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List of Abbreviations 
AD: Alzheimer's disease 

ADC: Apparent diffusion coefficient 

AXV: Axonal volume fraction 

CSF: Cerebrospinal fluids 

Dfree: Free (unrestricted) diffusion coefficient 

dMRI: Diffusion MRI 

FA: Fractional anisotropy 

GM: Grey matter 

L: (Cortical) Layer 

MD: Mean diffusivity 

MK: Mean kurtosis 

MS: Multiple sclerosis 

NDI: Neurite density indice 

NODDI: neurite orientation dispersion and density imaging 

NR: Neuron radius 

ODI: orientation dispersion indice 

PGSE: Pulsed gradient spin echo  

r: radius 

STEAM: Stimulated echo acquisition mode 

t: diffusoin time 

tmax: diffusion (acquisition) time 

TPM: Two-photon microscopy 

UHF: Ultra high field 
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ve: Extracellular volume fraction 

vg: Glial volume fractions  

vn: Neuronal volume fractions  

WM: White matter 
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Abstract 

Purpose: Neurodegenerative diseases such as Alzheimer's disease cause changes and 

disruption to cortical microstructure and architecture. Diffusion MRI (dMRI) could 

potentially be sensitive to such changes. There is a growing interest in modeling of human 

cortical areas using a combination of quantitative MRI and 3D microscopy. The purpose of 

this study was to quantitatively characterize the cytoarchitecture of human cortical tissue 

from 3D fluorescence microscopy to simulate diffusion MRI (dMRI) signal in the cortex to 

better understand its diffusion signal characteristics. 

Methods: Diffusion of water molecules and dMRI signal were simulated by an indirect 

geometry based method and a direct voxel based method in microstructural details extracted 

from microscopy of cortex. Additionally, residence times of diffusing spins inside voxel 

volumes were considered to set effective resolution limits. Mean diffusivity (MD) and 

kurtosis (MK) were calculated for variable cell and neurite densities, sizes and diffusion 

times under realistic values for permeability and free diffusion.  

Results: Both simulation methods could efficiently and accurately simulate dMRI signals 

with fractional anisotropy, diffusion coefficient and kurtosis in agreement with previous 

reports. Simulated MD and MK showed changes with increasing diffusion times specific to 

cortical cell density and sizes, with MK showing the highest sensitivity. Intra-voxel residence 

times with increasing diffusion times showed that the effective dMRI resolution approaches 

the thickness of cortical layers. 

Conclusions: Monte Carlo simulations based on 3D microscopy data enable estimating 

changes in MD and MK over diffusion times and are sensitive to cortical cytoarchitecture and 

its possible changes in neurodegenerative disease. When considering layer-specific cortical 

dMRI, effective resolution due to residence times is an important concern. 

Keywords: Cortical grey matter, Monte Carlo, Neurons, Diffusion MRI, Glial cells, Axon 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/626945doi: bioRxiv preprint 

https://doi.org/10.1101/626945
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 

Changes in tissue microstructure of the cortex have been observed for diseases such as 

schizophrenia [1, 2], Alzheimer's disease (AD) [3-5], and Huntington's disease [4] in addition 

to age-related changes [6]. Diffusion MRI has been a successful and commonly used imaging 

modality to differentiate or characterize different diseases in the last decades [7] because of 

its sensitivity to tissue microstructure [8, 9].  

It has been hypothesized that changes in cortical microstructure (e.g. cell density change or 

demyelination) result in observable variations in parameters derived from diffusion-weighted 

or diffusion-tensor imaging (e.g. fractional anisotropy, FA, or mean diffusivity, MD) [10-12]. 

For instance, Kroenke [10] discusses cases in which variations in FA have been of interest to 

study cortical development. Vrenken et al. [11] have shown decreases in FA of the cortex for 

patients with multiple sclerosis (MS). Microstructural changes associated with AD are 

decreased dendritic arborization, loss of synapses or dendritic spines [13-16] and selective 

loss of neurons [5, 17, 18]. Parker et al. have shown that these changes might result in 

decreases in orientation dispersion and neurite density indices (ODI/NDI) derived from 

neurite orientation dispersion and density imaging (NODDI) [12].  

In addition, it has recently been shown that diffusion MRI can be used to characterise the 

architecture of cortical grey matter and its layers. Ganepola et al. [19] proposed the use of 

diffusion MRI derived parameters to redefine the widely used Brodmann’s areas [20] of the 

brain. Bastiani et al. showed delineation of cortical layer borders from high resolution dMRI 

on human post mortem tissue samples [21].  

