Effects of siRNA silencing on the susceptibility of t	of the
---	--------

- ² fish cell line CHSE-214 to Yersinia ruckeri
- 3
- 4 **Running page head:** siRNA silencing vs *Y. ruckeri*
- 5
- ⁶ Authors: Simon Menanteau-Ledouble^{1#}, Oskar Schachner¹, Mark L.

7 Lawrence², Mansour El-Matbouli¹

- ⁸ ¹ Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna,
- 9 Austria
- ¹⁰ ² College of Veterinary Medicine, Mississippi State University, Mississippi State,

- 12
- 13 **Postal addresses:** Clinical Division of Fish Medicine, University of Veterinary
- 14 Medicine, Veterinärplatz 1, 1210 Vienna, Austria
- ¹⁵ **# Corresponding Author:** Dr. Simon Menanteau-Ledouble
- 16 Email Address: menanteaus@staff.vetmeduni.ac.at
- 17 **Tel. No**.: +431250775151
- 18 **Fax No**.: +431250775192
- 19
- 20 Additional email addresses:
- 21 M. El-Matbouli: <u>mansour.el-matbouli@staff.vetmeduni.ac.at</u>
- 22 M. L. Lawrence: <u>lawrence@cvm.msstate.edu</u>
- 23 O. Schachner : <u>i107pc03@staff.vetmeduni.ac.at</u>

¹¹ Mississippi, USA

24

25 Abstract

26 Bacterial pathogens are known to co-opt mechanisms of the host cells' physiology to gain intracellular entrance. Among the facultative intracellular bacteria is Yersinia 27 28 ruckeri, an enterobacterium mostly known as the causative agent of enteric redmouth disease in salmonid fish. In the present study, we applied RNA inhibition to silence 29 twenty pre-selected genes on the genome of a fish cell line (CHSE-214) followed by 30 a gentamycin assay to quantify the effect of this silencing on the susceptibility of the 31 32 cells to infection. It was found that silencing of 16 out of 20 genes significantly reduced the number of *Y. ruckeri* recovered at the end of the gentamycin assay. 33 34 Among the genes with the strongest impact were Rab1A, actin and Rac1, which is consistent with our previous findings that N-acetylcysteine, a chemical inhibitor of 35 Rac1, completely prevented invasion of cells by Y. ruckeri. Conversely, silencing of 36 the Rho GTPase activating protein had no statistically significant effect, possibly 37 because Y. ruckeri, like some other members of the Yersinia genus is able to activate 38 Rho GTPase directly. Similarly, the effect of silencing E-cadherin was not statistically 39 significant, suggesting that this might not be a target for the adhesion molecules of Y. 40 41 ruckeri. Taken together, these findings improve our understanding of the infection 42 process by Y. ruckeri and of the interactions between this bacterial pathogen and host cells. 43

44

45 **Importance**

Intracellular invasiveness is a mean for bacterial pathogen to gain shelter from the
immune system as well as access nutrients. The enterobacterium *Y. ruckeri* is well

48 characterised as a facultative intracellular pathogen. However, the mechanisms of

⁴⁹ invasion scrutiny. Investigations have mostly focused on the bacterial virulence rather

- ⁵⁰ than on the host's mechanisms hicjacked during invasion. The present findings
- 51 therefore allow us to better understand the interaction between this important
- 52 potentially zoonotic pathogen of fish and host cells in vitro.
- 53

54 Keywords

55 Bacterial invasion, Gentamycin assay, Rac1, Rab1A, Actin, Oncorhynchus

56 tshawytscha

57

58 Introduction

The enterobacterium Yersinia ruckeri is a major fish pathogen world-wide; and has 59 mostly been studied has the causative agent of enteric red-mouth disease in 60 salmonid fish (1, 2). It is associated with acute outbreaks, especially in younger fish, 61 and causes septicaemia and haemorrhages leading to high levels of mortality in 62 infected fish (1–3), especially at temperature between 18 and 20°C. The bacterium 63 64 has zoonotic potential and has been associated with topical infections in humans (4). Like several other enterobacteriaceae including other members of the genus 65 Yersinia, Y. ruckeri has demonstrated the ability to survive within macrophages (5) as 66 well as invade non-professional phagocytic cells (6, 7). This likely allows the access 67 to some restricted nutrients and protects it from the immune system, moreover it 68 69 might play a role in the bacterium's crossing of epithelial membranes as known from 70 other members of the genus Yersinia (8).

71 Two main mechanisms of entry have been described in bacteria, and both are present in Enterobacteriaceae. In the trigger mechanisms, effector proteins secreted 72 73 through the type three and type four secretion system (T3SS and T4SS) interact with regulatory proteins, in particular members of the Rho family (RhoGTPases Rac, 74 Cdc42 or RhoG) (9). This leads to a rearrangement of the cytoskeleton of the host 75 cells resulting in the uptake of the bacterium (10, 11). Interestingly, while Y. pestis is 76 known to harbour a T3SS and some of its effector proteins have been shown to 77 target the cytoskeleton and actin filaments. However, these effectors seem to play a 78 79 role in preventing phagocytosis by professional phagocytic cells rather than to 80 promote intracellular invasion (12). However, the T3SS of Y. ruckeri actually belongs 81 to the Ysa family of T3SS, a different family than the one present in Y. pestis. It could therefore play a different role in the virulence of Y. ruckeri. Indeed, Ysa is more 82 homologous to the T3SS carried on the Salmonella pathogenicity island 1 (SPI-1) of 83 84 Salmonella enterica (13, 14). Among the proteins carried on the SPI-1 is the chaperon Invasion protein B (InvB) and the SPI-1 is known to play a role in the 85 intracellular invasion of S. enterica (15, 16) so the Ysa of Y. ruckeri could plausibly be 86 involved in intracellular invasion of Y. ruckeri. However, our knowledge of the Ysa 87 T3SS, and that of Y. ruckeri in particular is still incomplete (17) and no conclusion is 88 currently possible. 89

