
A Unifying Mechanistic Model of the Auditory

Cortex with Inhibitory Subtypes

Youngmin Park and Maria N. Geffen

May 2, 2019

Abstract

Several recent studies implicate parvalbumin- (PV) and somatostatin-
(SOM) positive interneurons in processing the temporal context of sounds
in the auditory cortex. We built minimal rate and spiking models of AC in
order to understand how these interneurons modulate cortical processing.
Our models not only replicate findings from recent experiments involv-
ing optogenetic manipulation of PV or SOM activity, accounting for the
differential effects of PVs and SOMs in stimulus-specific adaptation, for-
ward suppression and tuning-curve adaptation, but also provided for a
simple mechanism for changes to PV-modulated functional connectivity.
The unifying mechanisms of our model include dynamic synapses from
SOMs and PVs to pyramidal neurons, such as depressing and facilitat-
ing synapses from PVs and SOMs to pyramidal neurons, respectively. To
reproduce experimental studies, we fine-tuned two key parameters: the
strength of thalamic inputs and the strength of optogenetic inactivation.
Our model will be useful in predicting the function of PVs and SOMs in
sensory processing.

1 Introduction

Temporal auditory processing, such as habituating to expected sounds, de-
tecting sudden changes in the acoustic environment, and extracting important
acoustic features from noise, are important computations for auditory naviga-
tion and scene analysis. The mammalian auditory cortex (AC) is a key region
for processing temporally complex sound, as evidenced by multiple temporal
paradigms, such as stimulus-specific adaptation (SSA) and forward suppression
[8, 52, 3].

Tightly-coupled networks of excitatory and inhibitory neurons comprise the
circuits for processing auditory responses, and these networks continue to moti-
vate the latest mechanistic models of AC [26, 30, 34, 60]. Recent development of
optogenetic tools allow for testing the function of specific neuronal subpopula-
tions with sub-millisecond precision and cell-type specificity [10], thereby testing
the predictions and refining the models of cortical processing of sounds.

In (AC), recent optogenetic studies implicated the two most common types
of inhibitory neurons, parvalbumin- (PV) and somatostatin- (SOM) positive
interneurons, in processing simple and complex sounds, identifying their spe-
cific roles in different auditory paradigms [15, 2, 32, 36, 33, 38, 6]. Yet the
mechanisms that support these diverse effects remain poorly understood.
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Existing large-scale mechanistic models of the auditory cortex apply to the
scale of the whole brain [16, 54], or apply to AC, but treat inhibitory neurons
as one large group [30, 26, 60]. Only a handful of studies, restricted to specific
results, include multiple inhibitory neuronal subtypes. For example, models
of forward suppression in Phillips et al. [37, 38] also account for differential
modulation of tuning curves by inhibitory subtypes [36, 45]. Yet it remains un-
clear whether these models generalize to other temporally-dependent paradigms
such as SSA or predict other phenomena such as changes in functional connec-
tivity. Likewise, another recent model of SSA with inhibitory subtypes [32]
does not generalize to results in tuning-curve adaptation, nor does it apply to
forward suppression. The Ising model has been used to describe enhanced func-
tional connectivity as a function of PV activation [15], but the mechanisms and
anatomical connections underlying this change are not known. Our goal is to
build a unifying model for auditory cortical connectivity and test whether there
exists a set of parameters that would account for the multitude of recent findings
on the function of PVs and SOMs in temporal sound processing.

In the present study, we introduce a consistent mechanistic framework to
unravel the role of interneurons in processing dynamic auditory stimuli. We
identify the set of parameters that accounts for the observed results including
SSA, forward suppression, tuning-curve adaptation, and changes in functional
connectivity. We find that the key parameters of the model tuned to account
for the results are the strength of the thalamic inputs, and the strength of the
optogenetic inactivation and activation. These findings can be readily general-
ized to other cortical areas, and the framework that we develop can be used to
build and test hypotheses for similar phenomena in vision [44, 21, 43, 61, 22],
olfaction [17, 48, 19], taste perception [11] and spatial navigation [29, 28].

2 Methods and Materials

We constructed two primary model types in this paper. We first built an
augmented version of the Wilson-Cowan model, consisting of one or three iso-
frequency units of the auditory cortex, and included one excitatory neural pop-
ulation and two inhibitory neural subpopulations. We then built the spiking
model analogue of the rate model, which also consisted of one or three iso-
frequency units.

All code used to generate figures (including model simulations, numerical
methods, and analysis methods) are available on GitHub at https://github.

com/geffenlab/park_geffen under the MIT open source license.

2.1 Augmented Wilson-Cowan Model

We modeled a single iso-frequency unit as an augmented version of the Wilson-
Cowan model [57] by including an additional inhibitory subtype. We drew much
of our understanding of adaptation in the auditory cortex using this single iso-
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frequency unit:

τu
du(t)

dt
= −u(t) + f (weeu− wepp− wess+ qI(t)) ,

τp
dp(t)

dt
= −p(t) + f (wpeu− wppp− wpss+ IOpt,PV + qI(t)) ,

τs
ds(t)

dt
= −s(t) + f(wseu− wspp− wsss+ IOpt,SOM),

(1)

where u, p, and s represent the normalized firing rate (scaled from 0 to 1) of
the excitatory population, PV inhibitory subpopulation, and SOM inhibitory
subpopulation, respectively (Figure 1). The parameters IOpt,PV (IOpt,SOM) rep-
resent the strength of PV (SOM) activation or inactivation, and wij and τi
are synaptic weights and time constants, respectively. All time constants are
τu = τp = τs = 10ms [50, 32]. The function f is a threshold linear function
defined as

f(x) =

 0 if x ≤ 0
rx if 0 < x ≤ 1
1 if x > 1

. (2)

The parameter r = 3 determines the gain of all firing-rate functions [32, 60].
We included a threshold as f(x − uth), where uth is a real number. In all rate
model simulations, we chose Pyr, PV, and SOM thresholds to be uth = 0.7,
pth = 1, and sth = 1, respectively. The thresholds indicate the minimum activ-
ity required for a neural population to affect postsynaptic neural populations.
These thresholds reflect the minimum activity required to activate postsynapic
populations [25, 26].

