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Achieving reproducibility and accuracy in cancer mutation detection 

with whole-genome and whole-exome sequencing  
 

 The Somatic Mutation Working Group of the SEQC-II Consortium 

Abstract 
Clinical applications of precision oncology require accurate tests that can distinguish tumor-

specific mutations from errors introduced at each step of next generation sequencing (NGS). For 

NGS to successfully improve patient lives, discriminating between true mutations and artifacts is 

crucial. 

 

We systematically interrogated somatic mutations in paired tumor-normal cell lines to identify 

factors affecting detection reproducibility and accuracy. Different types of samples with varying 

input amount and tumor purity were processed using multiple library construction protocols. 

Whole-genome and whole-exome sequencing were carried out at six sequencing centers 

followed by processing with nine bioinformatics pipelines to evaluate their reproducibility. We 

identified artifacts due to sample and library processing and evaluated the capabilities and 

limitations of bioinformatics tools for artifact detection and removal. 

  

By examining the interaction and effect of various wet lab and computational parameters 

concomitantly, here we recommend actionable best practices for mutation detection in clinical 

applications using NGS technologies. 
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Introduction  

The outlook for cancer patients in desperate need of new medicines, while improving, is still 

not encouraging - oncology drugs in clinical trials have only a 6.7% likelihood of approval1. 

Another crisis looms in the pre-clinical research space, where various studies have estimated 

irreproducibility rates of 51%-89%2–4. Based on these rates, approximately US$28 billion/year is 

spent on irreproducible pre-clinical research in the US alone5 which could be spent on 

furthering the development of better medicines to treat patients in need. While the imperative 

for more accurate translational research and precision medicine is clear, currently available 

techniques, methods, and tools are still confounded by reproducibility issues. 

  

In precision oncology, identifying whether a patient carries specific genetic aberrations relevant 

to a treatment or disease can guide pharmaceutical target identification, inform patient 

therapy, dictate dosing, suggest probability of adverse events6, and/or determine membership 

of an individual into a specific patient subset. As the cost of NGS drops precipitously, more 

researchers and clinical lab members are turning to this tool to identify mutations in clinical 

samples. Currently, a dizzying panoply of sample processing protocols, library preparation 

methods, sequencing machines, sequencing centers, and bioinformatics pipelines exist. 

However, there are no comprehensive studies on how each step influences the outcome when 

used with various combinations of tools and technologies. Moreover, samples can arrive at the 

testing lab in different states (fresh vs FFPE), the amount of input DNA can be variable, and 

tumor purity is rarely consistent across clinical samples. 
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Previous studies have addressed individual components of somatic variant calling in isolation; 

for example bioinformatics pipelines7,8 or sample factors9 have been studied individually. To 

date, no study has addressed the effect of cross site reproducibility together with the 

potentially influential interactions between biological, technical, and computational factors on 

the accurate identification of variants. The overarching goal of this work is to develop 

systematic methods for evaluating performance using realistic reference datasets. Here we 

profile well characterized10–12 and readily available paired cell lines (breast cancer and matched 

normal) with different types of biosample, input amounts, library preparations, sequencers, 

sequencing centers, and bioinformatics pipelines to thoroughly investigate how these factors 

and interactions between them may affect mutation detection. Based on our findings, we 

present actionable best approaches throughout the sequencing and analysis processes to 

enhance reproducibility, accuracy, specificity, and sensitivity.  
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Results  

Study design  

To date, great efforts have been devoted toward seeking an optimal strategy for detecting 

cancer mutations using NGS13–19. Most studies have compared bioinformatics pipelines/callers 

based on the accuracy and consistency of mutation detection17–19, while only a few studies have 

compared other components such as assay development15, library preparation14, and 

biosample resources20,21. Most of these studies utilized in-silico approaches with simulated 

ground truth or real tumor samples13,15,16,22 for benchmarking. The data sets or samples from 

previous studies either do not accurately represent real human tumor biopsies or are not 

sustainable for multiple benchmark studies. To our knowledge, only one attempt has been 

made to characterize a cancer cell line (from metastatic melanoma) for the purposes of creating 

a long-term community reference sample. However, the scale of that study was limited and did 

not provide extensive analysis on the performance of different NGS platforms23. 

 

To pinpoint factors affecting somatic variant calling, a matched pair of breast cancer cell lines 

(tumor HCC1395 and normal HCC1395BL) was selected for profiling. Previous studies of this 

triple negative breast cancer cell line have indicated the existence of many structural 

rearrangements and ploidy changes24. Several attempts have been made to identify these 

structural variations and copy number changes, in addition to single nucleotide variation (SNV) 

and small insertions/deletions (“indels”)11,12,25. Given that appropriate consent from the donor 

patient has been obtained for tumor HCC1395 and normal HCC1395BL for the purposes of 

genomic research, we sought to characterize the pair of cell lines as possible reference samples 
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for the NGS community. To fully characterize all components and aspects of variant calling 

together in one study, we designed and conducted a series of experiments to capture as many 

variables as possible across the whole process of NGS cancer mutation detection including: 

biosample preservation differences, amount of input DNA, library preparation protocol, NGS 

sequencing platforms, tumor purity, read coverage, and bioinformatics analysis pipelines. 

 

To compare the tumor and normal samples, bulk DNA was extracted from fresh cell cultures. In 

addition, to mimic FFPE sampling, cell pellets were suspended in a small volume with the 

addition of histogel. The cell “blocks” were treated with formaldehyde for different durations 

(1, 2, 6, and 24 hours) and then embedded in paraffin for storage. DNA from “FFPE” blocks was 

extracted based on a standard protocol (see Supplemental Methods). Lastly, to evaluate the 

effects of variable tumor purity, we combined tumor DNA with normal DNA at different ratios 

to create a range of mixtures representing tumor purity levels of 75%, 50%, 20%, 10% and 5% 

(Suppl. Fig. 1). 