The other most studied mechanism of entry is the zipper mechanism that is considered as the main mechanism of entry for bacteria belonging to the genus *Yersinia.* It is initiated by the binding of the bacteria to specific molecules on the cell membrane. For example, in *Y. pestis*, the attachment-invasion locus (ail) of *Yersinia pestis* is a 17.5 kDa outer membrane protein that plays multiple roles in virulence (18), including a minor role in binding to fibronectin (12, 19, 20). Similarly, the

96	Plasminogen activator (Pla) has been shown to have adhesive property for laminin
97	(21) and likely moonlights as an adhesion factor. In Y. pseudotuberculosis and Y.
98	enterocolitica, the membrane proteins invasin (Inv) and Yersinia adhesin A (YadA)
99	interact with integrin receptors (22). Interactions of the bacteria with the cell surface
100	receptors lead to the recruitment of more receptors, activation of Rac1 and
101	cytoskeletal rearrangement culminating in the uptake of the bacterium (23).
102	An important feature of both invasion mechanisms is that they require active
103	uptake of the bacterium by the cell and it is possible to prevent host cells from
104	internalising the bacteria, for example by treating them with chemical blockers (24).
105	This is for example the case for Y. ruckeri and several chemical blockers have been
106	shown to prevent bacterial invasion (6, 7).
107	Beside chemical blockers, silencing of the genes involved with internalisation has
108	also been shown to have inhibitory effects. For example, a screening was performed
109	using 23300 dsRNA to silence over 95% of the annotated genes on the genome of
110	drosophila. This allowed to identify 305 genes whose inhibition interfered with the
111	ability of Listeria monocytogenes to invade cell cultures of drosophila SL2 cells and
112	86 genes necessary for invasion by Mycobacterium fortuitum (25, 26). Interestingly,
113	a screening by Kumar et al. (27) on 18,174 genes from the genome of human
114	macrophages identified no less than 270 molecules whose silencing affected the load
115	of seven different field isolates of Mycobacterium tuberculosis within human
116	macrophages (27). Among these, 74 proteins were involved in the intracellular
117	survival of every isolate tested and over half of the genes identified played a role in
118	the regulation of autophagy, suggesting that this process was central in controlling
119	intracellular <i>M. tuberculosis</i> . Conversely, when Thornbrough et al. applied a
120	gentamicin assay to investigate the effect of a siRNA library targeting approximately

121 22.000 genes, they found that a larger variety of genes were involved in the

intracellular survival of Salmonella enterica serovar Typhimurium within the human

- epithelial cell line MCF-7 (28). Among the 252 genes whose silencing reduced the
- survival of *S. enterica Typhimurium* more significantly were SEC22A, Rab1B and
- 125 VPS33B that were involved in vesicle trafficking as well as ATP6VOD1, an ATPase
- involved in vacuole acidification and the iron transporter FTHL17. Nonetheless, the
- authors noted a significant overlap between their findings and that reported by Kumar
- *et al.* for *M. tuberculosis* (27) suggesting that many of these targets are well

conserved even between very evolutionary distant bacteria.

- 130 In the present study, we aimed to produce siRNA to silence 20 genes selected
- because they are commonly associated with the intracellular survival of bacteria. The
- 132 fish cell line CHSE-214 was used and the effect of this silencing on the susceptibility
- of the cells to intracellular invasion by the facultative intracellular fish pathogen Y.
- *ruckeri* was investigated using a gentamicin assay.
- 135

136 Results and Discussion

137 Several notable genes were found to be necessary for the intracellular

invasion process: Silencing of every one of these genes resulted in reduction of the
number of bacteria recovered from Chinook Salmon Embryo (CHSE-214) cells at the
end of the assay; however, this reduction was only statistically significant in 16 out of
20 genes (Table 1).

- Among the genes whose silencing had the strongest effect were the protein kinase
- 143 C, a regulatory protein overseeing a large number of varied functions, including
- signal transduction as well as the expression of the cytoplasmic tyrosine kinase,
- ¹⁴⁵ Focal Adhesion Kinase (FAK) and actin rearrangement (29). Previously, protein

kinase C activity has shown an inverse correlation with the uptake of L. 146 147 monocytogenes by J774, a cell line of murine macrophage, as well as a positive correlation with the escape of these bacteria from the macrophages endosomes (30). 148 Enteropathogenic Escherichia coli is also known to recruit protein kinase C to the 149 membrane of HeLa as well as the colon carcinoma cell line T84 (31) and more 150 recently, it has been shown that protein kinase C recruitment in lipid rafts was 151 152 induced by Enterohemorrhagic *E. coli* O157:H7. In the present study, silencing of the gene encoding for protein kinase C resulted in a strong decrease of the cell 153 154 susceptibility to bacterial infection (P=0.000). 155 Another important gene was the Ras related protein Rab1A. The Rab family 156 constitute a subset of the Ras superfamily of proteins which are small GTPase acting together as network involved in the regulation of vesicular transport (32). In humans, 157 more than 60 members of the Rab family have been identified (32) and about 52 in 158 159 the channel catfish (*Ictalurus punctatus*), although no census of Rab proteins has yet been conducted for salmonid fish (33). Rab1A specifically is required for the 160 microtubule-based motility of murine endocytic vesicles (34) and silencing of Rab1b 161 was shown to lead to a reduced growth of S. enterica Typhimurium within MCF-7 162 cells (28). 163 Equilibrative nucleoside transporter 1 is a member of a well conserved family of 164 transmembrane proteins and silencing of the corresponding gene was found in the 165 present study to significantly decrease intracellular bacterial survival and 166 multiplication (P = 0.000). Pathogenic intracellular bacteria are known to scavenge 167

nucleotide from their environment and therefore, this difference could be explained by

a reduction in the nutrients available to the bacterium (35).