The input function I(t) consists of blocks of inputs with stimulus interval
δms. When an auditory input arrives, the default temporal profile is taken
to have an instantaneous rise with amplitude q and exponential decay with
time constant τq = 10ms [40]. The input I(t) is further modulated by a slow
timecourse synaptic depression term g satisfying

dg(t)/dt = (g0 − g(t))/τd1
− g(t)I(t)/τd2

, (3)

where the time constants are τd1 = 1500ms for replenishment and τd2 = 20ms
for depletion (chosen close to reported values [1, 50, 56, 32]). The variable g
effectively modulates the amplitude of auditory inputs to A1 over long times.

In Figure 2A, each unit shows the connectivity pattern based on existing
studies on AC [35]. The within-unit connectivity is equivalently represented by
the matrix,

W1 =

wee wep wes

wpe wpp wps

wse wsp wss

 =

1.1 2 1
1 2 2
6 0 0

 . (4)

In the single-unit rate model, all synaptic weights wij in the rate model are
constant (as in Mill et al. [30]), with synaptic depression appearing in the feed-
forward thalamic inputs [20]. We choose constant synapses for the single-unit
rate model to better understand the model dynamics before transitioning to the
more complex three-unit model with depressing and facilitating synapses. The
synaptic weights were chosen to agree with known connection types [58] and
connection strengths [35].
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Iso-frequency UnitC

Figure 1: Input and response profiles of the single-unit rate model. A: Gray:
thalamic depression variable g. Black: pyramidal (Pyr) neuron activity. Dashed
orange: PV activity. Green: SOM activity. B: Thalamic inputs (red). The
tone onset occurs at 300ms. The tone duration is 100ms, but fast timescale
thalamic adaptation quickly depresses the thalamic input. q = 5. C: Iso-
frequency unit model. Pyrs form recurrent connections with SOMs and PVs.
Connectivity structure and synaptic weights as in Equation (4). Iso-frequency
auditory stimuli directly excite Pyr (E) neurons and PV (orange) interneurons.

Because both PVs and Pyrs receive direct thalamic inputs, their activations
coincide, but PVs peak earlier, in agreement with existing studies [18]. Because
synapses between excitatory and inhibitory neurons are static, this feature is a
result of the connectivity pattern and not due to synaptic effects. The delay in
SOM activation is caused by a lack of direct thalamic inputs. SOMs have a high
threshold and receive excitatory input from the Pyr population, which occurs
on a slower timescale than thalamic inputs.

An important feature of this model is the early, fast temporal activation of
PVs and the late, broad temporal activation of SOMs. While the total (com-
bined SOM and PV) inhibition is active both before and well after the peak
activation of Pyrs, the differential inhibition of PVs and SOMs are fundamental
to producing nontrivial changes to Pyr activity.

2.2 Three-unit Rate Model

Using the single-unit rate model as a template, we arranged copies into three
units with lateral cortical and thalamic connections (Figure 2A). This arrange-
ment endowed our model with a gross tonotopy, which we used to explore spec-
trally and temporally complex auditory inputs.

The first, or leftmost unit, satisfies

τuu
′
1 = −u1 + f(weeu1 − (wep(t)− aD1)p1 − (wes(t) + bF1)s1 + qI1(t) + w∗eeu2),

τpp
′
1 = −p1 + f(wpeu1 − wppp1 − wpss1 + IOpt,PV + qI1(t) + w∗peu2),

τss
′
1 = −s1 + f(wseu1 − wspp1 − wsss1 + IOpt,SOM + w∗seu2),
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where I1 = i1(t) + i2(t)α. The second, or center unit, satisfies

τuu
′
2 = −u2 + f(weeu2 − (wep(t)− aD2)p2 − (wes(t) + bF2)s2 + qI2(t) + w∗ee(u1 + u3)/2),

τpp
′
2 = −p2 + f(wpeu2 − wppp2 − wpss2 + IOpt,PV + qI2(t) + w∗pe(u1 + u3)/2),

τss
′
2 = −s2 + f(wseu2 − wspp2 − wsss2 + IOpt,SOM + w∗seu2),

where I2(t) = (i1(t)+i3(t))α+i2(t). Finally, the third, or right unit, satisfies

τuu
′
3 = −u3 + f(weeu3 − (wep(t)− aD3)p3 − (wes(t) + bF3)s3 + qI3(t) + w∗eeu2),

τpp
′
3 = −p3 + f(wpeu3 − wppp3 − wpss3 + IOpt,PV + qI3(t) + w∗peu2),

τss
′
3 = −s3 + f(wseu3 − wspp3 − wsss3 + IOpt,SOM + w∗seu2),

where I3 = i2(t) + i3(t)α. We choose α = 0.65 [40]. The function f is
threshold linear (Equation (2)). The parameters τi are membrane time constants
and chosen the same as the single-unit model, τu = τp = τs = 10ms [50, 32]. The
parameters wij are within-unit synaptic weights chosen according to Equation
(4), while the parameters w∗ij are lateral (between unit) synaptic weights. We
chose w∗ee = 1, w∗pe = 1.25, and w∗se = 0.125 to reflect the generally decreasing
lateral synaptic strengths [23].

In contrast to the single-unit rate model, we added facilitating terms Fi in
the SOM to Pyr synapses, and depressing terms Di in the PV to Pyr synapses
[4]. This addition was necessary for the reproduction of tuning-curve adaptation
and did not affect the SSA results. The parameters a and b control the degree
of depression and facilitation, respectively, and we chose a = 0.5, b = 2. The
depressing parameter a was chosen carefully such that the term (wep(t)− aDi)
did not change sign across experimental paradigms. The facilitating variables
Fi satisfy

F ′j = −Fj/τD1
+ ij(t)/τD2

, (5)

where τD1
and τD2

are as in Equation (3). We used the inputs Ii(t) as a proxy
for the excitatory activity ui(t) so we could simulate the facilitation variable
in terms of the depression variable as Fi = 1 − gi. Similarly, the depression
variables Di satisfy

D′j = (1−Dj)/τD1
−Djij(t)/τD2

, (6)

and again using the thalamic input as a proxy for excitatory activity, we sim-
ulated the depression variable as Di = gi. All depressing and facilitating
timescales were chosen according to reported values [1, 50, 56].

The functions Ik(t) are time-dependent inputs with the strongest preference
for unit k, and the profiles of i1, i2, and i3 are shown in Figure 2E (these profiles
are the same as the profile in the single-unit model, Figure 1B). The parameter
q controls the strength of all inputs. Each input ij(t) is modulated by its own
thalamic variable gi, where each gj satisfies Equation (3) independently.

