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Abstract

Background. There is growing recognition that connectome architecture shapes cortical and sub-
cortical grey matter atrophy across a spectrum of neurological and psychiatric diseases. Whether
connectivity contributes to tissue volume loss in schizophrenia in the same manner remains unknown.
Methods. Here we relate tissue volume loss in patients with schizophrenia to patterns of structural
and functional connectivity. Grey matter deformation was estimated in a sample of N = 133
individuals with chronic schizophrenia (48 female, 34.7 ± 12.9 years) and N = 113 controls (64
female, 23.5 ± 8.4 years). Deformation-based morphometry (DBM) was used to estimate cortical
and subcortical grey matter deformation from T1-weighted MR images. Structural and functional
connectivity patterns were derived from an independent sample of N = 70 healthy participants
using diffusion spectrum imaging and resting-state functional MRI.
Results. We find that regional deformation is correlated with the deformation of structurally- and
functionally-connected neighbours. Distributed deformation patterns are circumscribed by specific
functional systems (the ventral attention network) and cytoarchitectonic classes (limbic class), with
an epicenter in the anterior cingulate cortex.
Conclusions. Altogether, the present study demonstrates that brain tissue volume loss in
schizophrenia is conditioned by structural and functional connectivity, accounting for 25-35% of
regional variance in deformation.
Keywords. connectome | schizophrenia | intrinsic networks | disease epicenter | anterior cingulate
| ventral attention network
Running title. Network-driven tissue volume loss in schizophrenia

INTRODUCTION

The human brain is a complex network of anatomically
connected and perpetually interacting neuronal popula-
tions. The connectivity of the network promotes inter-
regional signaling, manifesting in patterns of synchrony
and co-activation [5, 29]. The network also supports
molecular transport, including molecules and organelles
required for neurotransmission and metabolism [50]. Al-
together, the architecture of this white matter “connec-
tome” fundamentally shapes the development and func-
tion of the brain [28].

Despite many benefits for communication efficiency
and resource sharing, networked systems are also vul-
nerable to damage [26]. Connections among elements
allow pathological perturbations to spread between mul-
tiple nodes. Multiple neurodegenerative diseases, includ-
ing Alzheimer’s and Parkinson’s diseases, are increasingly
conceptualized as arising from trans-neuronal spread of

pathogenic misfolded proteins [36, 74]. As a result,
patterns of neurodegeneration resemble the underlying
structural and functional architecture, and are often cen-
tered on one or more specific epicenters [60, 77, 80].

Widespread reductions in tissue volume are also ob-
served in schizophrenia (hereafter referred to as defor-
mation), but their origin remains unknown [38, 63, 65,
67, 68]. Patterns of cortical thinning in schizophrenia are
highly organized and circumscribed by specific networks
[46, 67], raising the possibility that connectome architec-
ture shapes the pathological process. Anatomical con-
nections may potentially allow pathogens, such as mis-
folded proteins or inflammatory markers, to propagate
between regions [26]. Additionally, transport of trophic
factors between regions may be disrupted if white matter
projections are compromised. Both mechanisms would
lead to cortical and subcortical deformation patterns that
reflect the white matter architecture (i.e., white mat-
ter connectivity patterns). Several recent studies have
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found evidence consistent with this idea. For example,
cortical thinning and infracortical white matter break-
down (as measured by fractional anisotropy) appear to
be concomitant in patients with schizophrenia [23] and in
patients with de novo psychotic illness [42]. In addition,
cortical thinning is more pronounced among regions with
stronger grey matter covariance [73]. Altogether, there
is considerable - though circumstantial - evidence that
connectivity influences deformation patterns.

Here we test the hypothesis that distributed deforma-
tion patterns in schizophrenia are conditioned by connec-
tome architecture. We first estimate cortical and sub-
cortical grey matter deformation in a sample of patients
with chronic schizophrenia. We also derive structural and
functional networks from independent samples of healthy
participants. We then investigate whether deformation
patterns are more likely to be concentrated within intrin-
sic networks, and whether regions that experience greater
deformation are also more likely to be connected with
each other.

METHODS and MATERIALS

Discovery dataset: NUSDAST

Data were downloaded from the Northwestern Uni-
versity Schizophrenia Data and Software Tool (NUS-
DAST) [37], via XNAT Central (http://central.xnat.
org/) and the SchizConnect data sharing portal (http://
schizconnect.org/). Detailed information about the data
collection procedure is available in [37]. Data comprised
1.5T T1-weighted MRI scans for the baseline visit of 133
individuals with schizophrenia (48 female, 34.7 ± 12.9
years) and 113 age- and sex-matched healthy controls
(64 female, 23.5± 8.4 years).

Replication dataset: Douglas Institute

Data comprised 3T T1-weighted MRI scans ofN = 108
individuals with schizophrenia (26 female, 35.2 ± 8.2
years) and N = 68 age- and sex-matched healthy con-
trols (21 female, 34.1 ± 9.0 years) in the independent
replication dataset. Detailed information about the data
collection procedure is available in [6].

Regional brain deformation

Local changes in brain tissue volume density were cal-
culated using deformation-based morphometry (DBM;
[3]). Regional DBM values are estimated from the de-
formation applied to each voxel to non-linearly register
each MRI scan to a standard template and can be used
as measures of tissue loss (termed as deformation in this
manuscript) or tissue expansion [15, 18, 39, 64, 80]. For
detailed information about the DBM procedure, please
see Supplemental Information. We defined schizophrenia-
related deformation patterns using a two-tailed two-
sample t-test of voxel-wise differences between DBM val-

ues of patients and controls, while controlling for age, to
assess the group effect on deformation maps. T -statistics
were converted to z-statistics and FDR corrected (5% al-
pha; [7]), where a larger positive z-score corresponds to
greater deformation in patients.