Human cortical grey matter has a dense composition (i.e. around 84% intra-cellular volume 

fraction) of axons, neurons, dendrites, glial cells, and blood vessels [22]. Despite this high 

level of cellularity, apparent diffusion coefficients measured from the cortex are relatively 

high compared to white matter. This could be explained by: a) the relatively large sizes of 

neurons (generally greater than 20 µm [2, 23, 24]) and b) glial minimum diameters of at least 

2.5-3 µm [25], compared to very thin axons in white matter with diameters of generally less 

than 1 µm. 

The layered composition of the cortex and partial volume effects at borders with 

cerebrospinal fluid (CSF) and WM, which have distinct diffusion characteristics, supposedly 

resulting in the diffusion signal to be multi-exponential. Initially, Maier et al. [26] proposed 

the use of biexponentials describing diffusion in cortical voxels adjacent to white matter or 
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CSF. Biophysical  multi-compartment models of diffusion, such as NODDI [27], can account 

for partial volume effects, and have recently been used to analyze diffusion in the cortex [28, 

29]. 

Moreover, there are numerous reports of quantitative diffusion MRI of cortical grey matter in 

recent years [1, 11, 12, 26, 28, 30-32]. However, diffusion MRI of grey matter has received 

relatively less attention compared to white matter because of its smaller fractional anistropy 

and mylenation and hence less significant variations in diffusion MR related parameters.  

Immunohistochemistry [5], scanning electron microscopy [33], different light microscopy 

techniques [34] such as two-photon microscopy [35], and ultra-high field (UHF) diffusion 

MRI [36] of ex vivo tissue samples have improved our understanding of the cortex micro-

structure in the last years. However, since there are a number of morphological changes in the 

fixation process [37-39] in addition to temperature differences, extrapolation from ex vivo 

MRI or microscopy to analysis in vivo diffusion MRI requires extensive mathematical 

modelling. 

Here, we aim at simulating diffusion MRI signal in grey matter characterized by axon, 

neuron, dendrite, and glial composition, with an emphasis on cell-body composition, i.e. 

cytoarchitecture over different cortical layers. Monte Carlo simulations of diffusion as 

previously performed for white matter [40-42], and prostate [38, 43] were employed to study 

diffusion MRI signal in the cortex. We first consider residence times of water molecules in 

layered structures mimicking cortical grey matter boundaries to establish how much a voxel 

within a layer represents that physical layer without significant partial volume effects from 

other layers. Subsequently, we simulate diffusion MRI in cortical grey matter reconstructed 

from 3D microscopy using two different approaches: indirect geometrical reconstruction of 

cell bodies, and direct simulations on microscopy voxel grids. The simulations are performed 

for different microstructural compositions (density, size) of cell bodies and neurites, 

mimicking different cortical layers to simulate diffusion MRI signal in the cortex and to 

investigate its sensitivity to cortical cytoarchitecture. 

Materials and Methods 

Microstructural parameters derived from literature 

There are numerous measurements of neuronal, glial, blood, or axonal cell sizes, cell 

densities or cell volume fractions in the healthy or diseased brain. The neural parenchyma is 
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mostly made of neurons and glial cells and less than 3% its volume is made of the vasculature 

[44], hence most of these non-neuronal cells could be assumed to be glial cells [45]. 

Additionally, it has been shown that with increasing neuron diameters, glial/neuronal ratio 

increases; this has been hypothesized to be because of the increased metabolic needs of larger 

neurons  [45, 46]. Accordingly, it has been hypothesized that glial/neuronal volume ratio 

might be of more interest to neuroscientists compared to glial/neuronal cell count [45]; this 

paradigm shift in cell measurements might benefit diffusion-weighted MRI analysis because 

diffusion parameters have been shown to highly rely on and have been described vs. cell 

volumes and volume fractions [38, 43, 47]. Fig. 1 is a scheme of the layered cyto and 

myelostructure of the cortical matter. 

There are two main types of neurons in the cortex: pyramidal cells with diameters ranging 

from 20 to 120 µm, and granule cells which are star-shaped, have short axons, make local 

connections, and their diameters are around typically less than 20 µm [48]. There are a 

number of other studies giving similar estimates of neuronal diameters [2, 23-25, 49]. 

Average values of axonal diameters in the human cortical white matter have measured to be 

0.5 to 1.34 µm (range of 0.19 to 4.79 µm) [50-52]. Deitcher et al. [53] have measured 

average dendritic lengths and diameters of 540-800 µm (dependent on depth from pia) and 

0.76 ± 0.28 µm, respectively, in HL2/L3 of human neocortex. 