 

Illumina TruSeq PCR-free library preparation was used for all sample preps with input amounts 

over 100 ng, and lower inputs (<=100 ng) were prepared with either TruSeq-Nano or Nextera 

Flex. Whole-genome sequencing (WGS) for all samples and whole-exome sequencing (WES) for 

a subset of samples were performed across different sites. Sequencings were performed using 

different HiSeq platforms (HiSeq1500, HiSeq2500, HiSeq4000, and HiSeqX), as well NovaSeq, 

the latest Illumina high throughput sequencer. (Fig. 1a). 
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Survey of read quality 

WGS was performed at six sequencing centers, generating a total of 42 sequencing results from 

the standard TruSeq PCR-free libraries prepared from 1000 ng input DNA. There were three 

different HiSeq platforms in the cross-platform comparison including HiSeq4000, HiSeq X10, 

and NovaSeq. All sequencing centers and platforms produced high quality data as 

demonstrated by base call Phred quality scores above Q30, and greater than 99.8% of reads 

mapped to the reference genome (GRCh38). Variation was observed in the quantity of reads 

per sample generated, with some centers consistently delivering much higher coverages (100X) 

than others (50X), which was driven by sequencing platform yield differences as well as run 

pooling schemes and coverage targets (Fig. 1b). Among the WGS libraries prepared using fresh 

cells, insert size distribution and G/C content was uniform (40 – 43% G/C). All of the WGS 

libraries had very low adapter contamination (<0.5%). Less than 10% of reads mapped 

redundantly for most libraries, indicating the high complexity of the WGS libraries. Similar 

mapping statistics were observed in NovaSeq WGS runs (Suppl. Table 1).  

 

Similarly, WES performed across six sequencing centers using three different HiSeq models 

(HiSeq1500, HiSeq2500, and HiSeq4000), generated sequencing results where 99% of reads 

were mapped successfully (Suppl. Table 2). The largest variations in sequencing yield and 

coverage on target were seen between sequencing centers and even sometimes between 

different replicates of the same cell line at the same sequencing center. The variations were 

largely due to uneven library pooling, and sequencing yield differences between platforms. For 

the WES libraries, we observed much higher adapter contamination among all six centers, 
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compared with WGS data. More than 20% of sequences in the WES from two sequencing 

centers came from the adapters while the rest of the centers had less than 12% adapter 

contamination (Suppl. Fig. 2a). The higher adapter contamination was related to the longer 

sequencing read length in base pairs (bp) used (2x 150 bp vs. 2x125 bp). The WES libraries had 

higher G/C content (44 - 54%) compared to WGS libraries (40 – 43%). The libraries with more 

serious adapter contamination also had much higher G/C content compared to the rest of the 

WES libraries. Generally, regions with more reads on the target region had higher G/C content 

(Suppl. Fig. 2b). 

 

When comparing library preparation kits across different DNA inputs, both similarities and 

differences were noted. The average percentage of mapped reads ranged from 96% to 99.9% 

across TruSeq PCR-free, TruSeq-Nano and Nextera Flex libraries prepared with 250, 100, 10, or 

1 ng of DNA input. However, the percentage of non-redundant reads was very low (<20%) for 

TruSeq-Nano with 1 ng input presumably due to PCR amplification of a low input amount of 

DNA (Suppl. Fig. 2c). Nevertheless, the percentage of non-redundant reads for 1 ng with 

Nextera Flex (also a PCR-based protocol) was reasonably good (~70% and comparable to the 

performance of TruSeq-Nano 100 ng protocol). In addition, the overall G/C content was not 

affected by DNA input amount or library preparation kit. The Nextera Flex Library prep may be 

superior to TruSeq-Nano for lower input DNA amounts. The FFPE libraries were prepared from 

cells treated with formaldehyde at four time intervals and these samples yielded results with a 

high percentage of mapped reads and non-redundant read frequencies that were comparable 

to the results generated from WGS libraries prepared with fresh cells (Suppl. Table 1).  
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Evaluation of DNA quality 

The Global Imbalance Value (GIV) is a commonly used indicator of DNA damage26. We have 

used it here to monitor DNA quality in NGS runs. Indeed, we observed high GIV scores for the 

G>T/C>A mutation pair in WES runs of both tumor and normal cell lines from some centers. The 

GIV for G>T/C>A scores were inversely correlated with insert fragment size (Suppl. Table 3), 

which is highly associated with DNA shearing time. Longer shearing time resulted in shorter 

DNA fragments. Insert fragment size and G/C content were also inversely correlated, suggesting 

increased off-target (non-exome region) reads when larger DNA fragments were sequenced. 

We observed high G>T/C>A scores when insert fragment sizes were between 160-180 bp; when 

insert fragment sizes were larger than 200 bp, we observed little or no imbalance (Fig. 1c). In 

contrast, we did not observe this imbalance in WGS runs (Suppl. Fig. 2d), for which the insert 

sizes were normally larger than 300 bp (Suppl. Table 1, Suppl. Fig. 3a). We did not observe such 

imbalance in other mutation pairs, such as T>G/A>C (Fig. 1c). Previous reports demonstrate 

that excessive acoustic shearing is the major modulator of 8-oxoG damage 27. Therefore, the 

high ratio of G>T/C>A observed in some WES runs was likely an artifact of oxidative DNA 

damage during the fragmentation process.  

 

Formaldehyde also causes the deamination of guanine. Thus, the GIV of G>T/C>A would also be 

a good indicator of FFPE induced DNA damage28. Indeed, we did observe “dose” dependent GIV 

imbalance in WGS runs of FFPE samples. Samples with longer formaldehyde fixing time had 
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higher GIV imbalance scores, which indicated that those samples likely sustained more severe 

DNA damage. WES of FFPE samples showed consistently higher GIV imbalance than WGS of 

FFPE samples, indicating that excessive shearing and formaldehyde fixing have an additive DNA 

damage effect (Fig. 1d). Taken together, these results indicate that WES is more sensitive to 

site-to-site library preparation variation than WGS. Our result therefore provided one line of 

evidence indicating that WGS may be more suitable for FFPE samples than WES.  

 

Reproducibility of cancer mutation detection  

To assess the reproducibility of cancer mutation detection with WES and WGS, we performed a 

total of twelve repeats of the WES and WGS analysis of the tumor and normal cell lines carried 

out at six sequencing centers. We used three mutation callers (MuTect229, Strelka230, and 

SomaticSniper31) on alignments from three aligners (Bowtie232 , BWA33, and NovoAlign) to 

generate a total of 108 Variant Call Format (VCF) files from WES and WGS analyses separately. 