170	Another molecule whose silencing had a significant effect oncell sensitivity to
171	infection (P = 0.000) was the precursor for integrin β -1. Integrins are trans-membrane
172	receptors and their role in cell adhesion to the extra-cellular matrix is well known.
173	Moreover, integrins β -1 have been well studied as target of the adhesin molecules of
174	Yersinia sp., including Y. pseudotuberculosis (36) and Y. enterocolitica (37). As such,
175	they play a central role in the use of the zipper mechanisms by these bacteria to gain
176	intracellular entry. The finding that this target is also important for Y. ruckeri suggests
177	that this bacterium might gain intracellular entry through the zipper mechanism
178	targeting of integrin β , in a manner reminiscent of that of Y. pseudotuberculosis and
179	Y. enterocolitica.
180	Similarly, silencing of the actin gene also had a very notable effect (P = 0.000).
181	Because actin is such a central component of the cytoskeleton and because of the
182	critical role of the cytoskeleton in both the trigger and zipper mechanism (11), this
183	finding was not unexpected.
184	Finally, another molecule of importance was Ras-related C3 botulinum toxin
185	substrate 1 (Rac1). It is a member of the Rho family of GTPases and plays a central
186	role regulating cytoskeleton rearrangement. It has previously been involved in
187	intracellular invasion of the enterobacteriaceae Salmonella typhimurium (38, 39) and
188	is targeted by the effector protein IpgB1 of Shigella (40). Among Yersinia spp., the
189	picture is more complex as Rac1 is inactivated by the T3SS effector protein YopE
190	expressed among others by Y. pseudotuberculosis (41) and Y. enterocolitica (42).
191	Notably, this Rac1 suppressive activity is most likely to hinder phagocytosis mediated
192	killing (43) while intracellular invasion with the zipper pathway relies on the CDC42-
193	independent activation of Rac1 (44). Moreover; in a previous experiment, we

194 investigated the effect of multiple chemical and found out that the inhibitor of Rac1 Nacetylcysteine completely inhibited entrance of Y. ruckeri into CHSE-214 cells (6). 195 Conversely, several genes were identified for which silencing did not result 196 in a statistically significant decrease of the cells' sensitivity to infection. Among 197 these genes were the Rho GTPase-activating protein (P = 0.795). Rho GTPases act 198 as regulator and facilitator for the activity of Rho-GTPase molecules such as Rac1 199 and CDC42. Several virulence factors of enterobacteriaceae are known to activate 200 Rho GTPase enzymes directly (45), bypassing RhoGTPase activating proteins in a 201 202 manner consistent with the present findings. An example of such a protein is the 203 cytolytic necrotising factor (CNFy) of Y. pseudotuberculosis (46). Interestingly, a 204 segment of the Y. ruckeri's genome is homologous to a section of the gene encoding 205 for Y. pseudotuberculosis' CNFy but it is not currently known if this molecule is active in Y. ruckeri. 206 207 Another protein whose silencing did not result in a significant reduction of sensitivity to infection was E-cadherin (P = 0.722). E-cadherin acts as the receptor for 208 Internalin used by Listeria. monocytogenes (47). However, members of the Yersinia 209 genus tend to use different surface receptors such as integrins (22). If E-cadherin is 210 211 not a target of Y. ruckeri's adhesion molecules, then it would be expected that silencing of the corresponding gene would not result in any significant change 212 susceptibility to intracellular invasion. 213 214 The next gene whose silencing had no significant effect on the bacterial invasion 215 was the caspase I precursor (P = 0.962). Caspases take part in the cellular immune

response and play an important role in regulating apoptosis (48). Caspase I is known

to be inhibited by the YopJ effector molecule of Y. pestis (49).

218 Finally, the last gene whose silencing had no statistically significant effect was the cyclin D1. Cyclin D1 regulates cellular proliferation (50) and its expression is known 219 220 to be affected by intracellular invasion of Streptococcus pyogenes (51). However, there is no evidence suggesting it might play a role in the intracellular invasion of 221 Gram-negative bacteria. Moreover, cyclin D1 is most expressed during the G1 phase 222 223 of the cell life cycle (50). As our cells were confluent at the time of the intracellular 224 invasion procedure, it is expected that the expression of cyclin D1 was lowered even in the absence of RNA inhibition. 225 226 To summarise, we used RNAi to silence 20 selected genes on the genome of 227 CHSE-214 cells. Silencing of 15 of these genes resulted in a significantly reduced 228 susceptibility to invasion of Y. ruckeri. The results of this study contribute to our 229 understanding of the invasion mechanisms in this important fish pathogen.