The neuronal diameters are generally reported to be in the range of 11-27 µm (mostly around 

20-25 µm) as discussed above. However, there are two issues that need to be addressed: first, 

pyramidal neurons have been assumed spherical in order to estimate their diameters. Second, 

the areas have been measured using two-dimensional images and such estimates of diameters 

are always an underestimation of cell sizes. Instead, there are a number of methods to recover 

3D shapes of cells which are mentioned in [54]. Alternatively, high resolution and three-

dimensional two-photon microscopy acquisitions of the brain cortex could be employed to 

estimate neuron and glial cell sizes.  

Residence times of diffusion in cortical layers and imaging voxels 

There are two different scenarios where the concept of residence time could help in feasibility 

assessment of separating physical diffusion compartments. The first case is having multiple 

microstructural compartments (each of them with their distinct diffusion characteristics) 

within each voxel; in this case, the low exchange between the compartments allows multi-

exponential fitting on the diffusion signal (e.g. [38] for the prostate, or [26, 27] for the brain). 
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The second case is when the purpose is to check how much a voxel characterizing a 

microstructural layer is affected by nearby layers or neighbouring voxels. We take the second 

perspective here. 

Here, residence times were measured for 3 different scenarios: one plate (mimicking the 

WM, GM boundary), two plates (mimicking cortical laminar structure), and six plates 

(mimicking a voxel). 

One plate (single boundary) 

Three-dimensional random walk simulation was performed in a geometry consisting of two 

compartments separated by an infinite plane (Fig. 2 a). The purpose was to show how long 

the water molecules at each initial position reside in the medium A dependent on the 

diffusion time andtheir initial position. The initial position of water molecules was 

normalized to √�� (where D was diffusion in the comparmtent and t was the acquisition 

time) and residence times were normalized to acquisition times. This normalization allowed 

for generalization of the simulation to any other similar geometry. However, here we 

interpreted the results for a specific case of white matter, and grey matter boundary.  

Two plates (cortical layer) 

The three-dimensional random walk was performed in a geometry consisting of three 

compartments (medium) separated by two infinite planes (Fig. 2 c). The purpose was to 

determine residence time of water molecules in the central compartment relative to 

acquisition times for different initial positions. Later, results were normalized similar to the 

one plate simulation. While the results could be used for interpreting diffusion in any layered 

diffusion compartment, here the purpose of the simulation was to investigate residence times 

in the layered structure of the cortical matter.  

Six plates (imaging voxel) 

Similar to the one and two plate simulations, a simulation medium consisting of a voxel 

surrounded by 6 plates (Fig, 2 e) defining a cubic voxel was designed. Residence times of 

water molecules in the voxel were measured for different initial positions of spins in the 

voxel. This simulation gives a limit for the minimum voxel size for different acquisition 

times without the voxel being significantly affected by spins from the neighbouring voxels.  
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Microscopy measurements 

Realistic geometry of human cortical cytoarchitecture was reconstructed for simulation 

purposes using three-dimensional two-photon microscopy (TPM) on human cortical tissue. 

The tissue was optically cleared and fluorescently labelled for cell nuclei and cell bodies, 

using the procedures described in Hildebrand et al [55].  

A filtering and Otsu thresholding based algorithm was developed to measure glial (vg), and 

neuron volume fractions (vn) using RGB images available of a Nissl-like fluorescent cell-

body label [55]. Accordingly, the extracellular volume fraction (ve) was approximated as (1- 

vn - vg).  

Indirect geometry based simulation 

A non-linear least squares based ellipsoid fitting function [56] was used in MATLAB Release 

2017a (The MathWorks, Natick, Massachusetts) to characterize and estimate radii of neurons 

and glial cells separately. The function required at least 9 perimeter points to fit an ellipsoid; 

however, this condition was not adequate and an additional condition of having the points 

spread in at least 3 parallel planes was taken into account.  Voxels corresponding to areas of 

glial nuclei and neurons in the visual cortex were segmented separately, and ellipsoids were 

fitted on them. Fig. 3 (a), and (b) are segmented areas of a neuron and a glial cell, 

respectively. vn , and vg ranges were 0.12-0.35, and 0.03-0.13, respectively, in 10 different 

TPM slides. The glial nuclei on average could be described as ellipsoids with the longer radii 

of 8.98±1.77 (ranging from 6.66 to 11.00) and smaller radii of 2.73±0.63 (ranging from 1.66 

to 3.50). However, spheres better fitted on the neurons with average radii of 12.0±4.6 

(ranging from 6.1 to 24.7) µm.  