Network reconstruction

Anatomical atlas. The brain was parcellated into 68
cortical areas according to the Desikan-Killiany atlas [22].
The parcels were then further subdivided into 114, 219,
448 and 1000 approximately equally sized parcels [14]
(referred to as “Cammoun atlas” throughout the present
report). The deformation value of each parcel was esti-
mated as the mean deformation of all the voxels assigned
to that parcel. Analyses were repeated at all five par-
cellation resolutions to ensure effects are independent of
spatial scale.

Healthy structural and functional networks.
Structural and functional connectivity data, collected
from 70 healthy individuals (age 28.8 ± 9.1 years, 27 fe-
males) on a 3T scanner and described in detail elsewhere
([33, 45] (http://doi.org/10.5281/zenodo.2872624), were
used to construct high-quality reference brain networks.
Deterministic streamline tractography was used to con-
struct structural connectivity matrices for each healthy
individual from their diffusion spectrum imaging (DSI).
A binary group-average structural connectivity matrix
was generated using a consensus approach preserving
the edge length distribution in individual participants
[8, 10, 44, 45]. Eyes-open resting-state functional MRI
(rs-fMRI) scans were collected in the same participants
and pre-processed as described in [45]. Functional con-
nectivity between pairs of brain regions was estimated
as a zero-lag Pearson correlation coefficient between re-
gional rs-fMRI time series. A group-average functional
connectivity matrix was estimated as the mean connec-
tivity of pair-wise connections across individuals. For
more detail, please see Supplemental Information.

Neighbourhood deformation estimates. Struc-
tural and functional networks were used to define the
neighbours of each brain region. The collective deforma-
tion of structural neighbours of i-th brain region (Di)
was estimated as the mean deformation of all the brain
regions that are connected to node i by a structural con-
nection (i.e., the nodes with no structural connection to
the node under consideration were excluded) :

Di =
1

Ni

Ni∑
j 6=i,j=1

dj (1)

whereDi is the collective deformation of structural neigh-
bours of the i-th node, d is the node deformation, and Ni

is the total number of nodes that are connected to node i
with a structural connection in the group-level structural
connectivity network (i.e., degree of node i). The correc-
tion term 1/Ni was added to normalize the sum by the
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number of connections (i.e., correcting for node degree).
Note that the summation excludes the deformation value
of the node under consideration (j 6= i). Altogether, a
single value was estimated as the mean neighbour defor-
mation for each node and a correlation coefficient was
calculated between the nodes’ and the neighbours’ mean
deformation values.

The collective deformation of functional neighbours of
node i (Di) was estimated in an analogous manner, but
the deformation values of the neighbours were weighted
by the strength of functional correlations:

Di =
1

Ni

Ni∑
j 6=i,j=1

dj × FCij (2)

where Di is collective deformation of functionally-defined
neighbours of i-th node, d is node deformation, Ni is the
degree of node i based on the group-level structural con-
nectivity matrix, and FCij is the mean functional con-
nectivity between nodes i and j across individuals. The
summation excludes the deformation value of the node
under consideration (j 6= i). Note that we only included
the nodes and their corresponding functional connections
if they were structurally connected to the node under
consideration (i.e., node i). Finally, the node deforma-
tion values were correlated with the collective deforma-
tion values of their neighbours weighted by functional
connectivity.

Null models

Comparisons between deformation and connectivity
were tested against two categories of null models. The
first null model preserves spatial autocorrelation [1]. We
first created a surface-based representation of the Cam-
moun atlas on the FreeSurfer fsaverage surface using the
Connectome Mapper toolkit (https://github.com/LTS5/
cmp; [20]). We used the spherical projection of the fsav-
erage surface to define spatial coordinates for each parcel
by selecting the vertex closest to the center-of-mass of
each parcel. The resulting spatial coordinates were used
to generate null models by applying randomly-sampled
rotations and reassigning node values based on that of
the closest resulting parcel (10,000 repetitions). The ro-
tation was applied to one hemisphere and then mirrored
for the other hemisphere. Importantly, this procedure
was performed at the parcel resolution rather than the
vertex resolution to avoid up-sampling the data and po-
tentially altering the distribution of DBM values during
the rotation and reassignment procedure.

The second null model preserves the spatial embedding
(i.e., geometry) of the structural connectome [9, 31, 54].
Edges were first binned according to Euclidean distance.
Within each length bin, pairs of edges were then selected
at random and swapped [9]. The procedure was repeated
1,000 times, generating a population of rewired structural
networks that preserve the degree sequence of the origi-
nal network and approximately preserve the edge length

distribution (i.e., spatial embedding) of the original net-
work.

RESULTS

System-specific deformation

Schizophrenia-related deformation was first defined by
contrasting the deformation maps of schizophrenia pa-
tients and healthy controls (Fig. S7 depicts the unthresh-
olded deformation pattern). The statistically significant
deformation pattern shown in Fig. 1A appears to mainly
target brain regions associated with specific systems. To
statistically assess if this is the case, we used a spa-
tial permutation procedure. Voxels were first parcellated
according to the multi-resolution Cammoun atlas [14].
Nodes were stratified according to their membership in
Yeo resting-state networks [78] (Fig. 1B). We also in-
vestigated volume deformation relative to the cytoarchi-
tectonic classification of human cortex according to the
classic von Economo atlas [59, 69, 71, 72]. We used an
extended version of the von Economo cytoarchitectonic
partition with 7 classes [70] (Fig. 1C). Mean deforma-
tion values were first calculated within each resting-state
network and cytoarchitectonic class for the finest parcel-
lation resolution to ensure the best match to the par-
titions. To assess the extent to which these means are
determined by the network partition, and not trivial dif-
ferences in size, coverage or symmetry, we used a spher-
ical projection null model that permutes network labels
while preserving spatial autocorrelation [1] (referred to as
“spin test” throughout the present report). Network la-
bels were randomly rotated and mean deformation values
were re-computed. The procedure was repeated 10,000
times and used to construct a distribution of network de-
formation means under the null hypothesis that regional
deformation patterns are independent of affiliation with
these large-scale systems.