230

231 Materials and methods

Gene selection and design of the siRNA sequences. Twenty genes were 232 233 selected based on literature and the fact that homologs of these genes have been implicated in the intracellular invasion of other bacterial pathogens. The selection 234 235 included genes commonly involved in invasion by bacterial pathogens, including surface integrins as such molecules are often targeted by the invasin molecules 236 237 expressed by other Yersiniaceae (52–54). Other genes were cytoskeletal molecules and genes involved in vacuolar trafficking and maturation (27, 28) as well as agents 238 of the cytoskeletal apparatus as this plays a central part in the internalization of 239 240 bacteria through both the zipper and trigger mechanisms (55). The selection also included genes and pathways shared by L. monocytogenes, M. tuberculosis as well 241 as S. typhimurium (25–28). As these pathways were used by such diverse facultative 242

243 intracellular pathogens, they might also be involved in the intracellular invasion of Y. 244 ruckeri. After selection of the genes, sequences for the siRNAs were designed by Ambion Life Technology using the Silencer Select siRNA design algorithm. For the 245 genes for which no Oncorhynchus tshawytscha sequences were available, 246 sequences from other members of the Oncorhynchus genomes were used instead. 247 Upon reception, the siRNAs were resuspended to 20 µM and stored at -20°C until 248 use, according to the manufacturer's instruction. 249 siRNA transfection was performed based on the manufacturer's guidelines. 250 251 This study made use of CHSE-214 cells. The identity of this cell line derived from 252 Chinook Salmon Embryo has been confirmed by PCR and sequencing and their 253 suitability for gentamycin assay has been confirmed before (6). CHSE-214 cells were grown in 24 well plates at 20°C supplied with 1250 µl Minimum Essential Medium 254 (MEM-glutaMAX[™], Gibco) containing 2% FBS, where they reached about 80% 255 256 confluence one day after seeding. On the day of the assay, 8 µl of the siRNA solution was added to 400 µl of Opti-257 MEM medium (Gibco). At the same time, 72 µl of RNAiMax lipofectamine reagent 258 (Sigma Aldrich) was diluted in 1200 µl of Opti-MEM medium. The two solutions were 259 mixed together and incubated 5 minutes at room temperature. Afterwards, the culture 260 261 medium on top of two adjacent rows of the 24 wells (either rows 3 and 4 or 5 and 6; 8

- ²⁶³ fresh MEM-Glutamax medium was added.

262

In each plate, as negative control, cells from the 8 wells in column 1 and 2 were
 processed in the same manner but without the siRNA, serving.

wells in total) was replaced with 50 µl of the solution and, after 20 minutes, 450 µl of

The cells were then incubated at 20°C and due to the temperature lower than other cell lines commonly used for transfection, incubation time was extended to three days.

Bacterial invasion assay. The gentamycin assay was performed as previously 269 described (6). Briefly, Y. ruckeri ATCC 29473 was cultivated overnight in brain heart 270 infusion (BHI, Oxoid). Optical density of the culture was assessed by 271 spectrophotometry and adjusted to an optical density of 0.5 at 600 nm. The bacteria 272 were pelleted down by centrifugation at 3220 g and 20°C (in an Eppendorf Centrifuge 273 274 5810 R) before being resuspended in 10 times the original volume of MEM-275 Glutamax. Then, the culture medium in the wells 1A-C, 3 A-C and 5 A-C was 276 replaced by this bacterial solution (for clarity, the plate loading plan is illustrated on Fig. 1) and the bacteria were left to interact with the cells for five hours at room 277 temperature. In the wells 1D, 3D and 5D, the medium was replaced by fresh MEM-278 279 glutamax without bacteria. After that time, the medium was removed, the cells were washed three times with PBS and a fresh volume of MEM-glutamax, supplemented 280 with the antibiotic gentamycin (Sigma-Aldrich) at a concentration of 100 μ g.ml⁻¹ was 281 added to the wells. The antibiotic was left to act for four hours. Afterwards the cells 282 were washed twice with PBS before replacing the medium supplemented with 1% 283 Triton-X (Sigma-Aldrich). After 10 minutes of exposure to the detergent, the cells 284 were triturated with a micropipette and serially diluted from 10^{-1} to 10^{-4} before being 285 286 plated onto Brain heart infusion agar (BHIA, Oxoid). Each of the three wells 287 represented a biological replicate and each dilution was plated in technical 288 guadriplicates, meaning that 48 plates were inoculated for each siRNA. The agar 289 plates were incubated at 22°C until clear colonies were visible and counted (generally 290 after 48 hours). The corresponding average CFU per ml value was then calculated.

To minimise the effect of the variation between cell and bacterial culture, these values were always compared to that of the control CHSE-214 cells from the same plate (Fig 1).

Controls. For each siRNA, in the 24 well plate the cells of number 1D, 3D and 5D 294 were left un-inoculated then lysed and plated to act as a negative control and detect 295 296 any contamination of the reagents while the cells in 2D, 4D and 6D were exposed 297 tested using a trypan blue assay. Briefly, the cells were washed three times in PBS, then 0.2% Trypan Blue (0.4% diluted 1:1 in PBS) was added. The cells were stained 298 299 for 1 minutes prior to fixation with 4% formalin for 10 minutes Afterwards they were 300 rinsed several times until any trace of blue dye had disappeared. The plates were 301 kept at 4°C until quantification of the cells using an inverted microscope (Leica DM 302 IRB). One hundred cells were counted and the number of blue stained cells among them was recorded. The procedure was repeated 4 more times for each culture unit 303 304 to result in 5 percentage values for each siRNA. These were then compared to the survival of the control cells without siRNA to confirm that the silencing procedure did 305 not have a toxic effect. In no instances did these numbers differ significantly from that 306 of the control. 307

Finally, the cells in the wells 2A-C, 4A-C and 5A-C were lysed in buffer RLT (Qiagen). The cell solution/suspension? was homogenised using QIAshredder columns (Qiagen) and centrifugation at 145000 RPM for two minutes at room temperature using MiniSpin tabletop centrifuge (Eppendorf). Afterwards, the RNA were extracted using the Rneasy mini kit (Qiagen) according to the manufacturer's handbook. The RNA were immediately quantified using a Nanodrop machine (ThermoFisher) and cDNA were immediately synthesised using Iscript kits (Bio-Rad)

according to the manufacturer's instructions in a C1000 Touch thermocycler (Bio-

Rad). Resulting cDNAs were stored at 4°C until use.