The Venn diagram is widely used to display concordance of mutation calling results from a small 

number of repeated analyses18; however, this type of diagram is not suitable for such large data 

sets. To address this challenge, we applied the “tornado” plot to visualize the consistency of 

mutation calls derived across aligners, callers, and repeated NGS runs. The number of SNVs 

unique to one single VCF file are represented by the width of the tornado at the bottom, and 

the number of SNVs called in all VCF files are represented by the width at the top. Thus, like the 

actual meteorological event, a tornado that is touching down is “bad” (many called variants are 

likely false positives), and a tornado with the majority of the data at the top is “better” (many 

common variants called across all conditions).  
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In this study, as shown at the top of each plot in Fig. 2a, all aligners demonstrate a substantial 

pool of calls which are agreed upon under every repeated WGS or WES run called by three 

callers (MuTect2, Strelka2, and SomaticSniper). Each aligner also generated a pool of unique 

calls (variants identified in only one sample) represented at the bottom of the tornado plot. 

Reproducibility was better for WGS than WES, as we observed relatively more aligner-specific 

variants at the bottom of the WES tornado plots. We did not observe significant differences 

among results from the three aligners. However, calling results from WES tended to have more 

inconsistent SNV calls (bottom of tornado) than those from WGS, indicating that WES results 

may be less consistent than WGS results (Fig. 2a).  

 

We then fixed the alignment to the community-accepted Burrows-Wheeler Aligner (BWA), and 

compared the results from our three callers, observing the differences in WES versus WGS run 

performance. While SomaticSniper displayed results that showed a very high similarity of 

tornado shape between WES and WGS analyses, those derived from the use of MuTect2 and 

Strelka2 showed greater divergence. The latter, especially Strelka2, were strikingly more 

consistent when used for WGS rather than WES (Fig. 2b). Further examination of results from 

Strelka2 on BWA alignments of twelve repeated WES and WGS runs confirmed this observation 

(Fig. 2c, d). Here we also introduced the O_Score, a metric to measure reproducibility of 

repeated analyses (see Supplemental Methods). O_Scores for Strelka2 and MuTect2 for WES 

runs were not only significantly lower than WGS runs, but also more variable. Unexpectedly, 

even though its overall O_Score was much lower than Strelka2 and MuTect2 in WGS runs, 
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SomaticSniper showed better consistency in calling results in WES than in WGS (Suppl. Fig. 4a, 

Suppl. Fig. 5). We also compared WGS runs with HiSeq vs WGS runs with NovaSeq using BWA 

for alignment and Strelka2 for calling. Both platforms were remarkably similar in terms of 

reproducibility, indicating that results from HiSeq and NovaSeq are comparable (Suppl. Fig. 4b). 

Taken together, Strelka2 had the best reproducibility in WGS repeated runs but the worst in 

WES runs, whereas MuTect2 had the best reproducibility in WES repeated runs (Suppl. Fig. 4a, 

Suppl. Fig. 6). 

 

Factors influencing reproducibility of cancer mutation detection  

After establishing the O_Score to measure the reproducibility of NGS platform mutation 

detection, we also used it to determine what variables contribute most to variation between 

different repeated WGS or WES analyses separately. We included not only callers but machine 

model, read coverage, non-duplicated reads, G/C content, insert size, and two GIV scores 

(G>T/C>A and T>G/A>C). The combination of these parameters represented explained the 

majority of variation in WGS and WES runs, as we observed very high proportion of variance in 

the O_Score could be predicted by these variables. For WGS, the combination of these eight 

individual variables accounted for >99% of O_Score variance (R2 > 0.99) (Suppl. Fig. 7a). On the 

other hand, individual variables and five interaction terms (callers*coverage, callers*percent 

GC, caller*machine model, callers*GIV(G>T/C>A), and callers*non-duplicated reads) were 

significant for O_Score variance in WES runs (Suppl. Fig. 7b). 
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Overall, the most influential factor for the performance of WGS is the caller, followed by read 

coverage. As all twelve WGS runs were done with TruSeq PCR-free libraries with the same 

amount of DNA input, the percentage of non-duplicated reads did not affect reproducibility. 

While individual variables may influence WES run reproducibility, their effect levels were truly 

dependent on caller selection (Fig. 2e). Taken together, only a few factors (read coverage and 

callers) affect WGS reproducibility, whereas many factors, such as caller, reads coverage, insert 

fragment size, GC content, GIV (G>T/C>A) score, and their interactions influence WES run 

reproducibility. It is noteworthy that since an older machine model (HiSeq1500) was used only 

in one WES sequencing center, which also had low insert fragment size and high GIV (G>T/C>A) 

scores in sequencing reads, the impact of machine model on the WES run reproducibility could 

be a confounding factor. 

 

Definition of truth set for comparing and benchmarking 

After comparing results within this study, we wanted to establish a truth set of mutation calls 

for the two cell lines. The schematic of mutation calling is displayed in Fig. 3a. In brief, we used 

BAMSurgeon34 to spike synthetic mutations into an HCC1395BL Binary Sequence 

Alignment/Map (BAM) file, matched with another HCC1395BL BAM file from the same 

sequencing center to create a synthetic tumor-normal pair. We then used the SomaticSeq35 

machine learning framework with MuTect229, Strelka230, VarDict36, SomaticSniper, MuSE, and 

TNscope37 on the synthetic tumor-normal pairs to create sequencing- and aligner-specific 

classifiers that took into account error models within every sequencing center and aligner (Fig. 
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3a). These classifiers were used to generate high-confidence mutation call sets for tumor-

normal pair of BAM files.  

 

Next, factors driving either true positives or true negatives were investigated. The mapping 

quality of variant reads in the tumor was an important driving factor. For instance, for the vast 

majority of true somatic variant calls, the average BWA mapping quality (MQ) score for variant-

supporting reads was around 60 (Fig. 3b). Variant calls with mapping qualities of 55 or below 

were overwhelmingly false positives. Similarly, a high number of MQ=0 reads also indicated 

false positives (Fig. 3b). 