Mixtures of ellipsoids and cylinders with variable cell sizes and densities were used as 

geometry for simulation of diffusion in the cortex. Water molecules were randomly placed 

within the geometries and randomly moved with time steps of 1-25 µs corresponding to 

random walk steps of  0.09-0.48 µm assuming free diffusion coefficient of 1.6-1.7 µm2ms-1. 

Permeability of geometries was variable and simulated giving random chances of crossing to 

different permeability levels [38]. Pulsed gradient spin echo (PGSE) acquisition was 

simulated by recording changes in the phase of these randomly moving spins after the 

application of the diffusion gradients. Finally, diffusion kurtosis model [57, 58] was fitted on 

the signal. Detailed equations regarding the simulation of random walks, permeability, and 

PGSE could be found in [38, 43]. 
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Neuronal radii of 10 or 20 µm were considered for all of the simulations. Glial cells were 

modelled as ellipsoids with radii of 2.7, 2.7, and 9 µm and three different radii of 0.3, 0.5, 

and 1 µm were considered for the axons. Different cortical areas or layers have different 

compositions; it is a time-consuming challenge to simulate and summarize all of these 

compositions in a single manuscript. Hence, here three different and simplified geometry 

scenarios which were most likely to simulate the visual cortex were considered. 

Simulation A (layer II/III) 

The first scenario was the simulation of neurons and glial cells with varied neuron size and 

densities. Neuron volume fractions of around 0.1, 0.2, 0.3, and neuronal diameters of 10, and 

20 µm were considered. This scenario mostly corresponds to layers II or III of the cortex. 

Simulation B (layer VI/white matter) 

The second scenario was simulations of myelinated or unmyelinated axons with diameters of 

0.6, 1, 2 µm and volume fractions of 0.1, 0.3, 0.6, 0.9; where for axonal volume fraction of 

0.9 hexagonal circle packing was employed and the other fractions were made by expanding 

the geometry phase space while keeping axonal morphology constant. It has been proven that 

hexagonal circle packing leads to the maximum possible volume fraction which is 0.9069 

[59]. This simulation corresponds to layer six of the cortex, or in general white matter 

beneath the cortex. Permeability values of 10 and 30 µms-1 were considered corresponding to 

myelinated and unmyelinated axons, respectively. 

Simulation C (mixture) 

The third scenario consisted of the mixtures of the two scenarios above. Neuronal and glial 

volume fractions were kept constant at 0.1, 0.05, respectively. Axonal volume fractions for 

this mixture varied between 0 to 0.3. This scenario mimics layers IV and V of the cortex. 

For all of the simulations, 15 equally distanced b-values ranging between 0 to 2500 smm-2 

were used. Four different diffusion times of 40, 60, 80, and 100 ms were used; the definition 

of diffusion times was similar to [37, 38, 43]. Two Dfree (defined in  [37, 38, 43]) values of 

1.6 and 1.7 µm2ms-1 were used for the simulations which have shown to be consistent with in 

vivo measurement of free diffusion which is affected by protein solutions [38] or 

consideration of an inherent Dfree of 1.7 µm2ms-1 in NODDI algorithms [27, 28].  

Additionally these values for Dfree could also be verified by ADC estimates of 1.6-1.9 µm2ms-

1 parallel to the direction of axons in reference [60], where these values are from a diverse 

range of 1.5-3 T Philips or Siemens scanners; note that diffusion parallel to the direction of 
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fibre bundles in nearly free because axonal lengths are generally around or greater than a few 

hundreds of micrometres.  

Direct voxel based simulation 

The ideal scenario for Monte Carlo simulation of diffusion is to directly use the geometry 

from microscopy in comparison with the mathematically reconstructed geometries of the 

previous section. This has been the subject of a recent study by Palombo et al. [61], where 

they have directly segmented area of cells from microscopy and simulated the random walks 

of thousands of spins within these geometries. However, the main issue with this approach is 

the long simulation times which will linearly increase with increasing of cell numbers, and 

the complexity of their area segmentation.  

Additionally, a two-dimensional version of such direct simulation has been presented in [62] 

where only one cell type has been considered. However, they have not mentioned how three-

dimensional simulation mediums have been constructed from two-dimensional images (a 

recent reference [54] extensively discusses how this might be a formidable challenge). 

Alternatively, here we used Matlab’s colour-based segmentation using K-means clustering 

(imsegkmeans) to separate different cell types by ascribing them different colors or numbers 

in two-photon microscopy samples. Microscopy voxels containing extracellular spaces were 

filled by zeroes, and other cell types were given a specific number (e.g. intracellular spaces of 

glial cells and neurons with respectively one and two).  