Three successive auditory stimuli applied in order of the frequencies f1, f∗,
and f2, stimulate the left, center, and right units, respectively (Figure 2B–D).
The center unit (u2) responded equally well to both f1 and f2 (Figure 2C), which
is a necessary response for SSA paradigms [52, 60]. For simplicity, activation of
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Iso-frequency Units

E
SOM

PV

E

PV

SOM

PV

E
SOM

Figure 2: Input and response profiles of the three-unit model. A: The three-unit
model of the auditory cortex, with three preferred frequencies, f1, f∗, and f2.
Auditory inputs are applied at each frequency in sequence. Thin gray lines and
arrows show the direction of excitatory lateral connections between columns.
The black traces in panels B–D show the excitatory cortical response of the first
(u1), second (u2), and third (u3) units, respectively. q = 1.3. The traces of the
thalamic inputs are shown in panel E: f1 (gray), f∗ (black), and f2 (red).

.

an adjacent unit did not affect the thalamic variable, i.e., g1, g2, and g3 were
left unaffected by u1, u2, and u3, respectively. We assumed that the frequency
difference between f1 and f2 was great enough that auditory inputs at f1 (f2)
did not affect units responsive to f2 (f1).

We incorporated paradigm-dependent baseline states in the three-unit rate
model. The parameters switch between weak and strong baseline inhibition,
where weak inhibition corresponds to high thalamic activity, and strong inhibi-
tion corresponds to relatively low thalamic activity. This idea is captured more
precisely by the facilitating variable,

F̄ ′ = −F̄ 2/τF1
+ I(t)/τF2

, (7)

where I(t) is the sum of all thalamic inputs (independent of the tonotopic ar-
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Figure 3: The effect of stimulus paradigms on baseline states. For SSA (black
solid) and forward suppression (blue solid), the variable F̄ integrates above
threshold F̄ , resulting in a set of low inhibition parameters. The other paradigms
for tuning-curve adaptation (orange dashed) and PV (greed dot-dashed) acti-
vation integrate to below-threshold levels, resulting in a set of high inhibition
parameters.

rangement), τF1
= 1500, and τF2

= 100. As the experimental paradigm pro-
gresses, F̄ grows and eventually saturates (over the course of approximately 15
seconds). A simulation of Equation (7) is shown in Figure 3 for the various
auditory paradigms.

If F̄ is above the threshold Fth = 0.22, the system exhibits weak baseline
inhibition, and the synapses take baseline values as shown in Equation (4). On
the other hand, if F̄ < Fth, the synapses take the strong baseline inhibitory
values

W2 =

1.1 3 3
1 2 2
6 0 0

 , (8)

and the SOM activity threshold, sth = 1, decreases to sth = 0. In our original
model, we chose a smooth transition between these parameter sets, i.e., wep(t) =
2g(F (t))+3(1−g(F (t))), wes(t) = g(F̄ (t))+3(1−g(F̄ (t))), and sth(t) = 1g(F̄ (t))
where

g(x) =
1

1 + exp(−r(x− Fth))
,

and r, the gain of the sigmoid g was chosen to be steep, e.g., r = 25. However, for
simplicity, we replaced g with a Heaviside function and assumed that the system
already reached either the weak baseline inhibition W1 (Equation (4)), or the
strong baseline inhibition W2 (Equation (8)) based on the given experimental
paradigm.

For each paradigm (with paradigm parameters shown in Table 1), we simu-
lated Equation (7) and found that SSA and forward suppression belonged to the
weak inhibitory regime (F̄ integrated to values above threshold Fth), whereas
tuning-curve adaptation and PV activation belonged to the strong inhibition
regime (F̄ integrated to values below threshold Fth).
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Table 1: Auditory paradigm parameters. SSA parameters from Natan et al.
[32]. Forward suppression parameters from Phillips et al. [37] and Brosch and
Schreiner [7]. Tuning-curve adaptation parameters from Natan et al. [33]. PV
activation parameters from Hamilton et al. [15].

SSA Forward Suppression Tuning-curve Adaptation PV Act.
Stimulus duration 100ms 50ms 100ms 50ms

Inter-stimulus interval 300ms 20ms 300ms -
Inter-trial interval - 380ms 2400ms 950ms

Stimui per trial - 2 8 1

All rate models were simulated using the dynamical systems software XPP
[12], called using PyXPPCALL [39] and visualized using Python [41].

2.3 Spiking Neuron Dynamics

We additionally considered a spiking model equivalent of the rate model. All in-
hibitory neurons consisted of a single somatic compartment, while the excitatory
neurons were modeled as two-compartment, “ball-and-stick” models. For each
excitatory and inhibitory neuron, we modeled the somatic (ball) compartment
as an adaptive exponential integrate-and-fire neuron [5, 24]:

Cm
dV A

i

dt
= IAi − gL(V A

i − EL)− wA
i + gAL∆A

T e
(V A

i −V
A
T )/∆A

T

where the transmembrane currents are IAi = IASyn,i+I
A
Baseline+IAThal(t)+IAOpto(t),

where

IASyn,i = −
∑
B

gAB,i(t)(V
A
i (t)− EB), (9)

and the sum
∑

B in the synaptic current iterates over the presynaptic neu-
rons, B ∈ {e, p, s}. If the presynaptic neuron B is excitatory (inhibitory), then
EB = 0mV (−67mV). If a synaptic connection existed from PV to Pyr, we
included a depression variable, D [4], satisfying Equation (6), with τD1 = 1000,
and τD2 = 250 [1, 50]:

IEPV,i = −gep,i(aD(t))(V E
i (t)− EPV ),

where a = 1.7. As in the rate model, the parameter a was chosen such that
the sign of IEPV,i did not change. The additional depression term was neces-
sary to incorporate depression effects that operate well beyond the timescale of
inhibitory conductances [56].