 

Finally, calls were categorized into four confidence-levels based on cross-aligner and cross-

sequencing-center reproducibility, consistency with tumor purity titration data, and various red 

flags that are predictive of false positive status (Fig. 3c). The category with the highest number 

of evidence is labeled as “HighConf”. Those, along with variants labeled as “MedConf” are 

considered true positives in our truth set. The next category is labeled as “LowConf”, which has 

considerable, but often conflicting evidence. Thus, their status is ambiguous. The final category 

of “Unclassified” are calls that were deemed “PASS” in at least one sample, but were 

inconsistent across sequencing centers or aligners. These calls also had more samples that were 

classified as “REJECT” than “PASS”. Ultimately, we decided to use SNVs/indels in HighConf and 

MedConf categories as the truth set, which contained a total of 39,536 SNVs and 2,020 indels. 
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In the truth set, there was a large fraction of seemingly homozygous calls (Fig. 3d). However, 

these homozygous calls might be misleading since karyotyping of HCC1395 indicated a large 

number of chromosomal aberrations. The ploidy of this cancer cell line is close to 3 with total of 

66 chromosomes in truncated forms (Suppl. Fig. 8a). Therefore, we suspected that loss of 

heterozygosity (LOH) produced high levels of homozygous calls.  

 

There were many SNVs/indels in our truth set with a variant allele frequency (VAF) less than 

0.5. There were VAF peaks at 0.67, 0.5, 0.33, 0.25, and 0.125, which indicate different copy 

number states for those variants. Since most WGS runs defining the truth set were at less than 

50X coverage (Fig. 1b), our lowest mutation allele frequency (MAF) variants were close to or 

slightly under 0.05. Thus, our truth set is incomplete. Nevertheless, based on the distribution of 

frequency versus MAF (Fig. 3d), we believe the number of true mutations missing in our truth 

set is very small and that our truth set should yield useful information to evaluate performance 

of tools and technologies.  

 

Effect of non-analytical factors on mutation calling 

Before thoroughly investigating computational and bioinformatics analysis choices influencing 

mutation calling, we wanted to leverage our truth set to assess upstream non-analytical driver 

factors. First, we investigated the effect of read coverage by computationally varying the 

number of reads from the tumor sample and the normal sample. Across all three callers, true 

positives were increased by higher read coverage in both samples (Fig. 4a). Here, Strelka2 and 

SomaticSniper demonstrated sensitivity to low coverage of the normal sample, increasing the 
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false positive call rate. Based on these data, 10X coverage of the normal sample is insufficient 

across all callers tested and >30X coverage for both tumor and normal samples is needed to 

lower the false positive rate. However, increasing coverage in the tumor sample did not 

translate to uncovering more true positive mutations. As a matter of fact, more false positives 

were observed when called by MuTect2 and SomaticSniper. This study was limited to 100% of 

tumor with 5% of MAF as the detection limit, which is an important caveat. To recover 

mutations with less than 5% MAF or in samples with less tumor purity, more coverage may be 

required. 

 

With three different library preparation protocols and varying DNA input amounts across 

multiple library preparations, we evaluated results from combinations of the three callers and 

three aligners. MuTect2 was found to be highly reliable, except for calling of the 1 ng TruSeq-

Nano libraries (Fig. 4b). In contrast, Strelka2’s performance suffered severely from the 1 ng 

TruSeq-Nano libraries, as did SomaticSniper. These results demonstrate that 1 ng of DNA input 

in a TruSeq-Nano library preparation cannot be compensated by any aligner, caller, or 

aligner/caller combination tried here. Nextera Flex library preparation might be a better option 

for a low input DNA quantity. 

 

Tumor purity is another non-analytical factor which can influence variant calling. Samples 

derived from human tumors contain not only tumor cells, but also a mix of non-malignant cells 

including immune cells, stromal cells, fibrotic cells, and others. The presence of these non-

tumor cells likely skews variant calling results17. To explore this in a very simplistic 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted June 2, 2019. ; https://doi.org/10.1101/626440doi: bioRxiv preprint 

https://doi.org/10.1101/626440


  
  
  

                                                                    Confidential 
 

16 

approximation, a range of tumor purities was created by diluting tumor DNA into normal DNA 

at various ratios to mimic tumor purity at range from 5% to 100%, and coverages ranging from 

10X to 300X were evaluated. Strikingly, for cases of very high tumor purity (75% or 100%), F-

Scores actually dropped at the highest coverages, demonstrating the incompleteness of our 

truth set (>5% MAF) (Fig. 4c). Boosting read coverage may also have allowed more noise in and 

lowered performance since, as we observed, the total number of SNVs called continuously 

increased with more coverage. This is true not only for Strelka2, but also for the other callers 

(Suppl. Table 4).  

 

Lastly, FFPE processing is another non-analytical factor known to have a major effect on variant 

calling results38. In this study, the same samples of fresh cells and cells processed with FFPE 

were called with Strelka2, SomaticSniper, and MuTect2. Both MuTect2 and Strelka2’s precision 

and recall were greatly reduced when samples were subjected to FFPE processing (Fig. 4d). On 

the other hand, SomaticSniper demonstrated only a small decrease in both metrics but 

otherwise underperformed significantly compared with the other two callers.  

 

Enhancing calling accuracy through bioinformatics 

It is not always ideal to analyze challenging samples (FFPE or low tumor purity). However, that 

may be the only biosample available. In testing various informatics pipelines, some clearly 

overcome sample related biases more successfully than do others. To begin testing, samples 

were pre-processed using Trimmomatic39 or BFC40 to assess whether read trimming and error 

correction could affect recall or precision (as defined in Supplemental Methods) for variant 
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calling of WES runs. Applying error correction with BFC to FFPE samples increased precision 

across most samples, but did not improve the recall rate (Suppl. Fig. 9a). However, precision is 

still improved for fresh DNA samples that have undergone BFC processing, but with a lower 

recall rate than results from Trimmomatic processing. Taken together, these results indicate 

that BFC is appropriate in cases of severe DNA damage, but may not be worthwhile if there is 

only mild damage from a process such as sonication.  