Diffusion of water molecules was simulated within each microscopy voxel and if for each of 

the random walks the spin travelled to a neighbouring microscopy voxel with different 

geometry type, the available algorithm for permeability explained in the previous section was 

used to allow or reflect the random walk. Similar to [61], this method enabled different 

permeability ascriptions to each cell. Additionally, ascribing different numbers to different 

cell types allowed ascribing different permeability levels to cell wall of each cell type. Using 

this simplistic algorithm, random walk simulation of millions of spins took only a few hours 

on an Intel Xeon 3.60 GHz processor and there were not any requirements for complex 

reconstruction of biological geometries.  

Accordingly, this method was applied to three-dimensional two-photon microscopy samples 

of the visual cortex previously reported in [55]. The samples had been labeled for nuclei 

(DNA) and cell-bodies (RNA). Glial cells tend to be rather small and dominated by their 
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nucleus and are therefore mainly identified by the nucleus stain. Neurons on the other hand, 

tend to have large cell bodies and are therefore identified by both labels occuring in 

conjunction. Other acquisition details were: number of slices 21, slice thickness 4.98 µm, 

FOV 369.40×369.40 µm2, and matrix 1024×1024. Extracellular, neuronal and glial voxels 

were filled 0, 1, and 2, respectively. Both glial and neuronal cells were ascribed with 

permeability values of 30 µms-1 and random walk of water molecules was simulated in these 

samples. 

Results 

Indirect geometry based diffusion simulation  

Figure 4 is a plot of D and K derived from the simulation of a few mixtures mixture of 

neurons, and glial cells mimicking layers II, and III of the visual cortex over varying 

diffusion times. The indirect geometry simulation method was used to reconstruct this 

geometry. For ADC, over diffusion times there is a near uniform ADC decrease for 

decreasing cell size and for increasing cell density (neuronal volume fraction, NVF). K better 

distinguishes cell sizes, especially for long diffusion times, where K increases with 

decreasing cell size. Over diffusion times there is a near uniform ADC decrease for 

decreasing cell size and for increasing cell density (neuronal volume fraction, NVF). K better 

distinguishes cell sizes, especially for long diffusion times, where K increases with 

decreasing cell size. Hence, higher diffusion times might help in better distinguishing 

neuronal cell sizes in pure grey matter voxels. However, kurtosis values are less variable with 

regards to neuronal volume fractions even if diffusion times are increased. Additionally, 

considering that apparent diffusion and kurtosis values are around 1-1.4 µm2ms-1 and 0.3-0.8, 

respectively, the use of low b-values (generally less than 2000 smm-2) is recommended to 

decrease biases in estimating time-dependent diffusion and kurtosis. This is in agreement 

with earlier recommendations [63, 64].  

ADC of myelinated or unmyelinated axons with different cell sizes or volume fractions close 

to deep layers of the cortex are shown in Fig. 5. There are clear decreases in ADC with 

increasing myelination (decreasing permeability), and increasing axon radii. ADC curves for 

different axon radii and axon densities are almost parallel; this indicates that in the 

investigated, clinically feasible, ranges of acquisition parameters, variations in diffusion 

times do not substantially help in better characterization of axons. However, shorter diffusion 

times are slightly better in distinguishing of axons with typical small radii. In case of ex vivo 
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acquisitions, there might be possibilities of using short diffusion times of less than 20 ms to 

improve axonal volume fractions and radii which has been indicated in [65, 66].  

It was observed that nearly all of the anisotropy in the cortex is caused by axons/dendrites 

and other cell structures such as neurons or glia have a negligible effect on anisotropy. 

However, this argument would not rule out that an anisotropic pattern of neuronal cells might 

have substantial impacts on the measured fractional anisotropy.  

Direct diffusion MRI simulation from microscopy 

Fig. 6 is the measured ADC and K from the direct diffusion simulation in the two-photon 

microscopy sample. These values are in agreement with the simulations of Fig. 3 which could 

be approximately ascribed to geometries of layers II, and III.  

Comparison with in vivo MRI  

There are several reports of parameters derived from diffusion-weighted imaging in the 

cortical grey matter in vivo, some of which are summarized in table 1. These values are in a 

broad agreement with the simulations results. 

Residence time measurements 

Figure 2 (b) gives the average residence time normalized to echo time for different starting 

positions from a single boundary with other boundaries being distant. This mimics the 

boundary of WM and GM or GM and CSF. Figure 2 (d) gives the average residence time 

normalized to echo time for different starting positions from two parallel boundaries. This 

mimics cortical layers where the boundaries are close. Figure 2 (f) gives the average 

residence time normalized to echo time for different starting positions in a 3D space 

surrounded by 6 plates (a voxel). It could be observed from the figures that with increasing 

diffusion coefficient in the tissue, and with increasing diffusion times water molecules reside 

less in their corresponding voxels or layers. In others words, water molecules near the 

boundaries keep bouncing back and forth in adjacent voxels or layers and the final MR signal 

is an average signal of them (partial volume effects). 