Noise in our model comes from a white noise process with zero mean and
a standard deviation of 20mV, to simulate intrinsic and extrinsic membrane
fluctuations. All fixed parameters for each neuron type are shown in Table
2. The parameters that we varied manually were entirely contained in the
time-dependent functions IAThal(t) (thalamic inputs) and IAOpto(t) (optogenetic

parameters). The thalamic input profile, IAThal(t), is determined by

IAThal(t) = qIAFastD
A
SlowD

A
Fast,

8

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/626358doi: bioRxiv preprint 

https://doi.org/10.1101/626358
http://creativecommons.org/licenses/by-nc-nd/4.0/


100 150 200 250
0

800

1600

P
y
r

N
eu

ro
n

In
d

ex

A Raster Plot

100 150 200 250
0

100

200

P
V

N
eu

ro
n

In
d

ex

C

100 150 200 250
0

100

200

S
O

M
N

eu
ro

n
In

d
ex E

100 150 200 250
0

20

P
y
r

S
p

ik
e

C
o
u

n
t B Histogram

100 150 200 250
0

10

20

P
V

S
p

ik
e

C
ou

n
t D

100 150 200 250
0

20
S

O
M

S
p

ik
e

C
ou

n
t F

100 120 140 160 180 200 220 240

Time (ms)

0.0

0.1

T
h

al
am

u
s

(n
A

)

G

Figure 4: Raster plot and spike count for each neural population in response
to one auditory stimulus. A: Raster plot of the excitatory population, with
corresponding spike-count histogram (B). C: Raster plot of the PV interneuron
population, with corresponding spike-count histogram (D). E: Raster plot of the
SOM interneuron population, with corresponding spike-count histogram (F). G:
Spatial profile of the thalamic input. q = 0.2nA.

where

dDA
Slow/dt = (1−DA

Slow)/τD1
−DA

SlowI
A(t)/τD2

dDA
Fast/dt = (1−DA

Fast − IA(t))/τD,Fast

dIAFast/dt = (−IAFast + IA(t))/τI ,

where τI = 1ms, τD,Fast = 10ms, τD1
= 1000ms, and τD2

= 250ms [1, 50].
The functions IA(t) (distinct from IAThal) are square wave functions that are
active for the duration of the auditory stimulus. Just as in the rate model,
the thalamic input function IAThal(t) only appears in Pyr and PV neurons. The
profile of the thalamic input is shown in Figure 4G. The optogenetic term,
IAOpto(t), only appears in the PV and SOM equations.

Following a presynaptic spike from neuron j, the postsynaptic effect on
neuron i appears as an instantaneous spike in the postsynaptic conductance
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gij → gij + gij,max/nX, where gij,max is given by Equation (10), and X stands
for the presynaptic neuron type (Pyr, PV, or SOM). The magnitude of the con-
ductances were chosen to have the same proportion as reported values [35], with
the same type of connectivity structure as in the rate model [58].

Gmax =

gee,max gep,max ges,,max

gpe,max gpp,max gps,max

gse,max gsp,max gss,max

 =

 20 40 20
2 40 40

120 0 0

nS. (10)

In the absence of presynaptic spikes, the conductances gij decay exponen-
tially to zero:

dgij
dt

= −gij/τij ,

where τij = 1ms for all synapses [13] except for the time constants from pyra-
midal to PVs, τpe = 25ms, and pyramidal to SOMs, τse = 15ms [27]. In the
spiking model, we switched to the weak inhibitory regime by decreasing the
inhibitory inputs into Pyrs from gep,max = 40 and ges,max = 20 to gep,max = 38
and ges,max = 19.

For excitatory neurons (A = e), the transmembrane currents are IAi =
IASyn,i + IA(t) + IDend,i, where

IDend,i = −gsd,i(1 + bF (t))(VE − VD,i)/(1− κ).

The term F is a dimensionless slow timescale facilitation variable [4] that de-
pends on the thalamic drive, and satisfies Equation (5) (just as in depression,
the additional slow timescale allows the model to operate on multiple timescales
[56]). The parameter b = 3 modulates the facilitation strength, and τF1 = 1000,
and τF2 = 250 [50, 27]. For simplicity, we allowed Fi to vary continuously over
time. The variable w represents spike-frequency adaptation and obeys

τw
dwE

dt
= a (VE − EL)− wE(t).

The dynamics of the dendritic (stick) compartment obey

Cm
dVD
dt

= −gL(VD − EL)− gsd(VD − VE)/κ− ges(t)(VD − EI),

where the parameter κ = 0.3 is the ratio of somatic to total surface area
[24].

For PV and SOM interneurons, the equations are the same as Pyr except that
there is no dendritic component, and parameters differ marginally (see Table 2).
SOMs, unlike PVs, have no incoming synaptic connections from the thalamus,
PVs and other SOMs [35] and only receives excitatory input from Pyrs. Both
PVs and SOMs include the optogenetic term IAOpto(t), and as mentioned above,

only Pyrs and PVs contain the thalamic input term IAThal(t). These connections
reflect the choices made in the rate model.

2.4 Three-unit Spiking Model

We introduced a gross tonotopy into the spiking model by copying the single
unit spiking model into three units with lateral excitatory connections (Figure
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Table 2: Parameter values of spiking neurons.
Pyr Dend PV SOM

Cm (pF) 180 180 80 80
EL (mV) -60 -60 -60 -60
gL (nS) 6.25 6.25 5 5

∆T (mV) 1 - 0.25 1
VT (mV) -40 - -40 -45
Vreset (mV) -60 - -60 -60
gsd (nS) 18.75 18.75 - -

Ibaseline (nA) 0.35 - 0.05 0.025

Iso-frequency Units

Figure 5: A visual representation of the spiking network motif. The zoomed
inset shows how the variables gij place the location of each conductance vari-
able in the microcircuit. The excitatory pyramidal neuron (black) consists of
two compartments, the soma and apical dendrite, while PV (orange) and SOM
(green) interneurons consist of a single compartment. This motif is placed into
one of three iso-frequency units. Each iso-frequency unit forms lateral excita-
tory connections (arranged as in the rate model), where the Pyr population of
a given unit synapses laterally onto the neighboring Pyrs, PVs, and SOMs with
probability p = 0.1.

5). Like the rate model, the thalamic inputs have weaker lateral connections.
For tone responses at frequency f1 (f2), the center unit receives an input of
amplitude proportional to 0.85 that of the left (right) unit [40].

The spiking model contains 800 Pyrs, 100 PVs, and 100 SOMs [59, 42]. For
connection probabilities within units, we chose E ← E connections to have
probability pEE = 0.1 and all other probabilities to be the same, pEE = pES =
pPE = pPP = pPS = pSE = 0.6 [24]. For lateral connection probabilities, we
chose p = 0.1.

The spiking model was constructed in its entirety using Brian2 [47].