  

FFPE is known to cause G>T/C>A artifacts as well38. Trimmomatic and BFC were investigated for 

their ability to detect these errors. Since the DNA damage causing the G>T/C>A mutation may 

not be isolated to only low quality base calls at the end of reads, Trimmomatic is not designed 

to remove this type of artifact. Trimmomatic processed data was more skewed toward C>A 

artifacts than was BFC processed data, which shows changes more broadly across nucleotide 

transitions (Fig. 5a). BFC reduced C>A artifacts, but introduced a small quantity of artifacts of 

other types, such as T>C mutations, indicating that caution should be exercised when using 

bioinformatics tools to correct FFPE artifacts.  

 

Calling accuracy is dependent on the choice of caller and aligner, as well as how the caller and 

aligner interact. Strelka2 results with BWA-aligned reads were balanced, whereas results with 

Bowtie2-aligned reads seemed conservative. In contrast, Strelka2 results with NovoAlign-

aligned reads seemed aggressive (Fig. 5b). When we examined the mapping quality scores for 

the three alignments, BWA’s mapping quality scores were usually between 50 and 60, 

Bowtie2’s scores were between 40 and 50, and NovoAlign’s scores were between 60 and 70. 
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Strelka2 was trained and modeled on BWA alignment and thus works best in the bioinformatics 

context where it was developed30. Taken together these results indicate that there might be a 

joint effect between aligner and caller, depending on how callers were developed. 

 

Next, the effect of the Genome Analysis Toolkit (GATK) post alignment and quality score 

recalibration was queried. MuTect2 and Strelka2 identified a very similar number of SNVs 

regardless of whether the process was employed (Fig. 5c). Conversely, SomaticSniper is highly 

sensitive to post alignment processing, with some SNVs gained and far more lost. Relatedly, the 

precision and recall rate change dramatically when this process was applied for SomaticSniper 

calling, but not for calling by MuTect2 or Strelka2 (Suppl. Fig. 9b, c). Clearly, our data confirm, 

with real-world experimental data, the importance of a full understanding of how the various 

components of mutation analysis by NGS methods work and interact with each other.  

 

Tumor purity and coverage also play a role in caller performance. As expected, higher coverage 

can produce more SNV calls than does lower coverage (Fig. 5d). When tumor purity is high 

(>50%), 50X performs very similarly to 100X coverage across all callers tested. When tumor 

purity is low (<50%), calling is much more sensitive to sequencing depth. To test the 

performance of callers on low tumor purity samples, we pooled reads from the triplicate runs 

of WGS on samples that were sequenced at 100X coverage to generate coverage of 200X or 

300X on each cell line. Besides the three main callers used in this study we also included two 

new tools (TNscope37 and Lancet41) to compare their capabilities in detecting mutations from a 

mix with as low as 5% of tumor DNA. With high tumor purity (>50%), we again observed that 
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the accuracy of all the callers, with the exception of SomaticSniper, declined slightly with higher 

read coverage, indicating that our truth set lacked <5% MAF mutations. However, when tumor 

purity was 20% or lower, we observed that the benefit of higher coverage for mutation 

detection was realized. For a sample with 20% tumor, Lancet, Strelka2, and TNscope performed 

similarly well with 300X coverage (Fig. 5d). On the other hand, SomaticSniper performed poorly 

at any tumor purity level, and increased read coverage did not rescue its performance. These 

results indicate that tumor purity is much more influential than coverage in the ranges tested 

here.  

 

Performance of WGS and WES across multiple sequencing centers 

As this study leveraged six sequencing centers performing twelve WES and WGS experiments 

simultaneously, we were able to directly compare results from the two sequencing platforms 

within and across centers. To further understand if artifacts in WES library preparation are 

sequencing center-specific, we performed analyzed reproducibility of inter- and intra-centers 

based on concordance of SNV detection between any pair of NGS runs, in association of SNVs 

defined in the reference call set established in this study. Comparisons were carried out in four 

groups: a) WES (12 repeats/3 centers); b) WGS (limited to exome regions, 12 repeats/3 

centers); c) WGS (12 repeats/3 centers), and d) WES vs WGS (limited to exome regions, 24 

repeats/3 centers). We did each of these four comparison groups with “all reads” (original 

coverage) and “downsampled reads” (fixed coverage of each NGS run, 50X for WGS and 150X 

for WES). In addition to investigate reproducibility represented by overall SNVs called between 

a given pair of NGS runs, we also broke down SNVs into three subgroups: 1) In-truth set: SNVs 
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defined in “HighConf” and “MedConf” categories; 2) Not in-truth set: SNVs defined in 

“LowConf” and “Unclassified” categories; and 3) Not defined: SNVs not defined in the reference 

call set. We then used average value of Jaccard scores for the concordance of SNVs in above 

three subgroups, to determine inter- and intra-center reproducibility for WGS and WES 

platform.  

 

As shown in Table 1, results from WES were consistently less reproducible than WGS. When 

measured by overall called SNVs, inter-center variation was larger than intra-center variation. 

On the other hand, results from WGS, either limited to exome regions or the whole genome, 

were more consistent than results from WES. In addition, the difference in variation between 

inter-center and intra-center for WGS was very small.  

 

However, when measured by SNVs in our defined truth set, cross-center and cross-platform 

variations were very small, indicating that all individual NGS runs, regardless of sequencing 

centers or NGS platforms, detected majority of “true” mutation consistently. This “consistency” 

dropped dramatically for SNVs not defined in the truth set, and further down to nearly zero, if 

SNVs haven’t been defined in the reference call set. For the purpose of equal coverage of each 

individual run in comparison group, read downsampling actually decreased the reproducibility 

of mutation detection. Both inter- and intra-center variations were much higher compared to 

results with original coverage. 
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Taken together, these results indicated that there were two major sources for non-concordant 

SNV calls between any two different library preparations: 1) stochastic effects of sequence 

coverage on SNVs with low MAF, which is sensitive to read coverage and mainly represented by 

SNVs in the group of “Not in-truth set”; 2) artifacts due to library preparation, mainly 

represented by SNVs in the group of “Not defined”.  The benefit of high read coverage is not 

only to empower the detection of mutation with low MAF but also to increase result 

reproducibility (for both WES and WGS), probably due to reduced stochastic effect.  

