

multicellularity is clonal, such as animals and plants (Grosberg and Strathmann, 2007), 

aggregative multicellular organisms are also capable of generating complex structures with 

different cellular fates and arrangements (Bonner 1998; Sunderland, 2011; Nanjundiah and 
Sathe et al., 2011). However, aside from a few model species (e.g. Dictyostelium discoideum; 

see Bonner 1998), the development of aggregative organisms remains largely unexplored. 

Studying different evolutionary origins and modes of multicellularity will enable comparative 

analyses that could help to identify both common and lineage-specific aspects in the evolution 

of cell fate determination and size regulation in multicellular organisms. 

 
Myxobacteria, an order in the delta-proteobacteria, have emerged as a useful study model for 

investigating multicellular evolution (Muñoz-Dorado et al., 2016; Arias del Angel et al., 2017) 

and elucidating the dynamics behind cell fate determination and patterning in aggregative 

multicellular organisms. Among myxobacteria, Myxococcus xanthus is the most studied species, 

and transcription factors and signaling pathways involved in its development have been 

described (Bretl and Kirby 2016; Kroos 2017; Arias Del Angel et al., 2017, 2018). When 

nutrients in the medium are exhausted, vegetative cells (VEG) in M. xanthus aggregate into 
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mound-like multicellular structures called fruiting bodies (Kaiser, 2003). During fruiting body 

development, cells may reach one of three possible cell fates: programmed cellular death 

(PCD), peripheral cell (ROD) or myxospore (SPO). Inside the fruiting body, cell fates are 

arranged into two concentric domains: myxospores are concentrated in the inner domain, and 

peripheral rods in the outer domain (Sager and Kaiser, 1993a, b; Julien et al., 2000). Cells 

undergoing PCD appear to have a broader, although not well characterized, distribution across 

the fruiting body (Lux et al., 2004).  

 

At the intracellular level, M. xanthus development initiates with the activation of the so-called 

stringent response; this mechanism, which is conserved across bacteria, is responsible for 

genome-wide transcriptional change and survival under stress conditions (Boutte and 
Crosson, 2013), as well as with the sensing of extracellular cues via signaling pathways, such 

as the A- and C-signals (Bretl and Kirby, 2016; Kroos, 2017). The A-signal is a mixture of 

amino acids and small peptides which freely diffuse in the medium and are thus likely involved 

in long-range intercellular communication. The C-signal was originally proposed as a membrane 

protein involved in communication via cell-to-cell contact and has more recently been 

considered a diffusible molecule (or a producer of them) (Lobedanz and Løtte-Soggard, 2003; 
Muñoz Dorado et al., 2016). These signals are coupled with a complex regulatory network that 

has been previously shown to be able to reach steady states of the expression profiles of 

spores, rod and PCD cells (Arias Del Angel et al., 2018; Supplementary Figure 1). 

 

In this work, we propose a multiscale model that considers cellular adhesion and movement, 

molecular regulatory networks (MRNs), and cell-to-cell communication to study the emergence 

of cell fate determination and spatial patterning of M. xanthus fruiting bodies. Specifically, we 

apply mathematical modeling to gain an understanding of the emergence of spatial 

arrangements in a population of initially homogeneous vegetative cells whose MRN dynamics 

are connected through signaling pathways. The model provides a dynamic accounting of the 

roles of MRN multistability, communication via C-signal and conglomerate size in determining 

cell fate determination and patterning during M. xanthus development. It also suggests that for 

cell fate determination and patterning to occur, cell aggregates must surpass a minimum size. 

Finally, the model is employed to contrast the alternative scenarios for the C-signal mechanism, 

providing support for an indirect effect (as a diffusible molecule), over a direct one (as a 

membrane protein). 
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3. Methods 
 

3.1 Model description 
 

To study cell fate determination and spatial patterning in a virtual population of M. xanthus cells, 

we specified a Glazier-Graner-Hogeweg (GGH) model that considered cellular adhesion and 

movement, molecular regulatory interactions and cell-to-cell communication (Figure 1). In the 

model, an intracellular MRN specified the internal state of each cell and determined the fate of 

that cell, as well as the production of intercellular signals. Communication via the intercellular 

signals mediated the coupling between the individual MRNs; in this way cells could affect the 

state of MRNs in neighboring cells.  