3 Results

3.1 Adaptation

Neurons in the AC exhibit adaptation, manifested by a reduction in neural
response to repeated stimuli, for both the spectral and temporal range of in-
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Figure 6: Timecourse of neural activity following optogenetic inhibition, before
and after adaptation. A: Control responses before adaptation. Pyr (black),
PV (orange dashed), and SOM (green) populations respond as in Figure 2A.
B: Following adaptation, all populations respond with reduced amplitude. C:
Firing rates of each population before adaptation after PV inactivation. The Pyr
(black) and SOM (green) populations respond with greater amplitude than the
control case. The control Pyr response is plotted in gray. D: After adaptation,
the disinhibitory effect remains the same, resulting in a greater Pyr (black)
response relative to the control Pyr response (gray). E: Firing rates of each
population before adaptation after SOM inactivation. Here, the disinhibited
Pyr response (black) is nearly identical to the control Pyr response (gray. The
curves almost completely overlap). F: After adaptation, the disinhibitory effect
grows, resulting in a greater Pyr (black) response relative to the control Pyr
response (gray). G: Firing rates of the Pyr population in the control (black),
PV inactivation (orange, hatched), and SOM inactivation (green) conditions.
The horizontal dashed gray line shows the adapted, normalized firing rate. H:
Difference in Pyr firing rates following PV inactivation and control (orange,
hatched) and SOM inactivation and control (green). IOpt,PV=-2, IOpt,SOM=-1,
q = 5.

puts. We hypothesized that a single iso-frequency unit contains the necessary
mechanisms to enable SSA and forward suppression. SSA relies on two in-
hibitory components [32]: the constant disinhibition of excitatory activity due
to PV inactivation, and the increasing disinhibition of excitatory activity due to
SOM inactivation. We started with a simple sequence of five single-frequency
tones, and treated the first tone as a surrogate for the deviant tone, and treated
each tone thereafter as post-deviant tones. A single-unit model with constant
synapses and depressing thalamic inputs (Equation (1)) are sufficient to repro-
duce SSA-like results (Figure 6). The two key features of the mechanism behind
this result is the temporal structure of the responses. In the control case (Figure
6A,B), for each tone, PVs exhibit a temporally fast response and peak earlier
than Pyrs and SOMs, while SOMs exhibit a temporally delayed and broad re-
sponse. SOM responses include a threshold such that they inhibit Pyrs and PVs
above a certain population activity level (Equation (2)). The threshold results
in a delay of SOM activity of several milliseconds, in agreement with existing
results [32].
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With PV inactivation (Figure 6C,D), the Pyr activity was directly propor-
tional to the thalamic inputs, resulting in constant disinhibition prior to (Figure
6C) and following (Figure 6D) adaptation. This constant disinhibition appeared
over all successive tones (Figure 6G,H, orange, hatched).

SOM inactivation at the first tone resulted in no net change in the excitatory
response because PV inhibition compensated for the reduced SOM inhibition
(Figure 6E). Following adaptation, PV activity was relatively weak and did
not compensate for the reduced SOM activity, resulting in Pyr disinhibition
(Figure 6F). This increasing disinhibition appeared over across all successive
tones (Figure 6G,H, green.

We then fine-tuned parameters in the three-unit rate model such that these
single-unit adaptation results persisted in the standard SSA paradigm.

3.2 Stimulus-Specific Adaptation

Auditory SSA manifests as a decrease in cortical response to a repeating au-
ditory stimulus (standard) that does not generalize to another rarely-occurring
stimulus (deviant) [60]. SSA is a well-documented cortical phenomenon in var-
ious animal models including cats [52], rats [53], and mice [32, 33].

We built on multiple existing models for SSA. Mill et al. [30] used multiple
configurations of spiking neuron populations, consisting of inhibitory and ex-
citatory neurons, to reproduce cortical responses to oddball sequences used in
SSA experiments. A two-layer rate model with synaptic depression was built
by Mill et al. [31] to quantify the relationship between the cortical response
and the parameters in SSA experiments, such as stimulus frequency differences,
probability of deviation, and tone presentation rate. Yarden et al. (2017) used a
multi-unit rate model arranged in a coarse tonotopy consisting of inhibitory and
excitatory populations [60] to reproduce general deviance detection. Each study
advanced our understanding of the basic mechanisms underlying SSA, however,
they did not account for multiple inhibitory subtypes and their differential roles
as discovered in recent optogenetic experiments.

Because the model inputs are such that the majority of deviance detection
occurs at the level of the thalamus, we used an equivalent and concise stimulus
paradigm: In the rate model, we used a sequence of 5 single-frequency tones, in
which the first tone was equivalent to the deviant responses, and the remaining
tones were equivalent to post-deviant responses. In the spiking model, we al-
lowed the model to adapt to the standard tones before applying a deviant tone
and recording the post-deviant responses. SSA (Figure 7A) is simulated with
the three-unit rate model (Figure 7B,C) and with the three-unit spiking model
(Figure 7D,E). Figure 7B shows the firing rate of the pyramidal neuron in three
cases: control (black), PV inactivation (orange, hatched), and SOM inactivation
(green). The firing rates are normalized to the adapted firing rate (4th post-
deviant tone number). All neurons (Pyr, PV, and SOM) exhibit adaptation, in
agreement with the literature [32] (data not shown).

In the rate and spiking model, the firing rates increased uniformly across all
post-deviant tones (Figure 7B, bottom, orange hatched and Figure 7C, bottom,
orange hatched, respectively). In the rate and spiking model, the firing rates
exhibited an increase in disinhibition as a function of post-deviant tone number
(Figure 7B, bottom, green and Figure 7C, bottom, green, respectively). Both
results agree with existing results in SSA [32].
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Figure 7: Summary of SSA in the rate and spiking model. A: An example of
an SSA paradigm consisting of standard and deviant tones. Standard tones
(gray) appear with 90% probability, whereas deviant tones (red) appear with
10% probability. B: Rate model PV inactivation (orange, IOpt,PV = −4) re-
sulted in a near-uniform increase in firing rates (FR) through all post-deviant
tones, whereas rate model SOM inactivation (green, IOpt,SOM = −2) revealed
a gradually increasing disinhibitory effect. C: Same plot and results as B, but
in the spiking model. Spiking model PV and SOM inactivation strengths were
IOpt,PV = −0.2nA and IOpt,SOM = −1nA. Panels B and C qualitatively re-
produce experimental results [32]. D: Predicted effects of optogenetic activa-
tion. PV activation (IOpt,PV = 0.5) resulted in a near-uniform decrease in FRs,
whereas SOM activation (IOpt,SOM = 1.2) results in an increase in inhibitory
effect. Rate model: q = 5. Spiking model: q = 1nA.

PV activation resulted in a constant inhibition across deviant and post-
deviant tones, whereas SOM activation resulted in a growing inhibition across
post-deviant tones (Figure 7D).