 

We repeated this analysis with results from MuTect2 and SomaticSniper (Suppl. Table 5). 

Results from the two callers not only confirmed the above observations but also supported 

conclusions from tornado plots and O_scores, i.e. for WES platform, Strelka2 on is less 

reproducible than MuTect2 (Fig. 2c, Suppl. Fig. 4a, and Suppl. Fig. 6a). 

 

Using our established call set as a reference, we defined resulting SNV calls from any of NGS run 

with the pair of cell lines into three categories: 1) repeatable (SNVs in the truth set); 2) non-

repeatable (SNVs not in the reference call set); and 3) gray-zone (SNVs not in the truth set) 

(Suppl. Fig. 10). Regardless platforms or callers, the percentage of SNV in gray-zone was 

between 6-10%. While the repeatable calls in WGS was the highest (78%) for Strelka2, high 

number of Non-repeatable calls (61%) was also observed in WES runs. Repeatable calls by 

MuTect2 for both WES and WGS were quite high, 60% and 75%, respectively. In contrast, 

SomaticSniper had low number of repeatable calls (30-40%) and high number of non-

repeatable calls (50-60%) for both WES and WGS platform, even though its repeatable calls in 
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WES was higher than that in WGS. These results were consistent with what we have observed 

in tornado plot and O_Scores (Suppl. Fig. 4a). 

 

The overall effect of each sequencing technique on the same replicate was also studied. When 

using Strelka2 as the caller, more unique mutations were called in WES than were identified in 

WGS (Fig. 6a). This remained true across different centers of replicate origin. Overall WGS and 

WES agreed, with correlation of MAFs from concordant SNVs ranging from 0.88-0.97 (Fig. 6b). 

Moreover, in cases with higher coverage, the concordance and correlation between WES and 

WGS were highest. 

 

The artifacts called by each sequencing type were then characterized. Variants were grouped 

into those common to WES and WGS, and those unique to one of the two platforms. The WES-

only mutation calls were mostly characterized by lower MAF and higher C>A artifacts than were 

those in WGS (Suppl. Fig. 11a, b). Mutations identified by both WES and WGS had a more 

uniform distribution. Interestingly, the skew in artifacts in WES may be driven by library 

preparation protocol, where samples with shorter insert fragments were more skewed (Fig. 1c).  

 

Precision and recall rates (Fig. 6c) from WES and WGS were also compared across all three 

callers and all twelve replicates directly. Mutations that were shared by two replicates generally 

had higher precision. Moreover, almost all mutations called by both MuTect2 and 

SomaticSniper were true. Leveraging additional callers increased precision; however, this was at 

the cost of recall (Fig. 6c). Taken together, by the precision metric, WGS clearly out-performed 
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WES across replicates, callers, and sequencing centers. These figures demonstrate the 

importance of considering sufficient replicates during study design, rather than trying to 

compensate by using multiple callers.  

 

Finally, we compared precision, recall, and F-score (as defined in Supplemental Methods) across 

a range of variant allele frequencies with three callers and in WES and WGS. Interestingly, 

Strelka2 exhibited the best performance on WGS samples but the worst performance on WES 

samples (Suppl. Fig. 11c), which was consistent with the results from the reproducibility study 

(Fig. 2b-d). On the other hand, even though SomaticSniper did not perform well overall, it was 

not affected by C>A artifacts. However, for both WES and WGS runs, we did observe that the 

lower limit of MAF calling by SomaticSniper was ~12%, and many false positives were 

misidentified by SomaticSniper at a higher MAF (Suppl. Fig. 12a, b). Therefore, the “better” 

performance of SomaticSniper compared to Strelka2 on WES was driven by SomaticSniper’s 

insensitivity to artifacts from the DNA fragmentation process (Fig. 1c and Suppl. Fig. 12a). 

 

Discussion 

 

In this study, we systematically evaluated the impact of several key steps on detecting cancer 

mutations with various NGS technologies. In addition to bioinformatics components such as 

preprocessing, alignment, post alignment, and mutation calling, we concomitantly queried the 

effects of biosamples, tumor purity, DNA input quantity, DNA fragmentation protocol, library 

preparation, and read coverage. Moreover, we investigated the reproducibility of WES and 
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WGS across six laboratories, two NGS machines (HiSeq vs NovaSeq), three aligners, and three 

callers. Our results indicated that the reproducibility of cancer mutation detection not only 

depends on the choice of NGS platform (WGS vs. WES) but also on the selection of mutation 

callers (Suppl. Fig. 4a). Comparing to WGS, WES is very sensitive to sample processing, PCR 

effects, and choice of bioinformatics tools and thus less reproducible (Fig. 2). 

 

Based on the results observed from this study, we note that each individual component of the 

sequencing and analysis process can have a tremendous impact on the final outcomes. For 

example, if FFPE samples were the original targets for inquiry, there would be artifacts from 

oxidative DNA damage. These artifacts pollute final mutation calls, but the level of artifact 

pollution is also dependent on NGS platform choice (WGS or WES), read preprocessing, and 

selected mutation caller. Similar artifacts also exist if DNA is over-fragmented by excessive 

sonication time. Less shearing time (Fig. 1c) or addition of antioxidant agents, such as 

ethylenediaminetetraacetic acid (EDTA), and butylated hydroxytoluene (BHT) in the sonication 

solution may reduce such artifacts27.  

 

We also found that very low DNA input (1 ng) will require a PCR-based library preparation (such 

as TruSeq-Nano), resulting in a less diverse read population and consequently inferior detection 

capability. Of note, the relatively new Nextera Flex library preparation kit overcame the 

challenge of 1 ng DNA input by maintaining good library diversity, thereby achieving higher 

efficiency of mutation calling.  
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We concluded that read coverage is paramount to a robust analysis. Our results indicated that, 

to detect mutations with more than 5% MAF, read coverage between 50X-80X would be 

sufficient given samples with high tumor content (>50%); however, to detect low MAF 

mutations and/or mutations in samples with low tumor purity, high read coverage is essential. 