Accordingly, decreasing diffusion times would help in better distinguishing of cortical layers. 

For example, assuming Fig. 2 (b) is representative of two adjacent layers with one of the 

layers having ADC of 1.6 µm2ms-1. Partial volume effects or average residence times could 

be calculated by averaging residence times of each compartment at different starting positions 

in figures 2 (b,d) if diffusion times (tmax), layer thicknesses (dashed lines in Fig.’s 2 (b, d), 
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and tissue diffusion coefficients (D) are given a priori. For example, with a diffusion time of 

100ms, up to 14% of the signal from a 120 µm3 voxel at the boundary is from the adjacent 

layer. This layered partial volume effect would increase if longer diffusion times are used or 

if the layer is thinner. Additionally, there could be more partial volume effects for cortical 

layers (i.e. Fig. 2 (d)) where the same layer is adjacent to two layers, partial volume effects 

are around 30%. Additionally, these results could help in finding maximum feasible 

resolutions for each tissue type with regards to their characterisitc diffusion coefficient in 

addition to the discussions in [67].  

Discussion 

McHugh et al. [67] have recently set resolution limits for diffusion weighted MRI. These 

limits are derived considering that mathematical estimates of tissue microstructure from 

signal in voxels with ranges of 1 mm are highly prone to noise. They have suggested lower 

resolutions and instead higher SNR values to better estimate diffusion parameters 

(specifically cell radii). Additionally, here we give resolution and diffusion time limits 

derived on the basis of high exchange or partial volume effects. Our limits would help in 

better characterization of cortical layers from diffusion MR ex vivo. 

Fig. 4 is in agreement with previous studies [65, 66] stating that time-dependent diffusion 

measurements of axons with diameters of around 1 µm are sensitive to diffusion time at very 

short diffusion times (around a few milliseconds), whereas, for typically longer in vivo 

diffusion times of 40-100 ms changes in diffusion parameters vs. diffusion time are 

negligible. The same applies to simulations of grey matter [65]; however, at diffusion times 

of 40-60 ms more substantial variations in diffusion parameters relative to microstructural 

variations are observed compared to white matter. This might imply that considering the -s of 

clinical scanners, time-dependent diffusion measurements might more feasibly enable 

characterization of grey matter compared to white matter.  

The results here further validate some of the commonly accepted arguments about 

correlations between microstructural changes and diffusion-weighted MRI observations. The 

examples are increases in permeability of axons (demyelination), increases in cell sizes (with 

constant cell density and structure), and increases in the heterogeneity of the mixture which 

result in decreases in fractional anisotropy, increases in ADC, and increases in kurtosis, 

respectively [43, 57, 58]. However, these simulations do not serve as proof but cross-
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validation for such statements. Hence, care should always be taken when the aim is to 

estimate microstructural parameters from diffusion-weighted MRI [68].  

It has been discussed in [69] that since there are different cell types in each voxel in addition 

to intrusions from CSF or WM, extrapolating the parameters derived from dMRI to variations 

in specific biophysical parameters is somehow more formidable compared to other tissue 

types such as the brain. For example, FA has a high correlation with myelination in white 

matter whereas this correlation is very weak for the cortex.  

Jensen-Karger [57, 70] diffusion time-dependent kurtosis estimates could be used to derive 

rough estimates of MD and MK for two compartmental diffusion if diffusion times are long 

compared to residence times and also there is slow exchange between the compartments or 

permeability is low [38, 40]. Hence, it has been the trend of recent works by Lemberskiy et 

al. [71, 72] to keep the condition of long diffusion times (generally greater than 100 ms) in 

place and use stimulated echo acquisition mode (STEAM) diffusion MR and Jensen-Karger 

[57, 70] model to estimate time-dependent kurtosis. Alternatively, Monte Carlo simulations 

could be used to derive more degenerate and direct estimates of time-dependent kurtosis 

especially if the three required conditions for Jensen-Karger model are not met (i.e. there are 

more than two compartments, diffusion times are not long or there is high exchange). Monte 

Carlo simulations of Gilani et al. [38] is an example of bypassing the need to use numerous 

assumptions and equations [73] to estimate diffusion in a three compartmental tissue type 

such as the prostate when the diffusion times are not necessary long. Here, Fig. 4 (b) is one of 

similar Monte Carlo estimates of time-dependent kurtosis which interestingly is similar to the 

theoretical predictions of [57], however, this similarity could be by coincidence.  