Fig. 1 shows the mean deformation values and the
corresponding z-scores relative to the null distribution
for each resting-state network (Fig. 1B) and cytoarchi-
tectonic class (Fig. 1C). Consistent with the voxel-wise
anatomical pattern, the ventral attention intrinsic net-
work and the limbic cytoarchitectonic class display sig-
nificantly greater deformation. Conversely, the limbic in-
trinsic network and primary/secondary sensory cytoar-
chitectonic class display significantly lower volume loss.
Note the difference in the anatomical distributions of the
so-called “limbic” systems between Yeo resting-state net-
work and von Economo cytoarchitectonic class; the von
Economo limbic class is focused on the cingulum, while
the Yeo limbic network mainly includes orbitofrontal cor-
tex and temporal poles [78]. Results were consistent
across the five parcellation resolutions (Fig. S3).
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Figure 1. Deformation in schizophrenia patients compared to healthy controls | (A) Deformation-based morphometry
maps of schizophrenia patients and controls were contrasted using two-sample t-tests. The t-statistics are converted to z-scores
and displayed on an MNI template (MNI152_symm_2009a; (x = −4, y = −23, z = 22)). Greater z-scores correspond to
greater deformation in schizophrenia patients relative to healthy controls. The maps are corrected for multiple comparisons by
controlling the false discovery rate at 5% [7]. The deformation pattern is stratified into resting-state networks (RSNs) defined
by Yeo and colleagues [78] (B) and into cytoarchitectonic classes of human cortex defined by the von Economo atlas [69–71]
(C). The mean deformation score is calculated for each network. Network labels are then permuted, while preserving the
spatial autocorrelation, and network-specific means are re-calculated. The procedure is repeated 10,000 times to generate a
null distribution of network-specific deformation. The mean deformation for each RSN (B) and cytoarchitectonic class (C) and
their corresponding z-scores relative to the null distribution generated by the spatial permuting procedure are depicted (10,000
spin tests; two-tailed). Positive z-score indicates greater deformation than expected, while negative z-score indicates lower
deformation than expected. Yeo networks: DM = default mode, DA = dorsal attention, VIS = visual, SM = somatomotor,
LIM = limbic, VA = ventral attention, FP = fronto-parietal. Von Economo classes: AC1 = association cortex, AC2 =
association cortex, PM = primary motor cortex, PS = primary sensory cortex, PSS = primary/secondary sensory, IC = insular
cortex, LB = limbic regions.
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Structural and functional connectivity shape
deformation

The fact that tissue volume loss is circumscribed by
specific intrinsic networks suggests that deformation may
be constrained by network architecture. We therefore di-
rectly test the possibility that the distribution of defor-
mation patterns in schizophrenia is shaped by structural
and functional connectivity. If this is the case, nodes
strongly connected with high-deformation neighbours
should display greater deformation, while nodes con-
nected mainly with low-deformation neighbours should
display less deformation (Fig. 2A).

To test this hypothesis, we investigate whether the
deformation of a given brain region is correlated with
the deformation of its connected neighbours. We de-
rive group-level structural and functional connectivity
networks from an independent sample of N = 70 par-
ticipants (see Methods and Materials). For each net-
work node, we correlate the local schizophrenia-related
deformation value with the normalized sum of its struc-
tural or functional neighbours’ deformation values. For
both structural and functional connectivity, the defor-
mation of a node is significantly correlated with the
deformation of its connected neighbours (resolution 3;
r = 0.51, P = 7.00× 10−4 and r = 0.50, P = 1.00× 10−4

respectively (10,000 spins, two-tailed); Fig. 2B,C). The
results are consistent across all five resolutions, suggest-
ing that the effect does not trivially depend on how the
network is defined (Fig. S1). The results are also consis-
tent when we simultaneously include both structurally-
and functionally- defined neighbours’ deformation esti-
mates as predictors in a multiple regression model (reso-
lution 3; adjusted-r = 0.53, P = 1.00× 10−4 (10,000 spin
tests; two-tailed); Table S1).

Can functional connectivity on its own - without ref-
erence to the underlying structural patterns - be used to
predict deformation among nodes? To address this ques-
tion, we computed the correlations between node and
neighbour deformation (weighted by functional connec-
tivity) for structurally connected neighbours (Fig. 2D;
black). We also computed associations between nodes
and non-structurally connected neighbours (weighted by
functional connectivity) (Fig. 2D; grey). Fig. 2D shows
that the associations remain only when considering struc-
turally connected neighbours. We next investigated
whether functional connectivity alone could explain the
spatial patterning of tissue volume loss. We altered
Equation 2 to include all neighbours (both with and
without a structural connection) and measured the mean
deformation of the functionally-weighted neighbours of
each node. Table S2 shows the correlation between
node and neighbour deformation, when all nodes are
considered and weighted by their functional connectiv-
ity to the target node (column 4). The correlations are
markedly reduced and are no longer statistically signifi-
cant. Additionally, we measured the correlation between
structurally- and functionally- defined neighbour defor-

mation values in both cases. The mean deformation
of structural and functional neighbours are highly cor-
related when only the structurally connected nodes are
taken into account (Table S2, column 3 versus 5), sug-
gesting that structural connectivity is the primary deter-
minant of neighbour deformation. Altogether, the results
demonstrate that functional connectivity between nodes
is associated with their mutual deformation, but only if
there exists an underlying white-matter connection.