Researchers deciding the amount of coverage needed for given samples may reference our 

matrix table for actionable information (Suppl. Table 4). We recommend that users first assess 

the tumor content in each of their samples and then select read coverage accordingly. Should 

tumor content be low (<50%), enrichment of tumor purity, such as micro-dissection, would 

reduce the need for expensive high read coverage.  

 

We took an alternative approach to evaluate the performance of various bioinformatics 

components and pipelines. The focus was on four key steps: preprocessing, alignment, post 

alignment, and mutation calling. By segregating these four sub-components, we were able to 

dissect the sources of discrepancies in SNV calling results obtained from multiple bioinformatics 

pipelines. Based on our results, we caution against using error-fixing procedures during read 

preprocessing steps to avoid introducing new artifacts while removing FFPE artifacts. Overall, 

we did not observe significant influence of alignments from three aligners: Bowtie2, BWA, and 

NovoAlign. However, the scale of alignment mapping quality from various aligners differed and 

consequently influenced mutation calling. To summarize, we saw a joint effect between aligner 

and caller, especially for callers optimized for a particular aligner. Thus, it is critical that the 

choice of caller and aligner should not be made in isolation since a strong interaction effect 

might be present. 
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Overall concordance and correlation of WES and WGS results were good. WES had a better 

coverage/cost ratio than WGS. However, the sequencing coverage on WES target regions was 

not even (Suppl. Fig. 12c). In addition, WES showed more batch effects/artifacts due to 

laboratory processing and thus had large variation between runs, laboratories and likely 

between researchers preparing the libraries. Overall run to run variations, including inter- and 

intra-center for WES were much higher than WGS (Table 1). As a result, WES was less 

reproducible than WGS. In comparison, WGS had more uniform coverage, was less sensitive to 

different runs and laboratories, and overall was more reproducible. Biological (library) repeats 

removed some artifacts due to random events and thus offered much better calling precision 

than did a single test. Analytical repeats (two bioinformatics pipelines) also increased calling 

precision at the cost of increased false negatives as well. Our results indicated that biological 

replicates are more important than bioinformatics replicates in cases where high specificity and 

sensitivity are needed. 

 

Detection of cancer mutations is an inherently integrated process. No individual component 

can be singled out in isolation as more important than any others, and specific components 

interact with and affect each other. For example, a study aiming to detect mutation with >5% 

MAF in a cohort of FFPE 75% pure tumor biopsies should utilize 50X WGS coverage with 

MuTect2 calling on alignments from BWA. In cases where fresh frozen tissues are used with 

analysis on a WES platform, we recommend the use of the GIV (G>T/C>A) score to monitor the 

level of artifacts from DNA fragmentation processes and call mutations with Strelka2 on BWA 
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alignments to detect mutations with <10% MAF and filter out false calls due to artifacts caused 

by DNA damage. Every component and every combination of components can lead to false 

discovery via both false positives and false negatives. Individual components of cancer 

mutation calling should never be considered “plug and play” given the effect one component 

has on all the other components in the mutation detection process. Although initial steps of 

NGS test validation may be performed in three separate stages (platform, test-specific, and 

informatics)42, our study demonstrates the complex interdependency of these stages on overall 

NGS test performance. Thus, final validation studies and revalidation when appropriate should 

be performed using the entire sample-to-result pipeline. 

 

Until we finish similar studies on other cell lines, we cannot conclude that results from this 

study are generalizable to other cancer types. However, with high complexity of chromosome 

loss/gains (presented in another manuscript in preparation) and a large number of somatic 

mutations identified in HCC1395, this cell line resembled a hyperdiploid genome often seen in 

cancer. Our future direction is to expend the portfolio of reference samples/data sets by 

including other common cancer types, such lung cancer, colon cancer, and pancreatic cancer. 

Experience/knowledge accumulated via this study will provide guidelines for our future studies 

to be more efficient and cost-effective.  

 

In summary, we investigated a series of NGS cancer mutation detection components, from wet 

lab to dry lab. The pair of tumor/normal cell lines, data sets with FFPE DNA, tumor/normal DNA 

mix, and performance of bioinformatics components established in this study can serve as a 
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reference for the NGS research community to perform benchmarking studies for the 

development of new NGS products, assays, and informatics tools. To benefit the research 

community, we provided actionable recommendations on DNA fragmentation for WES runs, 

and a selection of NGS platforms, and bioinformatics tools based on the nature of available 

biosamples and study objectives. 

Methods 

See Supplement for Methods 
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Concordance of SNVs 
(measured by Jaccard 

index) 

WES WGS WES vs WGS (Exome) 

all 
reads downsampled 

in-exome whole genome 

all 
reads downsampled 

all 
reads downsampled 

all 
reads downsampled 

Overall 
SNVs 

overall 0.36 0.29 0.80 0.74 0.74 0.69 0.47 0.40 

intra-center 0.44 0.32 0.82 0.75 0.76 0.69 0.50 0.41 

inter-center 0.35 0.28 0.79 0.74 0.74 0.69 0.47 0.40 

In-truth 
set 

overall 0.90 0.83 0.92 0.88 0.91 0.88 0.89 0.82 

intra-center 0.94 0.86 0.93 0.88 0.93 0.88 0.91 0.82 
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Table 1: Cross-center/cross-platform mutation detection reproducibility with Strelka2: Overall SNVs: all SNVs in a 
pair of NGS runs; In-truth set: SNVs defined in “HighConf” and “MedConf” categories; Not in-truth set: SNVs defined 
in “LowConf” and “Unclassified” categories; Not defined: SNVs not defined in above four categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure legends 

Figure 1. Study design and read quality. (a) Study design to capture “wet lab” factors affecting 

sequencing quality. DNA was extracted from either fresh cells or FFPE processed cells (formalin 

fixing time of 1, 2, 6, or 24 hours). Both fresh DNA and FFPE DNA were profiled on WGS and 