317	RTqPCRs. The primer sequences used for confirmation of silencing are listed in
318	Table 2. Primers for ubiquitin and elongation factor 1-alpha designed by Peña et al.
319	(56) were used for the housekeeping reference genes, as these authors found them
320	among the most suitable when working with CHSE-214.
321	Genomic DNA was extracted from CHSE-214 cells using the DNeasy kit (Qiagen)
322	according to the manufacturer's instructions. End point PCR was performed using
323	these primers to confirm the optimal annealing temperature, afterwards the PCR
324	products were purified with a QIAquick gel purification kit (Qiagen). The products'
325	concentration were measured using a nanodrop, then adjusted to 10 ng. μ l ⁻¹ .
326	Afterwards, serial dilution was performed to produce concentrations ranging from 10 ⁻¹
327	to 10^{-4} ng.µl ⁻¹ . qPCRs were then performed on these serial dilutions as well as the
328	cDNA produced as described in the previous section. Relative gene expression
329	levels of the silenced genes were calculated using the $2^{-\Delta\Delta Ct}$ method (57) to confirm
330	the efficacy of the silencing. The serial dilutions were used to calculate the R^2 and
331	efficiency of the qPCRs and confirm that these were above 0.9 and between 95 and
332	100% respectively for every qPCR.

333

334 Acknowledgments

This research was financed by the Austrian Science Funds (Fonds zur Förderung der wissenschaftlichen Forschung), project P28837-B22. This funding body played no role in the design of the study or interpretation of data.

339 **References**

- Kumar G, Menanteau-Ledouble S, Saleh M, El-Matbouli M. 2015. Yersinia
 ruckeri, the causative agent of enteric redmouth disease in fish. Vet Res
 46:103.
 Barnes AC. 2011. Enteric redmouth disease (ERM) (*Yersinia ruckeri*), p. 484–
- 511. *In* Fish diseases and disorders. Volume 3: viral, bacterial and fungal
 infections. CABI, Wallingford.
- 346 3. Roberts RJ. 2012. The Bacteriology of Teleosts, p. 339–382. *In* Roberts, RJ

347 (ed.), Fish Pathology, 4th ed. Wiley-Blackwell, London.

- 348 4. De Keukeleire S, De Bel A, Jansen Y, Janssens M, Wauters G, Piérard D.
- 2014. *Yersinia ruckeri*, an unusual microorganism isolated from a human
 wound infection. New microbes new Infect 2:134–5.
- 5. Ryckaert J, Bossier P, D'Herde K, Diez-Fraile A, Sorgeloos P, Haesebrouck F,
- Pasmans F. 2010. Persistence of *Yersinia ruckeri* in trout macrophages. Fish
 Shellfish Immunol 29:648–655.
- Menanteau-Ledouble S, Lawrence MLML, El-Matbouli M. 2018. Invasion and
 replication of *Yersinia ruckeri* in fish cell cultures. BMC Vet Res 14:81.
- 356 7. Tobback E, Decostere A, Hermans K, Van den Broeck W, Haesebrouck F,
- 357 Chiers K. 2010. In vitro markers for virulence in *Yersinia ruckeri*. J Fish Dis 358 33:197–209.
- 8. Reis RS dos DOS, Horn F. 2010. Enteropathogenic Escherichia coli,
- Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions
 in enteric diseases. Gut Pathog 2:8.
- Chung CY, Lee S, Briscoe C, Ellsworth C, Firtel RA. 2000. Role of Rac in
 controlling the actin cytoskeleton and chemotaxis in motile cells. Proc Natl

Acad Sci U S A 97:5225–30.

365	10.	O Cróinín T, Backert S. 2012. Host epithelial cell invasion by Campylobacter
366		jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol 2:25.
367	11.	Cossart P, Sansonetti PJ. 2004. Bacterial Invasion: The Paradigms of
368		Enteroinvasive Pathogens. Science (80-) 304:242–248.
369	12.	Ke Y, Chen Z, Yang R. 2013. Yersinia pestis: mechanisms of entry into and
370		resistance to the host cell. Front Cell Infect Microbiol 3:106.
371	13.	Liu T, Wang K-Y, Wang J, Chen D-F, Huang X-L, Ouyang P, Geng Y, He Y,
372		Zhou Y, Min J. 2016. Genome Sequence of the Fish Pathogen Yersinia ruckeri
373		SC09 Provides Insights into Niche Adaptation and Pathogenic Mechanism. Int
374		J Mol Sci 17:557.
375	14.	Wang K, Liu T, Wang J, Chen D, Wu X, Jiang J, Liu J. 2015. Complete
376		Genome Sequence of the Fish Pathogen Yersinia ruckeri Strain SC09, Isolated
377		from Diseased Ictalurus punctatus in China. Genome Announc 3:e01327-14.
378	15.	Bronstein PA, Miao EA, Miller SI. 2000. InvB Is a Type III Secretion Chaperone
379		Specific for SspA. J Bacteriol 182:6638–6644.
380	16.	Ehrbar K, Friebel A, Miller SI, Hardt W-D. 2003. Role of the Salmonella
381		pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and
382		SopE2, two Salmonella effector proteins encoded outside of SPI-1. J Bacteriol
383		185:6950–67.
384	17.	Guijarro JA, García-Torrico AI, Cascales D, Méndez J. 2018. The Infection
385		Process of Yersinia ruckeri: Reviewing the Pieces of the Jigsaw Puzzle. Front
386		Cell Infect Microbiol 8:1–10.
387	18.	Kolodziejek AM, Hovde CJ, Minnich SA. 2012. Yersinia pestis Ail: multiple roles
388		of a single protein. Front Cell Infect Microbiol 2:1–10.