We next seek to assess the extent to which these as-
sociations depend on network topology. To address this
question, we constructed two null models: (1) a geomet-
ric null model that randomly rewires pairs of edges in the
structural network, preserving the degree sequence and
edge length distribution [9, 31, 54]; (2) a spatial autocor-
relation null model that projects nodes to a sphere and
randomly rotates the sphere [1] (see Methods and Mate-
rials). Fig. 2E,F shows the correlations between nodes’
and neighbours’ deformation values across the five resolu-
tions using empirical structural and functional networks
(black), as well as the corresponding correlations esti-
mated using the two null models (10,000 repetitions for
the spin test and 1,000 repetitions for the rewired null
model). In both instances, the overall correspondence
between node and neighbour deformation is greater in
the empirical networks than the null networks (P < 0.05;
two-tailed), with the exception of lowest parcellation res-
olution (only significant against the spin tests for SC-
defined neighbours). We included an additional null func-
tional model by randomly reassigning rs-fMRI time series
to each node and re-estimating functional connectivity
networks (1,000 repetitions). The results are consistent
with the ones from the other two null models (Fig. 2F).

Finally, we ask whether deformation in a given node
can be predicted using nodes that are not directly con-
nected, but two or more synapses removed. To test this
hypothesis, for each node we calculated the mean de-
formation of all the connected and not-connected neigh-
bours. The neighbours were weighted either by the bi-
nary path length or the binary communicability between
them [24]. In both instances the correlations were low
(resolution3: r = −0.06 and r = −0.15) and were
not statistically significant according to 10,000 spin tests
(P = 0.9 and P = 0.1; two-tailed). Thus, we identify
a strong influence of directly-connected neighbours, but
find little evidence that neighbours further than one hop
away make a reliable contribution to local deformation.

Identifying the disease epicenter

Given that schizophrenia-related deformation depends
on structural and functional connectivity, we next ask
which brain regions might be the putative epicenters of
the disease, analogous to the source of an epidemic. We
hypothesized that a high-deformation node could poten-
tially be an epicenter if its neighbours also experience
high deformation (Fig. 3A). Nodes were ranked based on
their deformation values and their neighbours’ deforma-
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Figure 2. Network-dependent deformation | (A) Schematic of deformation of a node and its neighbours. If regional
deformation depends on network connectivity, nodes connected to highly deformed neighbours will be more likely to be deformed
themselves, while nodes connected to healthy neighbours will be less likely to be deformed. (B) The deformation of a node is
correlated with the deformation of its neighbours defined by structural connectivity, estimated from an independently-collected
diffusion-weighted MRI dataset. (C) The deformation of a node is correlated with the deformation of its neighbours weighted
by functional connectivity, estimated from an independently-collected resting state functional MRI dataset. Both results are
shown for the third resolution only (219 nodes). See Fig. S1 for results in all 5 resolutions, with and without the effect of
distance regressed out from the data. (D) The correlations between node and neighbour deformation (weighed by functional
connectivity) for structurally connected neighbours (black) were compared to the ones for non-structurally connected neighbours
(grey). The associations remain only when considering structurally connected neighbours. (E,F) Two null structural models
were constructed: (1) a spatial autocorrelation null model that projects nodes to a sphere and randomly rotates the sphere
[1] (i.e., spin tests; 10,000 repetitions; blue); (2) a geometric null model that randomly rewires pairs of edges in the structural
network, preserving the degree sequence and edge length distribution [9, 31, 54] (1,000 repetitions; pink). A null functional
model was also constructed by randomly reassigning resting-state functional MRI time series to each node (1,000 repetitions;
grey). The correlations between nodes’ and neighbours’ deformation values are depicted across the five resolutions using
empirical structural and functional networks (black; e and f respectively), as well as the corresponding correlations using the
null structural and functional networks. Statistically significant empirical correlations are indicated using an asterisk (P < 0.05;
two-tailed).

tion values in ascending order in two separate lists; we
then identified nodes that were highly ranked in both lists
(Fig. 3B) and assessed the significance of rankings using
the spatial permutation testing (spin tests; 10,000 repe-
titions). The results depicted in Fig. 3C,D demonstrate
that areas with significantly high mean rankings across
both lists are primarily located in the bilateral cingu-
late cortices, consistent with previous literature [19]. To
ensure that the effect is not driven by the number of con-

nections (i.e., biased towards high-degree nodes), we nor-
malized the deformation values of neighbours’ of a given
node by its degree. The results were consistent across
the 5 resolutions, indicating that the potential epicen-
ter can be identified independent from the parcellation
resolution (Fig. S2).
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Figure 3. Epicenter identification | (A) We hypothesized that a high-deformation node could potentially be an epicenter if
its neighbours also experience high deformation. (B) Nodes were ranked based on their deformation values and their neighbours’
deformation values in ascending order. Areas with high mean rankings across both lists are more likely to be an epicenter. (C)
Mean rankings are depicted on the brain surface for the third parcellation resolution (See Fig. S2 for results in all 5 resolutions).
(D) The statistical significance of the rankings was assessed using a spatial permutation testing approach (spin tests; 10,000
repetitions). Areas with significantly high rankings across both lists are primarily located in the bilateral cingulate cortices.