This study could also find implications for selecting optimized b-values in a simulation or in 

a real acquisition. Dependent on the purpose of MR acquisition (i.e. to estimate cells density 

cell type fractions), more specific b-value optimizations could be performed. Previously, 

Palombo et al. [74] have shown that the Stick model for diffusion is more sensitive to radii of 

soma at low b-value regimes (1-3 msµm-2), whereas, for a constant soma radius of 5 µm and 

ultra high b-values (3-15 msµm-2), the volume fraction of soma is more effective on the 

signal. The simulations presented here combined with optimizations of [63] also confirm 

their recommendation of using low b-value regimes to estimate large cell bodies. Whereas, 

for modelling axonal microstructure or estimating axonal radii, the use of higher b-values is 

generally recommended [41, 75, 76].   
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Diffusion MR has shown success in better characterization of the laminar mesostructure of 

the cortex in recent years [29]. Aggarwal et al. [77] have measured layer specific FA values 

ex vivo for Brodmann areas 4, 9, 17, and 18 and have plotted them versus cortical depths. 

These plots have relatively small inter-subject variability but are variable for each of these 

areas. FA values are generally less than 0.2-0.25 in the cortex and are substantially variable 

for each layer. In addition to the well known compositional effects on FA, they have also 

raised the possibility that decreases in FA of some layers could be caused by having 

tangential and radial crossing fibres in a voxel. Creating different perspectives for the cortex 

by different means such as the creation of gyral coordinate system [78] might also help in 

discovering more of neglected explanations for variations in diffusion signal. 

We aimed here at quantifying the effects of variations in cortex composition and 

microstructure on changes in the diffusion signal. Simultaneous high-resolution MRI and 

light microscopy data will help in finding correlations between these; however, simulations 

could make them more specific. We did not confirm nor reject specificity of models such as 

NODDI or Stick model for diffusion. These models could be further investigated for the 

precision of model fitting either using Cramér-Rao lower bound such as in [79-81], finding 

the systematic biases in parameter estimations dependent on maximum b-values [63], missing 

analysis regarding how separate the compartments (if exchange rates are low) [43], or more 

in terms of how the models have been derived [82].  

There were a few shortcomings for this work which might be alleviated in future work. First, 

simultaneous staining axons and neurons, glia, or in general all of the cortical matter 

microstructure would have been better for direct Monte Carlo simulations. While such 

staining is feasible for thin layers, it becomes challenging to thick layers of a few hundreds of 

micrometres which are more helpful for direct Monte Carlo simulations of diffusion. 

Second, STEAM has recently been found applicable to such genre of studies in vivo or ex 

vivo [71, 83]. Simulating STEAM diffusion MRI is not inherently much more complex than 

PGSE and has been performed in [41]. Additionally, here we aimed at comparing the 

simulation results with abundantly available in vivo instead of ex vivo MRI data. This is 

because there are many differences between ex vivo and in vivo MRI such as fixation effects, 

temperature differences, etc. that makes direct extrapolation of ex vivo measurements to the 

analysis of in vivo MRI data a formidable task; this has been discussed for the prostate in 

[38] and for the brain in [39]. 
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Simplified diffusion simulations in mathematically reconstructed geometries, or alternatively 

the novel direct simulations from microscopy might help in better microstructural 

characterization of diseases. Monte Carlo simulation of diffusion in these reconstructed 

geometries would help in improving our understanding of the physics of diffusion in each 

tissue type, and to better investigate existing models [82, 84]. Additionally, direct simulation 

of diffusion in different cortical areas if averaged for many samples would enable the creation 

of a library or dictionary [85] of direct diffusion simulation in the brain. 

There might be a number of recent works with similar goals, this study however has some 

improvements such as successful simulation of permeability  instead of assuming all micro-

structural walls are impermeable compared to [86] or lack of requirement any complex 

mathematical and time-consuming construction of microstructure such as in [61] and instead 

direct simulation of microstructure from light microscopy data. Additionally, the work migh 

help in improving dMRI characterization of cortical layers (such as in [29]) or set additional 

resolution and diffusion time limits to better estimate microstructure from diffusion MRI 

from different perspectives following the work by McHugh et al. [67].  
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Tables 

Table 1. Diffusion-weighted measurements of the cortex from the literature. 
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Figure Captions 

Fig. 1 Layered myelo- and cytostructure of the cortical matter from [87, 88] under the terms 

of the Creative Commons Attribution License (CC BY, 

https://creativecommons.org/licenses/by/4.0/). Roman and Arabic numbers are for 

cytoarchitectonic and myeloachitectonic layers, respectively.  