389	19.	Tsang TM, Felek S, Krukonis ES. 2010. Ail binding to fibronectin facilitates
390		Yersinia pestis binding to host cells and Yop delivery. Infect Immun 78:3358–
391		68.
392	20.	Leo JC, Skurnik M. 2011. Adhesins of Human Pathogens from the Genus
393		Yersinia, p. 1–15. In Linke, D, Goldman, A (eds.), Bacterial Adhesion. Springer
394		Netherlands, Dordrecht.
395	21.	Lobo LA. 2006. Adhesive properties of the purified plasminogen activator Pla of
396		Yersinia pestis. FEMS Microbiol Lett 262:158–162.
397	22.	Grassl GA, Bohn E, Müller Y, Bühler OT, Autenrieth IB. 2003. Interaction of
398		Yersinia enterocolitica with epithelial cells: invasin beyond invasion. Int J Med
399		Microbiol 293:41–54.
400	23.	Ribet D, Cossart P. 2015. How bacterial pathogens colonize their hosts and
401		invade deeper tissues. Microbes Infect 17:173–83.
402	24.	Rox K, Rohde M, Chhatwal GS, Müller R. 2017. Disorazoles Block Group A
403		Streptococcal Invasion into Epithelial Cells Via Interference with the Host
404		Factor Ezrin. Cell Chem Biol 24:159–170.
405	25.	Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, Higgins DE. 2005.
406		Genome-Wide RNAi Screen for Host Factors Required for Intracellular
407		Bacterial Infection. Science (80-) 309:1248–1251.
408	26.	Philips J a, Rubin EJ, Perrimon N. 2005. Drosophila RNAi screen reveals CD36
409		family member required for mycobacterial infection. Science (80-) 309:1251–3.
410	27.	Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KVS. 2010.
411		Genome-wide analysis of the host intracellular network that regulates survival
412		of Mycobacterium tuberculosis. Cell 140:731–43.
413	28.	Thornbrough JM, Hundley T, Valdivia R, Worley MJ. 2012. Human Genome-

414		Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella			
415		Growth. PLoS One 7:e38097.			
416	29.	Sukumaran SK, Prasadarao N V. 2002. Regulation of Protein Kinase C in			
417		Escherichia coli K1 Invasion of Human Brain Microvascular Endothelial Cells. J			
418		Biol Chem 277:12253–12262.			
419	30.	Wadsworth SJ, Goldfine H. 2002. Mobilization of Protein Kinase C in			
420		Macrophages Induced by Listeria monocytogenes Affects Its Internalization			
421		and Escape from the Phagosome. Infect Immun 70:4650–4660.			
422	31.	Crane JK, Oh JS. 1997. Activation of host cell protein kinase C by			
423		enteropathogenic Escherichia coli. Infect Immun 65:3277–85.			
424	32.	Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat Rev			
425		Mol Cell Biol 10:513–25.			
426	33.	Wang R, Zhang Y, Liu S, Li C, Sun L, Bao L, Feng J, Liu Z. 2014. Analysis of			
427		52 Rab GTPases from channel catfish and their involvement in immune			
428		responses after bacterial infections. Dev Comp Immunol 45:21–34.			
429	34. Mukhopadhyay A, Nieves E, Che F-Y, Wang J, Jin L, Murray JW, Gordon K,				
430		Angeletti RH, Wolkoff AW. 2011. Proteomic analysis of endocytic vesicles:			
431		Rab1a regulates motility of early endocytic vesicles. J Cell Sci 124:765–75.			
432	35.	Wheeler PR. 1990. Biosynthesis and scavenging of pyrimidines by pathogenic			
433		mycobacteria. J Gen Microbiol 136:189–201.			
434	36.	Leong JM, Fournier RS, Isberg RR. 1990. Identification of the integrin binding			
435		domain of the Yersinia pseudotuberculosis invasin protein. EMBO J 9:1979–89.			
436	37.	Wiedemann A, Linder S, Grassl G, Albert M, Autenrieth I, Aepfelbacher M.			
437		2001. <i>Yersinia enterocolitica</i> invasin triggers phagocytosis via beta1			
438		integrins, CDC42Hs and WASp in macrophages. Cell Microbiol 3:693–702.			

420	20	Criss AK Ablaran DM Jou TS McCarmiak R.a. Casanaya JE 2001 Tha
439	30.	Criss AK, Ahlgren DM, Jou TS, McCormick B a, Casanova JE. 2001. The

440 GTPase Rac1 selectively regulates *Salmonella* invasion at the apical plasma

441 membrane of polarized epithelial cells. J Cell Sci 114:1331–41.

- 442 39. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galán JE. 1998. S.
- 443 *typhimurium* encodes an activator of Rho GTPases that induces membrane
- ruffling and nuclear responses in host cells. Cell 93:815–26.
- 445 40. Ohya K, Handa Y, Ogawa M, Suzuki M, Sasakawa C. 2005. IpgB1 is a novel
- 446 Shigella effector protein involved in bacterial invasion of host cells. Its activity to
- 447 promote membrane ruffling via Rac1 and Cdc42 activation. J Biol Chem

448 280:24022–34.

449 41. Aili M, Isaksson EL, Hallberg B, Wolf-Watz H, Rosqvist R. 2006. Functional
 450 analysis of the YopE GTPase-activating protein (GAP) activity of *Yersinia*

451 *pseudotuberculosis*. Cell Microbiol 8:1020–1033.