 
The GGH formalism is useful for integrating phenomena at the cellular- and subcellular-levels 

occurring at different timescales while explicitly considering a spatial domain (Swat et al., 
2012). In this framework, each scale was captured through a different modeling formalism. The 

model considered processes at three different spatio-temporal scales, which were all coupled to 

each other: (1) a dynamic hybrid Boolean/continuous model captured cell fate determination 

occurring at the intracellular level, (2) the Potts formalism was employed for cell-level behaviors, 

and (3) partial differential equations were employed for diffusion of chemical fields mediating 

long-range intercellular communication. Further details of the phenomena and formalisms 

considered at each scale is presented in the following sections. 

 

3.1.1. Sub-cellular level 
 

At the sub-cellular level, each cell contained an MRN based on experimental evidence that was 

previously employed to study cell fate determination at the single-cell scale (Arias Del Angel et 
al., 2018). In the MRN, the nodes represented genes, proteins, metabolites or environmental 

stimuli. At this scale, the MRN dynamics led to multiple steady states that, when compared with 

the reported experimental data, corresponded to VEG, SPO and PCD. In the MRN, each node 

could have one of two possible states: 0 if the node was not expressed or was below a certain 

threshold, and 1 if the node was expressed above the threshold. The state of the nodes 

changed over time (measured as iterations) according to: 
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,                                (1) 

 

 

where  is the state of the node   at time . That state was determined by a 

logical function , which depends on the state of the regulators  at 

time . The network was updated using a synchronous scheme such that all of the nodes were 

updated simultaneously at each iteration.  

 

The MRN presented here was adapted to explicitly consider the role of cell-to-cell interactions. 

Specifically, the following modifications were made to the previously reported network model 

(Arias Del Angel et al., 2018; Supplementary Figure 1): (1) the Boolean variables for NUT, 

ASG and CSG were replaced by continuous variables. This modification facilitated the coupling 

between cells and the chemical fields while preserving the stepwise behaviour observed in gene 

regulatory interactions. (2) It was no longer assumed that the state of the transcriptional factor 

FruA at time (t) (FRUA(t)) was a function of the elements in the C signaling pathway (CSGA(t)) 

in the same cell. The modified Boolean function for FRUA(t) considered that FRUA(t) was 

activated when the corresponding cell was surrounded by at least 𝜃CSG neighbor cells with 

CSGA(t) = 1. The complete set of functions specifying the GRN is shown in Supplementary 

Information 1. 

 
3.1.2. Cellular-level 

 
The Cellular Potts formalism was employed to model cellular adhesion and movement. In this 

scale, the space was discretized into a regular 1000 x 1000 square lattice with periodic 

boundaries. Cells consisted of non-overlapping sets of sites over the lattice called pixels. Time 

was discretized as well into arbitrary units called Monte Carlo Steps (MCS), consisting of a 

single round of the Metropolis algorithm which allowed the simulation of cell movement across 

the lattice. The temporal dynamic of the Cellular Potts models is determined by a principle of 

energy minimization, where energy is specified through a Hamiltonian function ( ) as specified 

in equation (2).  
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, 

(2) 

 
The first and second terms on the right-hand side of equation (2) are the cell-to-cell/cell-to-

medium adhesion energies and the volume conservation energy, respectively. The first term on 

the right side of equation (2),  ))), )))] is the boundary energy per unit area between 

two cells  of given fates ))), ))) at a contact point. The term 

 avoids taking into account pixels belonging to the same cell. In the 

second term on the right side of the equation,  is the actual volume of a cell and  is the 

target volume.  is a constant determining the constraint length.  

 

Two cells were considered to be neighbors if they shared a boundary of at least one-pixel unit. 

In this model, the values of matrix J were considered to be equal over the cell population and 

thus differential adhesion was not considered. However, values in the matrix J representing cell-

to-cell (cohesion) interaction strength were allowed to differ from the cell-to-medium (adhesion) 

interaction strengths. In some versions of the model, the values in the matrix J were modified to 

explore the role of the balance between adhesion and cohesion. The values employed for 

adhesion and cohesion were 7, 10 and 13 (arbitrary units) in all possible pairwise combinations. 

 

When moving over the lattice, virtual cells attempted to copy their pixel state to neighbor pixels, 

thus changing H. Pixel copy occurred following a Boltzmann probability distribution according to 

equation (3). 

 

 

,                               (3) 

 
 

At this scale, cell death was simulated by setting V0(σ) equal to zero. This change occurred 

based on the state of the internal GRN for each cell. For further details about Cellular Potts 

model specification and implementation see Swat and collaborators (2012) and Glazier and 
collaborators (2007). 
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3.1.3. Supra-cellular level 
 

The supra-cellular level considered diffusion of chemical fields, which mediate long-range 

intercellular communication. Three chemical fields were considered in the model, representing 

the available nutrients, A-signal and C-signal. The model assumed that all three chemicals 

freely diffused across the medium. Also, both A- and C-signal fields were considered to be 

relatively stable in the medium, with no degradation or consumption occurring outside the cells. 