In order to establish the robustness of these results, we varied several pa-
rameters and measured the Common-contrast SSA Index (CSI) [60],

CSI =
d(f1) + d(f2)− s(f1)− s(f2)

d(f1) + d(f2) + s(f1) + s(f2)
,

where d(fi) is the deviant rate response and s(fi)) is the standard rate response
to frequency fi. If the standard responses are vanishingly small relative to the
deviant responses, CSI ≈ 1, indicating a high degree of SSA. If the standard
responses are nearly equal to the deviant responses, then CSI ≈ 0, indicating a
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Figure 8: The Common-contrast SSA Index (CSI) of the three-unit rate model
as a function of key parameters. High CSI values correspond to light colors,
whereas low CSI values correspond to darker colors. optogenetic inactivation
parameters are marked by white triangles, and optogenetic activation parame-
ters are marked by white squares. A: PV optogenetic parameter vs recurrent
excitation (wee). B: SOM optogenetic parameter vs recurrent excitation. C:
PV optogenetic parameter vs thalamic depression time constant τd1

. D: SOM
optogenetic parameter vs thalamic depression time constant. White regions in
all subfigures denote areas where the firing rate (FR) of the standard tone is too
low (FR< 0.1), or where the excitatory response saturates, making CSI mea-
surements impossible. The control parameter values, IOpt,PV = IOpt,SOM = 0,
are marked by the white circles, where CSI = 0.26. In all white triangles repre-
senting PV and SOM optogenetic inactivation, IOpt,PV = −4, IOpt,SOM = −2,
and CSI = 0.19, 0.025, respectively. In all white squares representing PV and
SOM optogenetic activation, IOpt,PV = IOpt,SOM = 0.5, and CSI = 0.34, 0.29,
respectively. q = 5.

low degree of SSA.
We performed a parameter sweep with four parameters (Figures 8, 9). For

the first parameter, we chose recurrent excitation (wee, Figures 9A,B, 8A,B),
because it is a key parameter in many modeling studies, especially those re-
lated to inhibitory stabilized networks (ISNs) [51]. For the second parameter,
we chose the timescale of thalamic depression (τd1 , Figures 9C,D, 8C,D) be-
cause reported values vary over a large range, from 0.8s [60] to 3s [32]. Finally,
we chose the remaining two parameters to be the strength of PV activation
or inactivation (Figures 9A,C, 8A,C), and the strength of SOM activation or
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Figure 9: The CSI of the three-unit spiking model as a function of key param-
eters. This figure is otherwise identical to Figure 8. The control parameters,
IOpt,PV = IOpt,SOM = 0, are denoted by white circles, and CSI ≈ 0.49. In white
triangles representing PV and SOM optogenetic inactivation, IOpt,PV = −0.2,
IOpt,SOM = −1, and CSI ≈ 0.37, 0.36, respectively. In white squares represent-
ing PV amd SOM optogenetic activation, IOpt,PV = 0.2, IOpt,SOM = 0.5, and
CSI ≈ 0.89, 0.75, respectively. q = 1nA.

inactivation (Figures 9B,D, 8B,D). These choices allowed us to generate experi-
mentally testable predictions. Control parameters are denoted by a white circle
in Figures 8 and 9. PV inactivation parameters are denoted by a triangle in
Figures 8A,C and 9A,C. SOM inactivation parameters are denoted by a triangle
in 8B,D and 9B,D. In all cases, inactivating SOMs had a much greater effect
on decreasing the CSI, reflecting the increasing disinhibition over post-deviant
tones.

These plots reveal robustness in parameter ranges for given optogenetic mod-
ulation strengths. The CSI in the control case (white circle) changed little when
the parameters wee and τd1 were varied (i.e., shifting the white circle up and
down). This result suggests that the cortical model is capable of operating in
a broad parameter regime, and precise parameter values may not always be
important for normal function. In extreme cases, decreasing recurrent exci-
tation removed the decrease in CSI following SOM inactivation (Figure 8B),
suggesting that sufficient recurrent excitation is an important factor in gen-
erating responses in the SSA paradigm. Second, while increasing optogenetic
inhibition (i.e., shifting the white triangle right) had little effect on the CSI,
increasing optogenetic activation (i.e., shifting the white square left) showed an
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increase in CSI in all cases (CSI= 0.35 for PV activation and CSI= 0.31 for
SOM activation). Thus, we predicted that optogenetic activation of PVs and
SOMs will generally improve context-dependent cortical responses.

Much like the rate model, the spiking model exhibited little sensitivity to
changes in wee and τd1 , supporting the prediction that the cortex does not need
precise parameters. However, in contrast to the rate model, the spiking model
showed almost no dependence on recurrent excitation wee in the case of SOM in-
activation (Figure 9B). This effect is likely due to the differences in connectivity
between the rate and spiking models. In the rate model, lateral connections are
much stronger and depend entirely on excitatory activity, thus SSA results in
the rate model are more sensitive to changes in recurrent excitation. In the spik-
ing model, recurrent excitation plays a less important role because the lateral
connection probabilities are low (p = 0.1), whereas the connection probabilities
within units are high (p = 0.6). Moreover, much more of the excitation in the
spiking model comes from the thalamus.

3.3 Forward Suppression
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Figure 10: Forward suppression in the rate and spiking model. Plots show
responses to the second tone in the forward suppression paradigm. A (top): Rate
model. Inactivation of PVs (orange) resulted in lower normalized probe-alone
responses compared to the normalized control responses (black). A (bottom):
Rate model. Inactivation of SOMs (teal) resulted in greater normalized probe-
alone responses compared to the normalized control responses (black). B: The
same results followed in the spiking model (A, top, bottom, respectively). C:
Rate model prediction for forward suppression. PV and SOM activation resulted
in enhanced forward suppression (C, top, bottom, resp.). Rate model: q = 1.3,
PV inactivation and activation values were IOpt,PV = −0.1, 0.025, respectively.
SOM inactivation and activation values were IOpt,SOM = −0.5, 0.1, respectively.
Spiking model: q = 0.4nA, PV inactivation strength was IOpt,PV = −0.2nA and
SOM inactivation strength was IOpt,SOM = 1nA.

The standard forward suppression procedure follows the firing rate of a cho-
sen neuron (with a known preferred frequency) in response to two tones. The
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first tone, called the masker, varies in frequency between trials, while the second
tone, called the probe, remains fixed at the preferred frequency of the neuron.
When the masker frequency is different from the probe frequency, the neuron
response to the probe tone remains unaffected. When the masker frequency
is similar to the probe frequency, neural responses are diminished or abolished
[37, 38].