- 452 42. Wölke S, Ackermann N, Heesemann J. 2011. The Yersinia enterocolitica type
 453 3 secretion system (T3SS) as toolbox for studying the cell biological effects of
 454 bacterial Rho GTPase modulating T3SS effector proteins. Cell Microbiol
 455 13:1339–57.
- 43. Zhang Y, Murtha J, Roberts MA, Siegel RM, Bliska JB. 2008. Type III Secretion
 Decreases Bacterial and Host Survival following Phagocytosis of <i>Yersinia
 pseudotuberculosis</l>
 by Macrophages. Infect Immun 76:4299–4310.
- 459 44. Wong K-W, Isberg RR. 2005. Emerging views on integrin signaling via Rac1
 460 during invasin-promoted bacterial uptake. Curr Opin Microbiol 8:4–9.
- 461 45. Lemonnier M, Landraud L, Lemichez E. 2007. Rho GTPase-activating bacterial
- 462 toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS
- 463 Microbiol Rev 31:515–534.

464	46.	Lockman HA. 2002.	Yersinia	<i>pseudotuberculosis</i> Produces a Cytotoxic
-0-	10.		roronna	

- 465 Necrotizing Factor. Infect Immun 70:2708–2714.
- 466 47. Bonazzi M, Lecuit M, Cossart P. 2009. Listeria monocytogenes Internalin and
- 467 E-cadherin: From Bench to Bedside. Cold Spring Harb Perspect Biol
- 468 1:a003087–a003087.
- 469 48. McIlwain DR, Berger T, Mak TW. 2015. Caspase functions in cell death and
 470 disease. Cold Spring Harb Perspect Biol 7:a008656–a008656.
- 471 49. Lilo S, Zheng Y, Bliska JB. 2008. Caspase-1 Activation in Macrophages
- 472 Infected with Yersinia pestis KIM Requires the Type III Secretion System
- 473 Effector YopJ. Infect Immun 76:3911–3923.
- 474 50. Stacey DW. 2003. Cyclin D1 serves as a cell cycle regulatory switch in actively
 475 proliferating cells. Curr Opin Cell Biol 15:158–63.
- 476 51. Wang B, Yurecko RS, Dedhar S, Cleary PP. 2006. Integrin-linked kinase is an
 477 essential link between integrins and uptake of bacterial pathogens by epithelial
 478 cells. Cell Microbiol 8:257–266.
- 479 52. Young VB, Falkow S, Schoolnik GK. 1992. The invasin protein of Yersinia
- 480 *enterocolitica*: internalization of invasin-bearing bacteria by eukaryotic cells is
- associated with reorganization of the cytoskeleton. J Cell Biol 16:197–207.
- 482 53. Eitel J, Dersch P. 2002. The YadA Protein of Yersinia pseudotuberculosis
- 483 Mediates High-Efficiency Uptake into Human Cells under Environmental
- 484 Conditions in Which Invasin Is Repressed. Infect Immun 70:4880–4891.
- 485 54. Hudson KJ, Bliska JB, Bouton AH. 2005. Distinct mechanisms of integrin
- 486 binding by *Yersinia pseudotuberculosis* adhesins determine the phagocytic
- response of host macrophages. Cell Microbiol 7:1474–1489.
- 488 55. Alonso A, Portillo FG Del. 2004. Hijacking of eukaryotic functions by

- intracellular bacterial pathogens. Int Microbiol 7:181–191.
- 490 56. Peña AA, Bols NC, Marshall SH. 2010. An evaluation of potential reference
- 491 genes for stability of expression in two salmonid cell lines after infection with
- either Piscirickettsia salmonis or IPNV. BMC Res Notes 3:101.
- 493 57. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using
- real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
- 495 Methods2002/02/16. 25:402–408.

496

498

499 **Figure Legend**

500

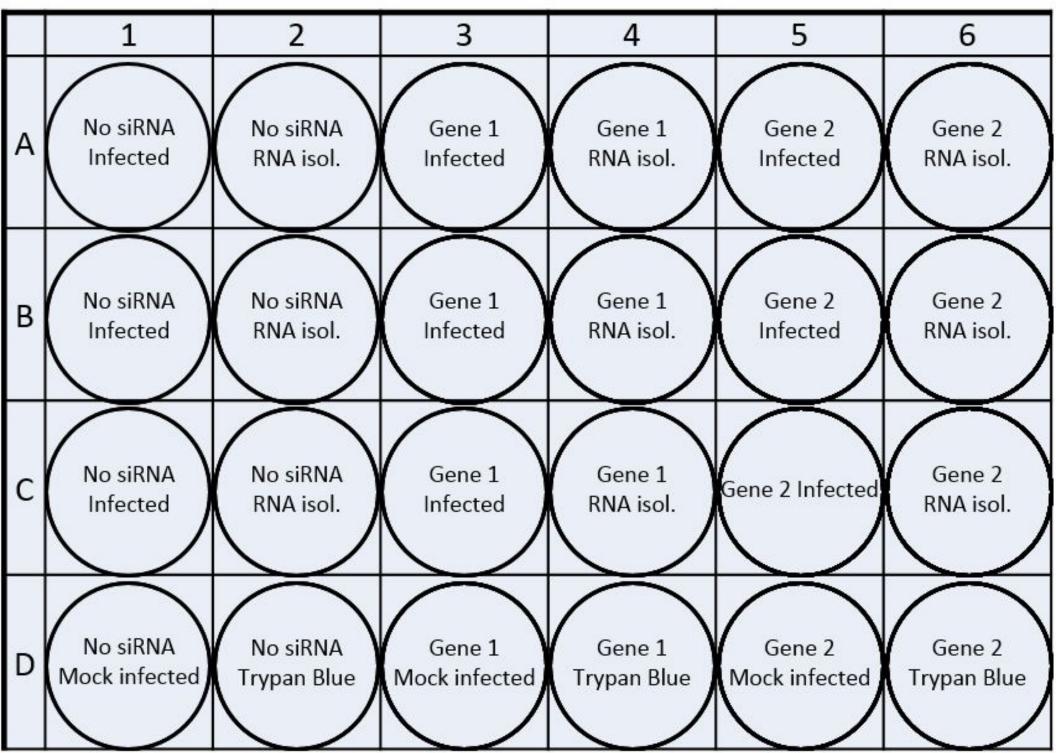
501	Fig 1 Loading	plan for the 24	wells plates used	in the gentamy	/cin assay. Each siRNA