Both, A- and C-signal could be freely exchanged between cellular boundaries. In the case of the 

nutrients, they could be incorporated into the cells, but could not be released back to the 

medium. Dynamics of the diffusion process for both fields was modeled by partial differential 

equations as shown in equations (4) and (5).  

 

 

,                                          (4) 

,                                                 (5) 

 

 

 
3.2. Indexes for assessing spatial organization 
 

To characterize spatial organization, we implemented indexes to quantify the local and global 

distribution of cell fates in the virtual aggregates. The cellular center of mass, neighborhood and 

cell fate were recorded for each cell over time. The position of cell fates relative to each other 

was analyzed for each cell fate by measuring the number of neighbor cells with a given cell fate 

in order to define the neighborhood preferences, as in Tosenberger and collaborators, 2017. 

The position of the cell fates inside the aggregate was analyzed by calculating the Euclidean 

distance between the edge of the aggregate (defined as the farthest cellular center of mass 

from the center of mass of the whole aggregate) and the individual center of mass. 

 

3.3. Software and model robustness to parameter variation 
 

To evaluate the sensitivity of the model to parameter variation, we ran the model after modifying 

the nominal value of key individual parameters. Robustness was assessed by comparing the 
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indexes for spatial organization (section 1.2) obtained for the nominal and modified versions of 

the model. The tested parameters are highlighted in Table S1.  

 

All models were developed and simulated using CompuCell3D software v.3.7.5 (Swat et al., 
2012). Because of the stochastic behavior of Glazier-Graner-Hogeweg models, all simulations 

were repeated at least 30 times. Simulations were visualized using the generic output from 

CompuCell3D or yEd graph editor v3.16 (yFiles software, Tubingen, Germany). The Python 

library NetworkX v2.1 was employed for network analysis (Hagberg et al., 2008) and statistical 

analysis were performed using R v3.2.3 (R Core Team 2015). Graphics were generated using 

the R package ggplot2 v2.2.1 (Wickham, 2009). All models and code applied for analysis are 

freely available at (https://github.com/laparcela/Myxobacteria-CC3D_model/). 

 
4. Results 

 

4.1. Coexistence of cell fates is a result of intercellular coupling 
We employed the model to study the spatiotemporal dynamics of the developmental process in 

M. xanthus. The system was initialized in the condition representing vegetative growth (VEG). 

Cells were homogeneously distributed and were allowed to adhere to neighbor cells and to 

consume nutrients (see Methods and Table S1). As time proceeded, the state of the internal 

network changed as a response to cell-to-cell interactions and local concentrations of the 

nutrients and signals. Because the model implemented incorporated the possibility that different 

cells were exposed to different conditions, the initially homogeneous population segregated into 

different subpopulations, each one characterized by a different steady state of the MRN (Figure 
2a) and levels of diffusible elements (Figure 2b). In the model, individual cells could reach one 

of four steady states, associated with cell fates, three of which were also recovered by the 

single-cell Boolean model previously reported, and correspond to VEG, SPO and PCD cells 

(Arias Del Angel et al., 2018). In the spatiotemporal model, however, an additional steady state 

was generated and reached by some cells in the population, which matched the ROD profile 

(ROD cells are characterized by low levels of both ASG and CSG diffusible elements) (Figure 
2a). This steady state seemed to be generated as a consequence of relaxing the assumption of 

self-signaling considered in the previous Boolean model (Arias Del Angel et al., 2018).  

 

Under a deterministic updating scheme, each attractor recovered in the Boolean model has its 

own well-defined and non-overlapping attractor basin (i.e., the set of initial conditions leading to 
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the attractor), and transitions between attractor basins were not observed in the absence of 

stochastic perturbations (Álvarez-Buylla et al., 2008). In the spatial model, the local conditions 

and cell-to-cell interactions to which a cell was exposed enabled them to transit from one 

attractor to another, causing the proportions of cell fates to vary over time (Figure 2c). These 

transitions were not random, but rather follow an ordered sequence constrained by the 

dynamics of the internal MRN. Cells remained in the VEG state as long as they had access to 

nutrients; once nutrients were exhausted, the population rapidly differentiated into ROD cells. 

ROD cells could remain in this state or differentiate into either SPO or PCD cells (Figure 2a,b). 