Fig. 2 Residence time simulations in two mediums (WM and GM) separated by one plate (a) 

and (b), three mediums (cortical layers) separated by two plates (c) and (d), and inside 

a voxel (e) and (f).  Notes: the dashed lines in (b) and (d) are x of the planes. For (b-f) 

all of the plates were either located at -5.27 or 5.27 /(Dtmax)
0.5 

Fig. 3 A 3D rendering of the 3D microscopy volume, with nucleus label in blue and 

cytoplasmic cell body label in green (a). Segmented areas of a neuron (b) and a glia 

(c) and the ellipsoids fitted to them. On average neurons were best described by 

spheres with radii of 12.0±4.6 and glia by ellipsoids with axes 2.73±0.63, 2.73±0.63, 

8.98±1.77 µm in the visual cortex with N=50. Note: resolution and slice thickness of 

microscopy were 0.36×0.36 µm2, and 4.98 µm, respectively. 

Fig. 4 ADC (a) and kurtosis (b) of the simulated neuronal/glial mixture with variable neuron 

volume fractions (vn) and neuron radii (NR), for constant glial volume fraction, for 

diffusion times of 40-100 ms, with the indirect geometry based simulation method. 

Glial sizes were the same as Fig. 1 and their volume fraction was 0.03-0.07. 

Fig. 5 ADC simulated myelinated (a) and unmyelinated (b) axons with variable axonal 

volume fractions (AXV) and axon radii (r), in absence of cell bodies, for diffusion 

times of 40-100 ms, with the indirect geometry based simulation method. 

Fig. 6 Direct simulations of (a) ADC and (b) K in a TPM microscopy sample of the visual 

cortex. 
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Table 1. Diffusion weighted measurements of the cortex from the literature. 

Study Tissue type Scanner(s) b-values 

/smm-2 

Other details ADC 

/µm2ms-1 

K 

Rocca et al. [30] Gray matter 3 T Intera Philips  

 

0, 1000 

32 directions 

TE=80 

Fat suppression 

1.00 (±0.05) 

 

- 

Rocca et al. [30] White matter 3 T Intera Philips  

 

0, 1000 

32 directions 

TE=80 

Fat suppression 

0.79 (±0.07) 

 

- 

Van Cauter et al. [31] 

 

Gray matter 3 T Achieva Philips 0, 700, 1000, 2800  

25, 40, 75 directions, respectively 

Δ= 48, δ=20 

TE=90 

0.99 (0.93-1.06) 0.85 (0.80-

0.87) 

Van Cauter et al. [31] 

 

White matter 3 T Achieva Philips 0, 700, 1000, 2800  

25, 40, 75 directions, respectively 

Δ= 48, δ=20 

TE=90 

1.03 (0.65-1.12) 0.86 (0.76-

0.93) 

Fox et al. [32] Deep gray matter 3 T Trio Siemens,  

3 T Signa GE  

0, 1000 

33 directions 

TE=94, or 100 Around 0.7 (±0.1) - 

Fox et al. [32] Cortical gray matter 3 T Trio Siemens,  

3 T Signa GE  

0, 1000 

33 directions 

TE=94, or 100 Around 1.15 

(±0.3) 

- 

Fox et al. [32] Deep white matter 3 T Trio Siemens,  

3 T Signa GE  

0, 1000 

33 directions 

TE=94, or 100 Around  0.75 

(±0.2) 

 

MC simulations* LII, LIII 

(Neuron and glia only) 

- 0-2500 (15 equally distanced b-

values), 18 directions 

TTD=40-100 ms 

Mathematically reconstructed 

geometry 

1.08 (0.77-1.38) 0.60 (0.34-

1.04) 

MC simulations* LII, LIII 

(Neuron and glia only) 

- 0-2500 (15 equally distanced b-

values), 18 directions 

TTD=40-100 ms 

Geometry from Microscopy 

1.25 (1.20-1.30) 0.14(0.10-0.18) 

MC simulations LIV, LV 

(Neuron, glia, axon) 

- 0-2500 (15 equally distanced b-

values), 18 directions 

TTD=40-100 ms 

Mathematically reconstructed 

geometry 

1.05 (0.87-1.46) 0.66 (0.26-

0.84) 

MC simulations* Deep white matter 

(Axon only) 

- 0-2500 (15 equally distanced b-

values), 18 directions 

TTD=40-100 ms 

Mathematically reconstructed 

geometry 

0.85 (0.75-1.01) 0.95(0.84-1.05) 

*The simulations were performed for all of the cell diameters and densities mentioned in the text. 
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