- ⁵⁰² was tested alongside a non-silenced control to minimise the variations between
- ⁵⁰³ plates. For each gene silenced, the three first wells of the leftmost row were infected
- ⁵⁰⁴ for the gentamycin assay while the bottom well was left uninfected as a control. On
- the rightmost row, RNA was extracted from the first three wells to confirm silencing
- ⁵⁰⁶ by RTqPCR while the last well was stained using trypan blue to assess any toxic
- ⁵⁰⁷ effect of the RNA silencing.

508

Tables

- **Tables 1** Gene investigated in this study and effect of the silencing on the number of
- 513 bacteria recovered at the end of the gentamycin assay. Greyed out cells represent
- ⁵¹⁴ genes whose silencing did not significantly impact the gentamycin assay.


Gene name	Function	Significance
Protein kinase C	Signal transduction	P = 0.000
Rab-1A	Vesicular trafficking	P = 0.000
SEC22b-B	Vesicular trafficking	P = 0.002
Vacuolar ATP synthase subunit A	Vacuolar protein sorting	P = 0.003
VPS-associated protein 33A	Vacuolar acidification	P = 0.002
Rho1-GTPase	Cytoskeleton organisation	P = 0.006
Ubiquitin conjugating enzyme E2L3	Tagging of protein for ubiquitin degradation	P = 0.003
Sumo 2	Post-translational modification system	P = 0.005
Equilibrative nucleoside transporter 1	Cellular uptake of nucleosides	P = 0.000
Integrin β-1 precursor	Integrin	P = 0.000
Actin	Cytoskeletal apparatus	P = 0.000
Rac1	Cell growth & cytoskeletal reorganization	P = 0.000
SDC42	Rearrangement of actin filaments	P = 0.001
Rho GTPase-activating prot.	Rearrangement of actin filaments	P = 0.795
Laminin	Structural scaffolding of the tissues	P = 0.006
E-cadherin	Cell adhesion	P = 0.722
Myotubularin-related protein 2	Vesicular traffic and actin remodeling	P = 0.045
p38b1 mitogen activated protein kinase	Stress resistance and apoptosis	P = 0.000
Caspase I precursor	Role in apoptosis	P = 0.962
Cyclin D1	Coordination of mitosis	P = 0.948

516

- 517 **Tables 2** Primer sequences for the RTqPCr confirmation of the siRNA silencing. The
- two first (greyed out) primer pairs are the housekeeping genes and where designed
- 519 by Peña *et al.* (56)

Ubiquitin	GGAAAACCATCACCCTTGAG
	ATAATGCCTCCACGAAGACG
Elongation Factor 1 alpha	GTCTACAAAATCGGCGGTAT
	CTTGACGGACACGTTCTTGA
Protein kinase C	TTGTTTGGCGGACTCCTGAA
	CCACGCCGAAAACAATCTCC
Rab-1A	AACCCCACCAACACCTCTAC
	GCACACACACACACTTCTTTC
SEC22b-B	AGAGAGGAGAGGAGATAGGG
	TGGATAGAATGTGAGACCAGA
Vacuolar ATP synthase subunit A	CCGCTGAGGACTTCCGATAAAC
	ACAGCCTTCCATAGCATTGCAC
VPS-associated protein	ATCCACAACCTGACTGCCTACC
	CTCTCGCTGCTCTTGATGAAC
Rho1-GTPase	TAGCCCCAGTTTGCTCTTCG
	GCTGTCTCGTTCACTGGTCA
Ube213	AACCCCACCTCCTTTCTCTC
	TTCACTAAGTCCCCTTGTTCC
Sumo 2	TCCACCACAGAACCAATACC
	CAAAACAGGAAGGAAACAAAGG
Equilibrative nucleoside transporter 1	ACGTCCGTGTTAAATGCTC

	ACAAAATCTCTCCTCCCCTC
Integrin β-1 precursor	ACCAATCCTACCCCCTATCC
	AGACCTCCCTCATTGTGTCG
Actin	CCAAGCAGGAATACGACGAG
	GCGTGGCAAAAAAGTCCAG
Rac1	ACTCACCCCCATTACCTACC
	CTGCTCCAATCTCTTTTGCC
SDC42	AGAGGGGAAGGAATCAACAG
	ATGACAGGCAGGTAGGAGAG
Rho GTPase-activating prot.	CAGAAGAAAATGAGCAAAGACC
	CCTGAGAACTACTGTCCACC
Laminin	GCGAATCAGAACCCTCAAC
	GCAGATACACATCCCTCCAAC
E-cadherin	TCCCTCAGTTCCCTCAACTC
	TCTCAATCCTCTCCTCCTCC
Myotubularin-related protein 2	TCAAGCGGAATACAAAAGACAG
	CCACTCTCTTCAACTCCTCATC
MaPK	TTCACTTCTCAAACCCCAAAC
	CGCTCAAAGGACAAACCAC
Caspase I precursor	GTGGAACAACAGGAAACAAAG
	TGATGGCAGTAGAACAGGG
Cyclin D1	GCTGTCCTGTATGCTCTCTC
	CCCAAACCATTCCATTCTTCTC