For cell populations with low NUT, the concentration of A- and C-signals defined a two-

dimensional space in which ROD, PCD and SPO can be mapped (Figure 2b). In this space, 

ROD cells were defined by low levels of both A- and C-signals. PCD cells had high levels of A-

signal and low levels of C-signal. Finally, SPO cells were defined by high levels of both A-signal 

and C-signal.  

 

Despite of the stochastic component of the GGH models, the results obtained by the model 

followed a general trend with low variation across repetitions, indicating that the mechanisms 

included in the model are sufficient to account for a robust process (Figure 2c). This trend held 

for populations of different sizes above a minimum lattice size of 500x500 (Figure S2). 

 

4.2. Differentiation and patterning are dependent on the aggregate size 

 

Cell fate determination in individual cells within an aggregate did not occur at random, but rather 

depended on the local context of each cell, mainly on the interaction with neighboring cells. 

Moreover, cell differentiation never occurred below a critical aggregate size of ~50 cells (Figure 
3a).  

 

Since these transitions between cell fates depended on both the depletion of nutrients and the 

accumulation of A- and C-signals, large cellular aggregates were more likely to reach relatively 

high concentrations of these signals and locally accumulate them (Figure 3a). Small aggregates 

(and individual cells) accumulated these signals more slowly because a fraction of the signal 

diffused away into the medium (Figure 3a and 3c). Depletion of nutrients and accumulation of 

A-signal and C-signal did not occur homogeneously within a single aggregate. Also, nutrient and 

A-signal levels became more heterogeneous among cells as aggregate size increased (Figures 
3c and 3e).  
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Within the aggregates, cells at the periphery were more likely to accumulate high levels of 

nutrients but low levels of A-signal, while the opposite pattern was observed for cells at the 

interior of the aggregates (Figure 4). Since local concentration of the nutrients and signals 

biased the state of the internal network, their gradients might generate positional information 

that trigger cell fate determination. The emerging cell fates displayed a preferential position 

relative to the center of mass of the aggregates and to the cell fates in their neighborhood 

(Figure 5). This cell fate patterning, as well as the change in proportion of cell fate 

subpopulations over time (Figure 1c), was robust to the specific numerical values of key 

parameters included in the model. Nevertheless, cell fate determination, proportion and 

patterning were differentially sensitive to specific parameters (Figure S3 and S4). For instance, 

variations in the diffusion rate of the A- and C- signals seemed to affect the cell fate proportions, 

but not the presence of all four cell fates. 

 

4.3. Balance between cohesion and adhesion determine aggregate size distribution 

 

The aggregate size distribution was the result of both the strength of cell-to-medium (adhesion) 

and cell-to-cell (cohesion) affinities. This balance is known as wettability and can be specified at 

the cellular level through the Potts formalism (Swat et al., 2012). When cohesion was stronger 

than adhesion, cells tended to form larger aggregates, and vice versa. Different values of 

wettability resulted in qualitatively different distributions of the aggregate sizes, with a non-linear 

response to changes in either adhesion or cohesion (Figure 6).  

 

4.4. Contrasting scenarios for the molecular nature of the C-signal 
 

Once we were confident that the model could reproduce the key features of cell fate 

determination and patterning in M. xanthus, we employed it to test the plausibility of two 

contrasting scenarios. C-signal was initially suggested to be a membrane protein mediating 

direct cell-to-cell communication (Lobedanz and Løtte-Soggard), but recent evidence 

proposes that it is (or gives rise to) a diffusible molecule involved in indirect cell-to-cell 

communication. We developed two versions of the model that capture these two alternative 

scenarios. We found that while both versions of the model were capable of recovering most of 

the tested properties, only the model considering C-signal as a diffusible molecule was able to 
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recover the appearance of isolated spores (i.e., outside of multicellular aggregates) that has 

been previously reported (Higgs et al., 2014) (Table 1). 
 

5. Discussion 

 
Multicellular development is characterized by cell differentiation and patterning. For Myxococcus 

xanthus, our study system, a previous network model grounded on experimental evidence, 

accounts only for single-cell processes (Arias Del Angel et al., 2018), and it does not capture 

events at the population or multicellular scales at which multicellular development and spatial 

patterning occur. In this work, we present results of a dynamic multiscale model based on the 

Cellular Potts formalism to explicitly consider cell movement, gene regulatory interactions and 

intercellular communication among individual cells during fruiting body formation in M. xanthus. 