The stimuli used in the forward suppression paradigm place the baseline state
in the strong inhibitory regime (Figure 3). PV inactivation (orange, dashed)
resulted in an overall strengthening of forward suppression at the preferred fre-
quency relative to the control case (black) (Figure 10A, top). SOM inactivation
(green) reduced forward suppression effects at the preferred frequency relative
to the control case (black) (Figure 10A, bottom). The spiking model yielded
the same results for PV inactivation and SOM inactivation (Figure 10B, top,
bottom, respectively). Strikingly, we use the same parameters used to repro-
duce SSA, with only slight changes to the input strength, which we choose to
be q = 1.3 in forward suppression.

Our model predicted that both PV and SOM activation will result in a
persistent strengthening of forward suppression across preferred and sideband
frequencies (Figure 10C).

3.4 Tuning-Curve Adaptation

Recent work has turned to teasing apart the role of interneurons in modulating
neural tuning curves [36, 38] as well as the role of interneurons in temporal
modulation of tuning curves over the course of adaptation [33] in what we call
tuning-curve adaptation.

To reproduce the tuning-curve adaptation results, we applied a sequence of
5 tones at each frequency (there was negligible difference in the adapted Pyr ac-
tivity after 5 and 8 tones) to generate adapting tuning curves, and repeated this
process with PV and SOM inactivation. We found that this auditory paradigm
resulted in a below-threshold integration of F̄ , so the system switched to a state
of strong baseline inhibition.

Our model reproduced tuning-curve adaptation (Figure 11A,B). The rate
model, before adaptation, exhibited sideband disinhibition with little no on
disinhibition at the preferred frequency following PV and SOM inactivation
((Figure 11A, top). After adaptation, PV inactivation resulted in sideband dis-
inhibition and no preferred frequency disinhibition, whereas SOM inactivation
resulted in disinhibition across all sideband and preferred frequencies (Figure
11A, bottom). The spiking model closely mirrored these results (Figure 11B).
These observations are in agreement with Natan et al. [33], and the three-unit
rate and spiking models are the first to reproduce these results.

The mechanisms responsible for these effects are the synaptic facilitation
and depression effects. Following PV inactivation, only SOM interneurons con-
tribute to Pyr inhibition, and therefore only SOMs can modulate Pyr activity.
Thus, a facilitating SOM-to-Pyr synapse enables SOMs to directly modulate
Pyr activity, resulting in a decreased effect at the preferred frequency. The in-
creasing disinhibition with adaptation at the preferred frequency following SOM
inactivation is a consequence of the same compensating mechanism as in SSA.

Our model predicted that before adaptation, PV activation resulted in a
slight decrease at the preferred frequency, whereas SOM inactivation reduced

18

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/626358doi: bioRxiv preprint 

https://doi.org/10.1101/626358
http://creativecommons.org/licenses/by-nc-nd/4.0/


−1 0 1
0.0

0.2

0.4

P
y
r

F
R

(B
ef

o
re

A
d

ap
t.

) A Rate Model

Control

PV Inact.

SOM Inact.

−1 0 1

2.5

5.0

7.5

10.0

B Spiking Model

Control

PV Inact.

SOM Inact.

−1 0 1

0.0

0.2

0.4

C Rate Model (Prediction)

Control

PV Act.

SOM Act.

−1 0 1

Distance from Preferred Frequency

0.0

0.2

0.4

P
y
r

F
R

(A
ft

er
A

d
ap

t.
)

−1 0 1

Distance from Preferred Frequency

2.5

5.0

7.5

10.0

−1 0 1

Distance from Preferred Frequency

0.0

0.2

0.4

0.0 0.2 0.4

Light Off

0.0

0.2

0.4

L
ig

h
t

O
n

D

0 5 10

Light Off

0

5

10

L
ig

h
t

O
n

E

0.0 0.2 0.4

Light Off

0.0

0.2

0.4

L
ig

h
t

O
n

F

Figure 11: Tuning curve adaptation in the rate and spiking model. In all panels,
black curves and dots represent control Pyr firing rates, orange curves and dots
represent Pyr firing rates after PV inactivation, and green curves and dots rep-
resent Pyr firing rates after SOM inactivation. A, top (bottom): Tuning curves
in the rate model before (after) adaptation. B, top (bottom): Tuning curves
in the spiking model before (after) adaptation. Firing rates between trials are
so consistent that we did not include error bars. C: Tuning-curve adaptation
predictions for PV and SOM activation. D: Plot of firing rates before adapta-
tion with optogenetic suppression of interneurons. x-axis: light off Pyr response
amplitudes y-axis: light on Pyr response amplitudes. The thick part of the
lines (PV green, SOM orange) correspond directly to the firing rates shown in
panel A. The thin part of the lines are linear extrapolations of the FR. Black
lines have unit slope with zero y-intercept. E: Identical to D, but shown for
the spiking model. F: Identical plot as D, but shown for inhibitory interneuron
activation. Rate model q = 5, PV inactivation and activation strengths were
IOpt,PV = −0.5, 1.0 respectively. SOM inactivation and activation strengths
were IOpt,PV = 1, 0.1, respectively. Spiking model q = 1nA, PV inactivation
and activation strengths were IOpt,PV = −1nA, 0.3nA, respectively. SOM inac-
tivation and activation strengths were IOpt,PV = −1nA, 0.1nA, respectively.

overall firing rates across all frequencies (Figure 11C, top). After adaptation,
PV and SOM activation resulted in a subtractive effect (Figure 11C, bottom).

General optogenetic activation and inactivation of PVs and SOMs have been
shown to modulate tuning-curves in combinations of additive, subtractive, mul-
tiplicative, and divisive effects. The model reproduces one of the key results in
Natan et al. [33], where PV and SOM inactivation were found to have additive
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and divisive on tuning curves (Figure 11D,E).

3.5 Enhanced Functional Connectivity

Hamilton et al. [15] established a direct function connection from the thalamus
to deep layer 3 in the cortex using the Ising model [14, 49], and demonstrated
that this functional connection becomes stronger following PV activation [15].
Because the Ising model does not establish anatomical connections, the exact
mechanism underlying this change remains unknown.