Control analyses: spatial proximity, sex and
medication, and replication

It is possible that local deformation correlates with the
deformation of connected neighbours because spatially
proximal nodes trivially exhibit greater co-deformation
and greater connectivity. To rule out this possibility, we
measured the mean Euclidean distance between a given
node and its connected neighbours (centroid-to-centroid).
We then regressed out Euclidean distance from both node
deformation and its neighbours‘ mean deformation and
correlated the residual deformation values. As before,
the deformation of a node was correlated with the de-
formation of its neighbours across resolutions (Fig. S1,
bottom).

To further investigate the effect of spatial proximity,
we excluded the spatially adjacent neighbours of the node
under consideration from the calculation of mean neigh-
bour deformation. More specifically, for a given node i,

we first identify all the nodes that have any voxels spa-
tially adjacent to node i (i.e., abutting node i) in the
image used to parcellate the data. We then exclude all
the spatially adjacent neighbours from Equations 1 and 2
and re-estimate the mean neighbour deformation for each
node. We then assess the statistical significance of the
correlation between node deformation and the mean de-
formation of non-adjacent neighbours using the null mod-
els described above. Consistent with the original analy-
sis, the node and neighbour deformation values are sig-
nificantly correlated even if only the non-adjacent neigh-
bours are considered in the analysis (Fig. S4).

We next sought to investigate the effects of additional
confounding factors, such as sex and antipsychotic med-
ication dose [68]. We removed all participants for whom
current antipsychotic medication dose was not available.
For the remaining 87 participants (64 second-generation,
10 first-generation, 7 both, 6 non-medicated), we com-
puted the chlorpromazine equivalent dosage [49, 76] and
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repeated the above analysis, controlling for medication
dose in addition to age. We also repeated the analy-
ses, controlling for sex in addition to age, for all the 133
participants. We find that the age- and sex- corrected
and age- and medication- corrected deformation maps
are highly correlated with the age-corrected maps (res-
olution 3; r = 0.95, P = 1.00 × 10−4 and r = 0.85,
P = 1.00 × 10−4, respectively (10,000 spin tests; two-
tailed); Fig. S5A). Moreover, we find that the relation-
ship between neighbour connectivity and deformation is
still present and remains independent of spatial proxim-
ity and choice of parcellation (Fig. S5B,C).

Finally, to ensure that the findings are not specific to
the selected sample, we replicated the analyses in an
independently-collected dataset (see Methods and Ma-
terials). Deformation patterns are significantly corre-
lated between the discovery and replication datasets
(Fig. S6A,B). Node deformation is positively correlated
with its connected neighbours’ deformation and this re-
lationship is significantly greater than in the null models
(Fig. S6C). In addition, the putative epicenters of the
disease are localized in the bilateral cingulate cortices,
consistent with the discovery dataset (Fig. S6D).

DISCUSSION

Network patterning of deformation

The principal finding in the present investigation is
that the deformation of an area is associated with the
deformation of areas it is connected with. Interest-
ingly, several recent studies found complementary re-
sults. Wannan and colleagues found that cortical thin-
ning in schizophrenia was more likely among areas with
greater anatomical covariance [73]. Di Biase and col-
leagues found that cortical thinning and reduction in
local white matter anisotropy are anticorrelated in pa-
tients with schizophrenia [23]. Finally, Palaniyappan
and colleagues found that patterns of cortical thinning
are highly structured and systematically deviate from
healthy anatomical covariance patterns [46]. Altogether,
these results show that deformation patterns reflect net-
work architecture, raising the possibility that connections
drive pathology.

The structurally-guided deformation appears to ac-
cumulate in specific systems: the functionally-defined
ventral attention network, and the cytoarchitectonically-
defined limbic class. Moreover, given the structural con-
nectome and the observed deformation pattern, we find
that the likeliest epicenters are located in the cingu-
late cortices. These loci—situated at the intersection of
the ventral attention/salience and default networks—are
implicated in schizophrenia, including changes in tissue
volume [25], structural connectivity [62, 79], activation
[47, 48], and functional connectivity [12, 61, 75]. In-
terestingly, the same areas are frequently found to be
affected in a wide range of mental illnesses, including
schizophrenia, bipolar disorder, depression, addiction,

obsessive-compulsive disorder and anxiety [32]. These
regions may be particularly vulnerable because they are
rich in von Economo neurons (VENs), which have also
been associated with multiple psychiatric disorders in-
cluding schizophrenia [2, 13, 16].

Despite the strong influence of directly-connected
neighbours, we find little evidence that neighbours fur-
ther than one hop away make a reliable contribution to
local deformation. In other words, network connectivity
plays an important role in shaping deformation but the
influence is expressed mainly via direct connections and
is more difficult to detect at longer path lengths. This
result suggests the presence of additional, perhaps local,
factors that shape deformation beyond the global con-
nection patterns.

A spreading hypothesis of schizophrenia?

Our results are broadly reminiscent of an emerging lit-
erature on the signature of network structure in neurode-
generation [26, 51]. In neurodegenerative diseases, trans-
neuronal transport of toxic misfolded proteins is associ-
ated with cell death and atrophy [40, 43, 74]. As a result,
patterns of atrophy in neurodegenerative diseases often
resemble structural and functional network patterns [17],
a result that has been reported in Alzheimer’s disease
[35, 53, 60], Parkinson’s disease [77, 80, 81] and amy-
otrophic lateral sclerosis [58].