Specifically, our results support a dynamic accounting for the origin of cell fates in the transition 

to multicellularity, in which coexisting cell fates may arise with the aggregation of cells from the 

coupling of multistable networks already present in single cells (Kauffman, 1969; Furusawa 
and Kaneko, 2002; Newman et al., 2003; Mora van Cauwelaert et al., 2015). This contrasts 

with a vision in which multicellular masses appear first, and then gradually acquire different cell 

fates and spatial differentiation (Haeckel, 1874; Arendt 2008).   
 

When the model is employed to simulate fruiting body development in response to starvation, 

individual cells aggregate, and the population transits from the state representing vegetative 

growth to those representing the cell fates that emerge during fruiting body. Even when the 

population consists of initially homogeneous cells, the differentiated local environment inside the 

aggregates allow them to reach different steady states corresponding to cell fates. It is worth 

mentioning that in this spatiotemporal model, an additional steady state representing the 

peripheral rods, emerged as the result of the interaction between cells and their medium. An 

outcome of the model is that it predicts the stereotypic sequence of VEG -> ROD -> SPO or 

PCD cell fate determination that emerges from the heterogeneous accumulation of nutrients and 

signals and the MRN dynamic (Figure 2). These results suggest that during multicellular 

development in M. xanthus, the coupling among cells may be important in generating the whole 

spectrum of cell fates. Given the genetic homogeneity of the cell population, this supports the 

idea that cellular differentiation can occur in a multicellular context in the absence of genetic 

variation (Turing 1952; Von Dassow et al., 2001; Benítez et al., 2008; Mora van Cauwelaert 
et al., 2015). Hence, the change of scale during aggregation may on its own constitute an 
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important source of developmental innovation, and changes in the cell-to-cell interactions may 

render developmental variation. 

 

In addition to cell fate determination, positional information is also generated as a consequence 

of the formation of gradients of nutrients, A- and C-signals, which translate into cellular 

patterning with non-random preferential positions independent of any pre-pattern. The cell 

pattern exhibited qualitative robustness against the specific parameter values employed in the 

model. The position of SPO relative to ROD recovered by the model is in agreement with 

experimental evidence that has shown that fruiting bodies are patterned into two concentric 

domains, with myxospores preferentially located in the inner domain and peripheral rods in the 

outer domain (Sager & Kaiser, 1993a, b; Julien et al., 2000). To the best of our knowledge, 

the position of PCD cells has not been clearly determined experimentally, but evidence from 

Lux and co-workers (2004) suggests that they occur broadly over the entire fruiting body. Our 

model suggests that PCD tend to occur in an intermediate ring (Figure 4). Because of the 

limited evidence, this result provides a prediction for future experimental work.  

 

The proposed model suggests that a threshold aggregate size must be surpassed to trigger cell 

fate determination and patterning. In relatively small aggregates, cells are unable to reach high 

enough levels of diffusible substances (A- and C-signal) because a significant portion of these 

signals is lost to the medium through diffusion. In large aggregates, self-activation feedback 

loops compensate for the proportion of the signals lost to cell-to-medium diffusion and 

intracellular levels of these signals reach high enough values to trigger downstream effects in 

the MRNs. In fact, previous studies have considered conglomerate size as a key factor favoring 

and constraining complexity during development and evolution of multicellular organisms 

(Bonner, 1998a). Moreover, other authors have argued that as cells are incorporated into a 

conglomerate, new local chemical and mechanical microenvironments may give rise to cues 

biasing cells toward certain steady states (Furusawa & Kaneko, 2002). Overall, our results 

support the idea that aggregate size may be a cue for development on the basis of a data-

grounded model for M. xanthus as a model organism. 

 

As previously mentioned, the nature of C-signal has been recently discussed in light of new 

experimental research. Specifically, the C-signal was originally suggested to be a membrane 

protein capable of mediating direct intercellular communication (Lobedanz and Søggard-
Anderson, 2003). In contrast, recent evidence supports an alternative scenario where the C-
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signal is instead a diffusible molecule (or perhaps involved in the synthesis of such a molecule), 

mediating indirect cell-to-cell communication (Muñoz Dorado et al., 2016). Here, we employed 

the dynamic model to test the plausibility of these two contrasting scenarios and found more 

support for the scenario of a diffusible signal mediating indirect cell-to-cell communication. The 

proposal of a diffusible element is also supported by bioinformatic analyses suggesting that 

csgA, the gene encoding for C-signal, does not contain any putative membrane-anchoring 

sequence (Lee et al., 1995). 