Using our three-unit model, we demonstrate a plausible mechanism for this
change. First, we assume that the functional connection from the thalamus to
the cortex is the same as the anatomical connection, so thalamic inputs directly
modulate cortical responses in our model. Next, we show that following an
increase in inhibition, cortical responses become sharper, thus aligning more
closely with thalamic inputs, and improving functional connectivity. These
results are summarized in Figure 12.
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Figure 12: Effects of activating PVs in the rate and spiking models. A: The
control Pyr firing rate in the rate model (black) decreased after PV activation
(orange). The thalamic input is shown in red. Pearson correlation between tha-
lamic input and control (PV activation): 0.77 (0.83). B: The same plot as A, but
with the spiking model. The control Pyr firing rate (black) decreased after PV
activation (orange). PV activation delayed the Pyr activity by approximately
2.5ms, so we shifted the PV activated firing rates (orange dashed) to align with
the onset of the control curve (black) in order to directly compare the similarity
between the PV-activated Pyr activity to the thalamic input. The Pearson cor-
relation between thalamic input and control (PV activation): 0.87 (0.9). C: Pre-
dicted effects following optogenetic inactivation of PVs. Correlation decreased
from 0.77 to 0.71. Rate model q = 1.2, PV activation and inactivation strengths
were IOpt,PV = 1,−1, respectively. Spiking model q = 0.7nA, PV activation and
inactivation strengths were IOpt,PV = 0.2nA,−0.5nA, respectively.

PV activation in the rate model resulted in an increase in the Pearson cor-
relation between the control (black) and thalamic inputs (red), from 0.77 and
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0.83 (Figure 12A). Thus, while inhibitory activation decreased the overall firing
rate, the response became more synchronized to the thalamic inputs, resulting
in an increase in functional connectivity.

PV activation in the spiking model resulted in a delayed response of exci-
tatory activity (Figure 12B). We were curious to see if the PV-activated Pyr
response profile resembled the thalamic activity more than the control Pyr re-
sponse. To aid in quantifying this similarity, we introduced a delay in PV ac-
tivation of approximately 2.5ms so that the onset of PV-activated Pyr activity
(orange dashed) coincided with the onset of the control curve (black), and used
the Pearson correlation to quantify if the PV-activated Pyr response was more
synchronized to the thalamic inputs. We observed an increase in correlation
from 0.84 in the control Pyr activity to 0.89 in the PV-activated Pyr activity,
thus demonstrating a sharpening of excitatory responses, and an increase in
functional connectivity.

These results provide for a simple plausible mechanism for enhanced func-
tional connectivity in the cortex: as inhibition reduces the overall cortical inputs,
cortical responses better synchronize to thalamic inputs, resulting in stronger
correlated activity. We remark that while correlations in general do not measure
functional connections as the Ising model, our model has explicit anatomical
connections, which enables one to directly remove false-positive correlations.
Thus, in this case, the use of the correlation serves as a worthwhile proxy for
the Ising model results in Hamilton et al. [15].

4 Discussion

The recent growth of optogenetic studies have revealed the intricate cortical
circuitry underlying fundamental auditory processing. Accompanying these
studies are a wide range of models with very different mechanisms, such as
single-unit rate models [32], abstracted multi-unit rate models [37, 38, 36], and
Ising models [15]. In the present study, we have introduced a unifying three-
unit rate and three-unit spiking model that reproduces multiple key results from
studies that have used optogenetics in the auditory cortex. In addition to in-
cluding different baseline states that modulate the strength of PV-to-Pyr and
SOM-to-Pyr synapses, the key mechanisms underlying our models are the fast
temporal activation of PVs, the delayed, broad temporal activation of SOMs,
SOM-to-Pyr facilitation, and PV-to-Pyr depression. These mechanisms explain
the differential modulation of cortical responses by interneuron subtypes.

In the present study, the models faithfully reproduce the differential effects
of SOM and PV inactivation in SSA (Figure 7). Our model features multiple
inhibitory subtypes and a gross tonotopy, which is an improvement over exist-
ing models. A model by [60] relies on recurrent excitatory depression without
inhibitory subtypes. An existing model of differential inhibitory modulation in
SSA, which demonstrated similar differential inhibitory effects as in our SSA
result (Figure 2), did not include a tonotopy [32]. A parameter sweep revealed
that both the rate and spiking models are robust to large changes in key pa-
rameters, suggesting that SSA is generally a robust phenomenon [60].

Existing models that reproduce the enhanced forward suppression from PV
inactivation and the reduced forward suppression from SOM inactivation (Fig-
ure 10) include multiple layers that require both depression and facilitation [37],
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or rely on depressing recurrent excitation and do not distinguish between in-
hibitory subtypes [26]. While we utilized synaptic depression and facilitation,
we reproduced the former results with only a single layer, suggesting that the
mechanism supporting forward suppression may be very simple.

The models in the present study are the first to reproduce tuning-curve adap-
tation effects: SOMs exhibit strong preferred-frequency disinhibition following
adaptation, while PV disinhibition is independent of the degree of adaptation
(Figure 11) [33]. These results suggest that the underlying mechanism(s) of
the model, namely the PV/SOM compensation effect, combined with the facil-
itating SOM-to-Pyr synapse and depressing PV-to-Pyr synapse, may serve as
unifying mechanisms of adaptation.

Finally, our models reproduce changes in functional connectivity in the cor-
tex (Figure 12) [15]. By increasing PV activity in the models, excitatory activity
decreases but becomes more synchronized with the shape of thalamic inputs.
This effect agrees with observations in the cortex, where PV activation results
in enhanced functional connectivity [15]. The effects of inhibition on sharpening
cortical responses have been well-established, thus our models serve as plausible
mechanisms for this change [55, 9, 46].

Our models currently do not feature population spikes, which explain many
fundamental cortical responses in AC [25, 26]. In future work, we will seek to
reconcile the differences between our models and the population spike model of
SSA by Yarden and Nelken [60]. Establishing the importance of depression and
facilitation in different synapses and extending our model to include population
spikes warrants further study.

The various optogenetic manipulations in AC considered in the present study
were developed by independent labs to explore different aspects of auditory pro-
cessing. The experimental results are diverse, thus one may reasonably expect
that models with greatly differing mechanisms and parameters are required to
reproduce these results. Strikingly, our minimalistic model, containing simple
mechanisms, has helped us understand the importance of differential informa-
tion processing by various subtypes of inhibitory neurons, and has unified these
disparate studies. As inhibitory neurons form similar circuits throughout the
mammalian cortex, this model can be readily adapted to test their function
and generate predictions (with adjustments for local changes in connectivity) in
different sensory modalities.
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