Do the present results support an analogous “spread-
ing” hypothesis of schizophrenia? We have demonstrated
that connectivity and deformation (i.e., reductions in
brain tissue volume, but not necessarily cell death) are
related in schizophrenia. Nevertheless, the evidence is
circumstantial and it is impossible to disentangle the two.
An alternative possibility is that systematic white matter
disconnectivity - which we do not measure here - impedes
normal trans-neuronal transport of trophic factors, lead-
ing to deformation among connected populations.

Methodological considerations

We confirmed that the present results do not trivially
depend on confounding factors such as parcellation res-
olution and spatial distance, but there are several tech-
nological factors that need to be taken into account as
well. Structural connectivity, as estimated by diffusion
weighted imaging, is prone to systematic false positives
and false negatives [41, 66]. Connectomes generated by
streamline tractography are undirected, so it is impos-
sible to test the causal effect of connectivity on defor-
mation. Likewise, we cannot directly measure neuronal
malformation in vivo; we instead operationalized defor-
mation as changes in tissue volume density.

More generally, the current results are correlational: it
is impossible to infer whether deformation drives struc-
tural and/or functional disconnectivity reported in pre-
vious literature or vice versa, or whether there is another
underlying mechanism that independently potentiates
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both tissue loss and disconnectivity [21, 27, 30, 55, 56].
We opted to use a high-quality healthy young control
dataset as a “gold standard” for structural and func-
tional connectivity. Our rationale for using connectiv-
ity from healthy controls was that tissue volume loss in
patients might compromise connectivity among affected
regions. As a result, connection patterns derived from
patients may misrepresent the architectural foundation
for the distributed deformation patterns we observe in
chronic patients. However, this approach ignores ex-
tensive changes in structural and functional connectiv-
ity that are well-documented in schizophrenia [21, 30].
For example, it is possible that deterioration in white
matter connectivity obstructs or reroutes the spread of
pathology. How changes in tissue volume and discon-
nectivity mutually evolve over the time course of the dis-
ease remains an exciting open question; application of the
present methodology to longitudinal samples will help to
resolve the temporal evolution of these effects.

Finally, there is limited information available on med-
ication history or adherence of the patients, making it
difficult to assess whether medication influences the re-
sults. Our control analyses on a subset of patients indi-
cate that the network effects reported here are unlikely
to be correlated with chlorpromazine equivalent antipsy-
chotic medication dose. Other groups have recently re-
ported similar relationships between anatomical covari-
ance networks and changes in cortical thickness in first-
episode psychosis, chronic schizophrenia and treatment-
resistant schizophrenia [73], suggesting that the observed
effect is likely to be present earlier in the disease and in
drug-naive patients.
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Supplemental Information

Deformation-Based Morphometry (DBM)

Automated pre-processing was performed
using the minc-bpipe-library pipeline (https:
//github.com/CobraLab/minc-bpipe-library) on
each T1-weighted MRI scan. The outputs were
visually inspected and quality-controlled. A group-
average template for the remaining participants, both
healthy controls and patients, was built using the
ANTs multivariate template construction tool [4]
(https://github.com/CobraLab/documentation/wiki/
ANTs-Multivariate-Template-Construction).

Local changes in brain tissue volume density were cal-
culated using deformation-based morphometry (DBM;
[3]). Regional DBM values are estimated from the de-
formation applied to each voxel to non-linearly register
each MRI scan to a standard template and can be used
as measures of tissue loss (termed as deformation in this
manuscript) or tissue expansion [15, 18, 39, 64, 80]. In
the present study, we used ANTs multivariate template
construction pipeline [4] (antsMultivariateTemplateCon-
struction2.sh) to measure the DBM values. This pipeline
produces a population average through the iterative es-
timation and application of affine non-linear warps to a
starting rigid model (here the MNI ICBM symm 2009c
model). The final iteration non-linear transformation of
each structural brain image to the unbiased template im-
age produced during the registration process is used as
a deformation based map for each subject in the tem-
plate space. A deformation map quantifies the amount
of displacement of each voxel in each direction in the
3-dimensional template space that was required to trans-
form each brain image from subject to template space.
The local change in tissue density is then estimated as
the derivative of the displacement of a given voxel in each
direction by calculating the determinant of the Jacobian
matrix of displacement [80]. Thus, no change in volume is
given with 1 (i.e., no displacement relative to template),
tissue expansion is given with a value between 0 and 1
(i.e., subject image was shrunk to be transformed to tem-
plate space), and tissue loss or deformation is given with
a value larger than 1 (i.e., subject image was expanded
to be transformed to template space). For easier inter-
pretation of the changes in volume density, we calculated
the logarithm of the determinant, such that no change
is given by 0, tissue loss (i.e., deformation) is given by a
positive value, and tissue expansion is given by a negative
value.

Following the deformation procedure, the maps were
blurred at twice the resolution of the input images (i.e.,
2 mm full-width/half-maximum) and the non-brain tis-
sue was removed from each brain using FreeSurfer im-
age analysis suite (release v6.0.0; http://surfer.nmr.mgh.
harvard.edu/). The voxel-wise data were then extracted
for each participant for further analysis.

DBM was chosen over voxel-based morphometry

(VBM) because the latter requires more extensive spa-
tial smoothing and therefore has lower spatial resolution.
This is important for the present study because we sought
to correlate deformation values in brain regions with de-
formation values in neighbouring regions. There is also
some evidence to suggest that DBM is more sensitive to
grey matter changes in subcortex [11, 57], which have
been demonstrated in schizophrenia [67].