 

Additionally, our model provides insights into the role of MazF, the only reporter marker for 

PCD. Evidence for the role of MazF has been controversial because its effect has been 

validated only in a strain where its action might be mediated by interactions with the specific 

genetic background (Boynton et al., 2013; Müller et al., 2013). (Nariya & Inouye, 2008; Lee 
et al., 2012; Boynton et al., 2013). We were aware of these limitations when we included this 

element in the model; we conclude that, regardless of the specific molecular identify of MazF, 

PCD-inducing factors acting in other strains may be under direct or indirect regulation of MrpC, 

as assumed in our model for MazF. Overall, the model as presented renders precise predictions 

that may ultimately inform experimental work. 

 

In summary, we provide a dynamic accounting of cell fate determination and patterning in M. 

xanthus, which generates several testable predictions. As ongoing research reveals further 

details of the developmental mechanisms in other myxobacteria, models like the one proposed 

here may enable comparative studies of developmental processes and dynamics (Nahmad et 
al., 2008; Arias Del Angel et al., 2017; Benítez et al., 2018), thus shedding light on the 

generic and particular aspects of different fates and instances of multicellularity.  
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8. Figures  

 

 

 
Figure 1. Schematic representation of the Cellular Potts model for cell fate patterning 
during multicellular development in M. xanthus. A Cellular Potts model considering 
phenomena at the cellular, intracellular and supracellular level is presented. Each level (bold 
font) captures characteristic phenomena through a different modeling formalism (italic font) and 
feedback with each other. 
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Figure 2. Dynamics for cell fate determination across a population of M. xanthus virtual 
cells. Individual cells in the population reach one of four attractors which are interpreted as cell 
fates.  Cell fates are defined by the state of the internal network (a) and relative values of 
variables representing intercellular communication pathways (b). Panel (a) shows a subset of 
the nodes considered in the GRN, which are diagnostic variables that specify cell fates. In (b), 
dotted lines represent threshold values for ASG and CSG activation. (c) Cell fate proportions 
change over time as a consequence of cell-to-cell interactions. A schematic diagram of the 
transitions between cell fates is shown inset in the plot (c). 
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Figure 3. Correlation between cell fate determination and aggregate size. (a) Change over 
time (increasing MCS in panels from left to right) of SPO and PCD proportions at different  
aggregate sizes. Dotted lines represent equal proportion of SPO and PCD. Colors represent the 
aggregate size (measured as number of cells in the aggregate). (b) Change in the expected 
level of NUT (nutrient) per cell as a function of aggregate size. (c) Change of the standard 
deviation in NUT (nutrient) levels across the cells inside a single aggregate as a function of 
aggregate size. (d) Change of the expected level of ASG (A-signal) per cell as function of 
aggregate size. (e) Change of the standard deviation in ASG levels across the cells inside a 
single aggregate as function of aggregate size. In (b-e) the blue line represents a polynomial 
function adjusted to describe the general behaviour of the data. 
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Figure 4. Spatial dynamics recovered by the model for M. xanthus FB development. Each 
row represents a different level and each column a representative time point for the main events 
recovered by the model (movement of disaggregated cells, aggregation of the individual cells 
and differentiated fruiting bodies). For the NUT (nutrient) and ASG (A-signal) gradients, only the 
portions delimited by the red circle in the cellular field are shown and amplified.  
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Figure 5. Spatial patterning of cell fates within aggregates. (a) Illustrative figure of the 
spatial distribution of cell fates in a virtual aggregate. Only aggregates of ≥100 cells were 
included. Cells are displayed as circles representing the position of the center of mass for each 
cell. (b) Distribution of distance of cell fates from the center of mass (CoM) of each aggregate. 
ANOVA p-values: (*) p < 0.05, (***) p < 0.001 (c) Distribution of cell fate of the neighbors of 
each of the cell fates observed for each aggregate.  
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Figure 6. Theoretical effect of the balance between cell-to-medium (adhesion) and cell-to-
cell (cohesion) contact energy in aggregate size. For each combination of adhesion and 
cohesion energy contact, the mean aggregate size (point) and standard deviation (error bars) 
are shown. Aggregate sizes were measured once the model reached equilibrium. Kolmogrov-
Smirnov test to compare distributions; Indexes a, b, and c indicate p > 0.05 for pair-wise 
comparisons. Only non-significantly different pairs of distributions are indicated. p-values are 
adjusted using Holm-Bonferroni method for multiple comparisons.  
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9. Tables 

 

Table 1. Comparison between alternative scenarios of CsgA-mediated intercellular 

signaling using the two models involving CsgA key properties. 