WES platforms. For fresh DNA, six centers performed WGS and WES in parallel following 

recommended protocols with limited deviation. Three of the six sequencing centers generated 

library preparation in triplicate. For FFPE samples, each fixing time point had six blocks that 

were sequenced at two different centers. Three library preparation protocols (TruSeq PCR-free, 

TruSeq-Nano, and Nextera Flex) were used with four different quantities of DNA inputs (1, 10, 

100, and 250 ng). All libraries from these experiments were sequenced on the HiSeq series. In 

inter-center 0.89 0.82 0.92 0.88 0.91 0.88 0.89 0.82 

Not in-
truth set 

overall 0.33 0.26 0.18 0.14 0.21 0.20 0.18 0.14 

intra-center 0.44 0.30 0.22 0.15 0.25 0.21 0.21 0.15 

inter-center 0.31 0.26 0.18 0.14 0.21 0.19 0.18 0.14 

Not 
defined 

overall 0.03 0.01 0.10 0.04 0.07 0.03 0.02 0.01 

intra-center 0.06 0.02 0.14 0.05 0.10 0.04 0.03 0.01 

inter-center 0.02 0.01 0.10 0.04 0.07 0.03 0.01 0.01 
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addition, nine libraries using the TruSeq PCR-free preparation were run on NovaSeq for WGS 

analysis. (b) Read yields (blue) and mapping statistics (red) from twelve repeated WGS runs. (c) 

Global Imbalance Value (GIV) of G>T/C>A and T>/A>C mutation pairs in WES and WGS runs. Six 

centers used a range of time (80 to 300 seconds) for DNA sharing. As a result, insert DNA 

fragment sizes ranged from 161 bp to 274 bp. (d) Distribution of GIV scores of FFPE DNA with 

four different fixing times (1, 2, 6, and 24 hours), analyzed with WES or WGS. FFX: FFPE on WES 

platform, FFG: FFPE on WGS platform. 

 

Figure 2. Mutation calling reproducibility. (a) “Tornado” plot of SNV overlaps across 108 VCF 

results from twelve repeated WGS and WES runs that were analyzed with three aligners, BWA, 

Bowtie2, and NovoAlign, and three callers, MuTect2, Strelka2, and SomaticSniper. The height of 

the “Tornado” represents the number of overlapping VCF files. The width of the “Tornado” 

represents the number of accumulated SNVs in that overlapping category. (b) “Tornado” plot of 

SNV overlaps across 36 VCF results from twelve repeated WGS and WES runs analyzed by 

MuTect2, Strelka2, and SomaticSniper from only the BWA alignments. (c) and (d) show the 

“Tornado” plots for each of the 12 repeated WES and WGS runs, respectively, analyzed by 

Strelka2 from BWA alignments. The number in each plot represents the O_Score reproducibility 

measurement. (e) Effect summary of the model for WES or WGS. Effect tests were performed 

to evaluate the importance of each independent variable in a fixed effect linear model fitted for 

WES or WGS. F statistics and the corresponding P-value were calculated for the variables. Both 

P-value and LogWorth (-log10 (P value)) are plotted. 
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Figure 3. Definition of the truth set of somatic mutation calls. (a) General workflow for SNVs 

and indel truth set calling with 63 pairs of BAM files (21 repeated WGS runs on three aligners 

and six callers as specified in Fig. 1). (b) Four examples of 100+ features used in a building 

model for mutation calling. (c) Distribution of supporting evidence for called SNVs and indels. 

(d) VAF distribution of HighConf and MedConf SNVs in the truth set.  

 

 

Figure 4. Non-analytical factors affecting mutation calling. (a) Effect of read coverage on 

mutation calling by three callers on BWA alignments. A pair of BAM files (tumor/normal) from 

BWA alignment with 100X read coverage was downsampled to generate a series of sub-files. 

MuTect2, Strelka2, and SomaticSniper were used to call mutations with various coverage 

combinations of the tumor/normal pair. SNVs from the truth set were used to define false 

positives and true positives by each caller at each coverage. (b) Performance of the callers on 

three library preparation protocols with different DNA inputs: 1, 10, 100, 250, and 1000 ng. (c) 

Performance of Strelka2 on BWA alignments with WGS runs on samples with various read 

coverages of samples with different purity levels. (d) Performance of MuTect2, Strelka2, and 

SomaticSniper on fresh DNA and FFPE DNA. 

 

Figure 5. Bioinformatics for enhanced calling. (a) Distribution of mutation types called with 

Strelka2 on BWA alignment of four WES runs preprocessed by Trimmomatic or BFC. FFX: WES 

run on FFPE DNA, EA_1, FD_1, and NV_1, represented three WES runs with fresh DNA. (b) 

Performance of mutation calling by Strelka2 on three alignments, Bowtie2, BWA, and 
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NovoAlign. The insert figure is a violin plot of mapping quality scores from three alignments for 

an example WGS run. (c) Effect of post-alignment processing (indel-realignment + Base Quality 

Score Recalibration [BQSR]) on mutation calling by MuTect2, Strelka2, and SomaticSniper. (d) 

Effect of tumor purity (20% vs 50%) on five callers: Lancet, MuTect2, Strelka2, TNscope, and 

SomaticSniper with read coverage from 10X to 300X. 

 

Figure 6. Comparison of concordance and correlation between results from WES and WGS with 

Strelka2 as the mutation caller. (a) SNVs/indels calling concordance between WES and WGS 

from twelve repeated runs. For direct comparison, SNVs/indels from WGS runs were limited to 

genomic regions defined by an exome capturing kit (SureSelct V6+UTR). WES is shown on the 

left in the Venn diagram and WGS is on the right. Shown coverage depths for WES and WGS 

were effective mean sequence coverage on exome region, i.e. coverage by total number of 

mapped reads after trimming.  (b) Correlation of MAF in overlapping WGS and WES SNVs/indels 

from repeated runs. X- and Y-axis represents MAF detected in WES and WGS respectively.  (c) 

Precision and recall of overlapping SNVs/indels that were supported by biological repeats 

(library repeats) or analytical repeats (two different callers). Each row or column represent 

calling results from a WES or WGS run called by one of the three callers from a BWA alignment. 
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