Healthy structural and functional networks

Structural and functional connectivity data, collected
from 70 healthy individuals at Lausanne University Hos-
pital in Switzerland (age 28.8 ± 9.1 years, 27 females) on
a 3T scanner and described in detail elsewhere [33, 45]
(http://doi.org/10.5281/zenodo.2872624), were used to
construct high-quality reference brain networks of a
healthy population. In brief, deterministic streamline
tractography was used to construct structural connec-
tivity matrices for each healthy individual from their dif-
fusion spectrum imaging (DSI) data at each of the five
parcellation resolutions. Each pair-wise structural con-
nection was weighted by fiber density. In order to cor-
rect for any size differences between the two brain areas
as well as the inherent bias towards longer fibers in trac-
tography process, the fiber density of structural connec-
tions was estimated as the number of streamlines nor-
malized by the mean surface area of the two regions and
the mean length of streamlines connecting them [34, 45].
Finally, a binary group-average structural connectivity
matrix was generated using a consensus approach pre-
serving the edge length distribution in individual partic-
ipants [8, 10, 44, 45].

Furthermore, functional data were collected for the
same 70 participants using eyes-open resting-state func-
tional MRI (rs-fMRI) scans and were pre-processed as
described in [45]. Briefly, fMRI volumes were first cor-
rected for physiological variables, including regression
of white matter, cerebrospinal fluid and motion (three
translations and three rotations, estimated by rigid body
co-registration). BOLD time series were then lowpass fil-
tered (temporal Gaussian filter with full width half max-
imum equal to 1.92 s). The first four time points were
excluded from subsequent analysis. High motion frame
censoring (“scrubbing”) was performed as described by
Power and colleagues [52]. Functional connectivity be-
tween pairs of brain regions was estimated as zero-lag
Pearson correlation coefficient between rs-fMRI time se-
ries of the two regions for each individual. The group-
average functional connectivity matrix was estimated as
the mean connectivity of pair-wise connections across in-
dividuals. We retained negative functional connections
and used unthresholded functional connectivity data for
the original analyses reported in the main text. However,
we repeated the analyses after thresholding the negative
connections (i.e., assigning them to zero) to rule out the
possibility of any confounding effects. The results re-
mained the same when we removed the negative func-
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tional connections both at the individual subject level and at the group-average level (Fig. S8).
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TABLE S1. Multiple regression model | The relationship between deformation of a node and its neighbours for schizophrenia
patients was estimated using a multiple regression model, where deformation values of structurally- and functionally- defined
neighbours were simultaneously included as predictors. P -values are estimated from 10,000 rotational permutations (i.e., spin
tests; two-tailed).

n=68 n=114 n=219 n=448 n=1000
inter-node distance not regressed:

adjusted-r 0.59 0.56 0.53 0.52 0.55
P -value 1.61×10−2 1.00×10−3 1.00×10−4 1.00×10−4 9.99×10−5

inter-node distance regressed:
adjusted-r 0.56 0.51 0.43 0.44 0.51
P -value 1.89×10−2 3.70×10−3 2.00×10−4 2.00×10−4 9.99×10−5

TABLE S2. Influence of functional connectivity on the spatial patterning of tissue volume loss | Correlations
between node’s and FC-weighted mean neighbours’ deformation values for the structurally connected neighbours are provided
in column 2 (across five parcellation resolutions given in column 1). These correlations are markedly reduced when the mean
neighbour deformation is defined by all FC-weighted neighbours, irrespective of structural connectivity (column 4). Additionally,
the correlations between structurally- and functionally- defined neighbour deformation values were estimated in both cases.
The mean deformation of structural and functional neighbours are highly correlated when only the structurally connected nodes
are taken into account (column 3 versus 5).

Resolution

Structurally connected neighbours All neighbours
Correlation between Correlation between Correlation between Correlation between

node’s and neighbours’ SC neighbours’ (no weight) node’s and all neighbours’ SC neighbours’ (no weight)
deformations and SC neighbours’ deformations and all neighbours’
(FC weight) deformations (FC weight) (FC weight) deformations (FC weight)