 

Property Model 1. Csg-direct Model 2. Csg-indirect 

Description CsgA acts as an 

intercellular protein via 

direct cell-to-cell contact 

(Løtte-Soggard et al., 2001) 

CsgA diffuses in the medium and 

mediates short-range intercellular 

communication (Muñoz-Dorado 

2016; Robeltzki et al., 2008) 

Cell fate trajectories Matches experimental 

evidence 

Matches experimental evidence 

Predicted cell fate 

proportions 

SPO < ROD < PCD SPO < ROD < PCD 

Mutant phenotypes Matches experimental 

evidence 

Matches experimental evidence 

Isolated myxospore 

formation 

(independent of FB 

development) 

Not predicted by the 

model 

Predicted by the model, in 

agreement with previous reports 

(Yang and Higgs, 2014) 
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10. Supplementary Figures 

 

 
 
Figure S1. Schematic representation of the internal molecular regulatory network. Two 
cells are represented (each containing an identical schematic of the molecular regulatory 
network). Solid lines represent intracellular regulatory interactions. Black and red arrows stand 
for positive and negative regulatory interactions, respectively. Dotted lines indicates diffusion. 
Nutrients, A-signal and C-signal are abbreviated as NUT, ASG and CSG, respectively. All other 
nodes are annotated as usually found in literature. 
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Figure S2. Robustness of system dynamics for large lattice sizes. Each row represents the 
results obtained for the cell fate trajectory over time when different lattices sizes are used. The 
left column shows the cell fate trajectories over time (line shows mean of N = 30 simulations). 
The right column shows the standard deviation for cell fate trajectories obtained from N = 30 
simulations. Note that for small lattice sizes, trajectories are delayed and noisier (larger 
standard deviation) compared to larger lattices sizes. 
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Figure S3. Effect of in silico knock-out mutants on cell fate trajectories. In each panel, the 
change of cell fate proportion over time is shown for a different mutant group. A mutant group 
comprises variables in the model (gene or proteins) that exhibit similar behaviour. No effect 
(Type 1), depletion of PCD (Type 2), depletion of SPO (Type 3), depletion of both PCD and 
SPO (Type 4). For variables contained in each mutant group see Table S3.  
 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2019. ; https://doi.org/10.1101/627703doi: bioRxiv preprint 

https://doi.org/10.1101/627703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S4. Sensitivity analysis for cell fate trajectories to parameter variation over time. 
Each panel shows cell fate trajectories over time upon variation in a single parameter. The 
modified parameter is annotated at the top of each panel (bold) and the specific value for each 
set of realization are shown in each sub-panel (gray boxes). Colored lines represent the 
proportion of individuals with each cell fates over time. Cell fates are VEG (cyan), ROD (yellow), 
SPO (green) and PCD (purple). 
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Figure S5. Sensitivity analysis of cell fate patterning to parameter variation. Each panel 
shows the distribution of distance relative to center of mass (CoM) for each cell fate upon 
variation in a single parameter. The modified parameter is annotated at the top of each panel 
(bold) and the specific value for each set of realizations are shown in each sub-panel (gray 
boxes). Boxplots represent the distribution of distance relative to center of mass for individual 
cell fates. Cell fates are ROD (yellow), SPO (green) and PCD (purple). 
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11. Supplementary Information 1 

Specifications for the hybrid Boolean/ODEs GRN model.  

 
S1a … d[NUT]idt=	-NUT[NUT]i	+DNUT∇[NUT]i 

S1b … d[ASG]idt=rASG[ASGi](1	-	ASGi)	+DASG	∇[ASG]i,          if ASGAB(t) ∧ ASGE(t)  

            											=-rASG[ASGi]^2	+DASG	∇[ASG]i,                        otherwise 

 
S1c … RELAi(t + 𝜏) = [NUT]i < 𝜃NUT 

S1d … ASGABi(t + 𝜏) = RELAi(t) 

S1e … ASGEi(t + 𝜏) = ¬ RELAi(t) ∧ ASGABi(t) 

S1f  … NLA4i(t + 𝜏) = RELAi(t) 

S1g … NLA18i(t + 𝜏) = RELAi(t) 

S1h … NLA6i(t + 𝜏) = ¬ MAZFi(t) ∧ (NLA4i(t) ∨ NLA18i(t)) 

S1i …  NLA28 i(t + 𝜏) = NLA6i(t) ∧ ([ASG]i < 𝜃ASG) 

S1j …  CSGAi(t + 𝜏) = NLA28i(t)  

S1k … PKTD9i(t + 𝜏) = [NUT]i < 𝜃NUT 

S1l … PEPi(t + 𝜏) = [NUT]i < 𝜃NUT 

S1m …  PKTD1i(t + 𝜏) = PEPi(t)  

S1n …  MKAPBi(t + 𝜏) = PKTD1(t)  

S1o …  PKTA4i(t + 𝜏) = MKAPBi(t)  

S1p … MKAPAi(t + 𝜏) = PKTD9i(t) ∨ PKTA2i(t) ∨ PKTA4i(t) 

S1q … PKTA2i(t + 𝜏) = DEVTRSi(t)  

S1r …  PKTC2i(t + 𝜏) = MKAPAi(t)  

S1s …  PSKA5i(t + 𝜏) = PKTC2i(t)  

S1t …  MRPC2i(t + 𝜏) = ([ASG]i < 𝜃ASG) ∧ ¬ PSKA5i(t) ∧ ¬ MAZFi(t) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2019. ; https://doi.org/10.1101/627703doi: bioRxiv preprint 

https://doi.org/10.1101/627703
http://creativecommons.org/licenses/by-nc-nd/4.0/


S1u … FRUAi(t + 𝜏) = MRPC2i(t) ∧ (𝜃i ≥ 𝜃CSG) 

S1v … DEVTRSi(t + 𝜏) = MRPC2i(t) ∨ FRUAi(t) 

S1w … MAZFi(t + 𝜏) = ([NUT]i < 𝜃NUT) ∧ ¬ DEVTRSi(t) ∧ (MRPC2i(t) ∨ MAZFi(t)) 

 
In equation S1u, 𝜃i is the number of neighbors to cell i with CSGAj(t) = 1. 
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12. Supplementary Tables 

 
 
Table S1. Model parameters. All parameters are measured in arbitrary units unless stated 

otherwise.  

Symbol Description Nominal value Values tested Eq. 

 Potts models - Cellular level  

J(0,1) Cell-to-medium adhesion energy 12.0 - 1 

J(1,1) Cell-to-cell adhesion energy 7.0 - 1 

V0(σ) Target volume 25.0 - 1 

ƛ Spring constant 2.0 - 1 

T Temperature 10.0 - 2 

Boolean/ODEs GRN model - Sub-cellular level 

𝜏 GRN updating rate 50 MCS 5, 10, 25, 50, 100 S1a-u 

rASG A-signal production rate 1.75 0.1, 0.25, 0.5, 1.0,  S1b 

𝛾NUT Nutrient consumption rate 0.5 0.1, 0.25, 0.75, 0.9 S1a 

𝜃NUT Nutrient threshold for starvation 0.1 0.2, 0.25, 0.5, 0.75 S1c,k,l 

𝜃ASG A-signal activation threshold 0.5 0.1, 0.25, 0.75, 0.9 S1i,t 

𝜃CSG Active neighbors threshold 5 cells 1, 2, ..., 6 S1u 
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Partial differential equations - Chemical field level 

DASG A-signal diffusion rate 0.5 10-5, 10-4, …, 10-2, 0.1 S1b 

DNUT Nutrient diffusion rate 0.1 10-5, 10-4, …, 10-2, 0.5 S1a 

𝜌 Nutrients released by dead cells 10.0 0, 1, 5, 20, 100 3 

 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2019. ; https://doi.org/10.1101/627703doi: bioRxiv preprint 

https://doi.org/10.1101/627703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Table S2.  Summary of key parameters and their effects on properties in the 

model: ‘Yes’ means that the given property is sensitive to the parameter variation 

and ‘No’ that it is not. 

 

Parameter 

Property 

Temporality Cell fate 

proportion 

Cell fate 

patterning 

GRN updating rate No Yes No 

ASG diffusion rate No Yes No 

NUT diffusion rate No Yes No 

CSG diffusion rate No Yes No 

CSG threshold (direct 

model) 

No Yes No 

CSG threshold (indirect 

model) 

No Yes No 

ASG production rate Yes No No 

NUT consumption rate Yes No No 
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NUT threshold Yes No No 

ASG threshold Yes No No 
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Table S3. Classification of nodes included in the gene regulatory network by their ‘knock-

out’ phenotypic effects.  

 
Mutant group Phenotype ‘Knock-out’ nodes 

Type 1 Wild-type PktA2, PktA4, PktD1, PskA5, PktC2, MkapA, MkapB 

Type 2 No PCD MazF 

Type 3 No SPO DevTRS, FruA, Nla4, Nla18, Nla6, Nla28, CsgA 

Type 4 Neither PCD nor SPO AsgAB, AsgE, MrpĆ2 
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