n = 68 0.53 0.80 0.32 0.16
n = 114 0.51 0.72 0.26 -0.005
n = 219 0.50 0.76 0.17 0.02
n = 448 0.48 0.74 0.07 0.02
n = 1000 0.50 0.74 0.06 0.07
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Figure S1. Network-dependent deformation (contrasting schizophrenia patients and controls) | Deformation is
defined using a general linear model to identify regions where deformation is different between patients with schizophrenia and
controls (controlling for age). The deformation of a node is correlated with the deformation of connected neighbours, defined by
structural connectivity (SC) and functional connectivity (FC). Top and bottom: Results are shown with and without removing
the effect of spatial proximity. Left to right: Correlations are shown for five progressively finer anatomical parcellations [14].
P -values are obtained from 10,000 spatial permutation tests (i.e., spin tests; two-tailed).
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Figure S2. Epicenter analysis across parcellation resolutions | (A) The epicenter identification analysis was repeated
across five progressively finer anatomical parcellations. The nodes were ranked based on their deformation values and their
neighbours’ deformation values in ascending order. The mean rankings are depicted on the brain surface. (B) The areas with
significant, mean highest rankings are consistently located in the bilateral cingulate cortices across the parcellations (10,000
spin tests).
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Figure S3. System-specific deformation | The mean deformation for Yeo resting state networks [78] and von Economo
cytoarchitectonic classes [69–71] and their corresponding z-scores relative to the null distribution generated by the 10,000
spatial permutations (i.e., spin tests; two-tailed) are depicted across five progressively finer anatomical parcellations. Yeo
networks: DM = default mode, DA = dorsal attention, VIS = visual, SM = somatomotor, LIM = limbic, VA = ventral
attention, FP = fronto-parietal. Von Economo classes: AC1 = association cortex, AC2 = association cortex, PM = primary
motor cortex, PS = primary sensory cortex, PSS = primary/secondary sensory, IC = insular cortex, LB = limbic regions.
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Figure S4. The relationship between a node’s and its spatially non-adjacent neighbours’ deformation values |
Node deformation was correlated with the mean deformation of spatially non-adjacent neighbours (i.e., non-abutting neighbours)
across five parcellation resolutions, such that the spatially adjacent neighbours of a given node were excluded from the calculation
of its mean neighbour deformation. The statistical significance of the correlations was assessed against the structural and
functional null models: (1) a spatial autocorrelation null model that projects nodes to a sphere and randomly rotates the
sphere [1] (i.e., spin tests; 10,000 repetitions; blue); (2) a geometric null model that randomly rewires pairs of edges in the
structural network, preserving the degree sequence and edge length distribution [9, 31, 54] (1,000 repetitions; pink); (3) A null
functional model was also constructed by randomly reassigning resting-state functional MRI time series to each node (1,000
repetitions; grey). Asterisks, colored according to the corresponding null model, indicate significant empirical correlations
(P < 0.05; two-tailed).
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Figure S5. Control analysis: effects of confounding factors | (A) Deformation is defined using a general linear model
controlling for age and sex (top) and for age and medication (bottom; for a subset of patients (N = 87) for whom the
chlorpromazine equivalent antipsychotic medication dose information was available). The age- and sex- corrected and age- and
medication- corrected deformations are highly correlated with age-corrected deformation pattern. (B) The correlations between
node’s and neighbours’ age- and sex- corrected deformation values are depicted across the five parcellation resolutions using
empirical structural and functional networks (black). The statistical significance of the correlations was assessed against the
structural and functional null models: (1) a spatial autocorrelation null model that projects nodes to a sphere and randomly
rotates the sphere [1] (i.e., spin tests; 10,000 repetitions; blue); (2) a geometric null model that randomly rewires pairs of
edges in the structural network, preserving the degree sequence and edge length distribution [9, 31, 54] (1,000 repetitions;
pink); (3) A null functional model was also constructed by randomly reassigning resting-state functional MRI time series to
each node (1,000 repetitions; grey). Asterisks, colored according to the corresponding null model, indicate significant empirical
correlations (P < 0.05; two-tailed). (C) The correlations between node’s and neighbours’ age- and medication- corrected
deformation values are depicted across the five resolutions using empirical structural and functional networks (black), as well
as the correlations obtained from the null structural and functional networks. The significance of the empirical correlations is
shown using asterisks colored according to the corresponding null model (P < 0.05; two-tailed).
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Figure S6. Replication dataset | (A) Schizophrenia-related deformation pattern was estimated using an independent dataset
with N = 108 individuals with schizophrenia and N = 68 healthy controls. The deformation pattern in replication dataset
is significantly correlated with the deformation pattern obtained from the discovery dataset across five progressively finer
parcellation resolution. (10,000 spin tests; two-tailed). (B) The deformation pattern is depicted for the replication dataset.
The t-statistics are converted to z-scores and displayed on an MNI template (MNI152_symm_2009a; (x = −4, y = −23,
z = 22)). Greater z-scores correspond to greater deformation in schizophrenia patients relative to healthy controls. The maps
are corrected for multiple comparisons by controlling the false discovery rate at 5% [7]. (C) The correlations between node’s
and neighbours’ deformation values are depicted across the parcellations using empirical structural and functional networks
(black). The statistical significance of the correlations was assessed against the structural and functional null models: (1)
a spatial autocorrelation null model that projects nodes to a sphere and randomly rotates the sphere [1] (i.e., spin tests;
10,000 repetitions; blue); (2) a geometric null model that randomly rewires pairs of edges in the structural network, preserving
the degree sequence and edge length distribution [9, 31, 54] (1,000 repetitions; pink); (3) A null functional model was also
constructed by randomly reassigning resting-state functional MRI time series to each node (1,000 repetitions; grey). Asterisks
colored according to the corresponding null model, indicate significant empirical correlations (P < 0.05; two-tailed). (D) The
epicenter identification analysis was applied to the replication dataset across the parcellations. The nodes were ranked based
on their deformation values and their neighbours’ deformation values in ascending orders. The mean rankings are depicted on
the brain surface. The areas with significant, mean highest rankings are consistently located in the bilateral cingulate cortices
across the parcellations (10,000 spin tests).
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Figure S7. Unthresholded deformation pattern | Unthresholded schizophrenia-related deformation is depicted for the
NUSDAST dataset. The deformation pattern was identified by contrasting the deformation maps of schizophrenia patients and
healthy controls, using a mass-univariate analysis (i.e., two-tailed two-sample t-test; controlling for age) of voxel-wise differences
between DBM values of the two groups.

Figure S8. Effect of thresholded functional connectivity on neighbour deformation | Group-average functional
connectivity network was used to estimate mean neighbour deformation (Equation 2). Negative functional connections were
retained and unthresholded functional connectivity data was used for the original analyses reported in the manuscript. However,
the analysis was repeated after thresholding the negative connections (i.e., assigning them to zero) to rule out the possibility
of any confounding effects. Mean neighbour deformation pattern calculated using the thresholded functional connections is
highly correlated with the mean neighbour deformation estimated from the unthresholded functional connectivity data across
the parcellation resolutions. Functional connectivity data was thresholded at the group-average level in the results depicted
here (the results are consistent when the negative functional connections are removed at the individual subject level).
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