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Abstract 
This paper reports the CASP13 results of distance-based contact prediction, threading and folding 

methods implemented in three RaptorX servers, which are built upon the powerful deep 

convolutional residual neural network (ResNet) method initiated by us for contact prediction in 

CASP12. On the 32 CASP13 FM (free-modeling) targets with a median MSA (multiple sequence 

alignment) depth of 36, RaptorX yielded the best contact prediction among 46 groups and almost 

the best 3D structure modeling among all server groups without time-consuming conformation 

sampling. In particular, RaptorX achieved top L/5, L/2 and L long-range contact precision of 70%, 

58% and 45%, respectively, and predicted correct folds (TMscore>0.5) for 18 of 32 targets. 

Although on average underperforming AlphaFold in 3D modeling, RaptorX predicted correct folds 

for all FM targets with >300 residues (T0950-D1, T0969-D1 and T1000-D2) and generated the best 

3D models for T0950-D1 and T0969-D1 among all groups. This CASP13 test confirms our 

previous findings: (1) predicted distance is more useful than contacts for both template-based and 

free modeling; and (2) structure modeling may be improved by integrating alignment and co-

evolutionary information via deep learning. This paper will discuss progress we have made since 

CASP12, the strength and weakness of our methods, and why deep learning performed much better 

in CASP13. 

Keywords: Protein folding, protein contact and distance prediction, deep convolutional residual 

neural network (ResNet), CASP 

Introduction 
Significant progress has been achieved on protein structure prediction due to the development of 

two major ideas: (1) direct coupling analysis (DCA) for co-evolution analysis1-5; and (2) very deep 

and fully convolutional residual neural network (ResNet) for protein contact and distance 

prediction6, 7. DCA may recover a small set of long-range native contacts when the protein under 

study has a large number of sequence homologs. In contrast, deep ResNet not only works very well 

on proteins without many sequence homologs, but also can directly predict inter-residue or inter-

atom distance.  

In CASP12 and previous CAMEO tests we have demonstrated that deep ResNet can greatly 

improve contact prediction6, 8-10 and that even without time-consuming conformation sampling, 

contacts predicted by deep ResNet can result in correct folding of (even membrane) proteins 

without detectable homology in PDB11. Afterwards, the power of deep convolutional neural 

network has been further validated by other research groups who have reimplemented similar deep 

networks for contact prediction12-14. Although contact prediction itself is an important problem that 

needs further research, we have switched our focus from contact to distance prediction and 

accordingly distance-based protein structure modeling. This is because a distance matrix contains 

finer-grained information than a contact matrix and provides more physical constraints of a protein 

structure, e.g., distance is metric while contact is not. That is, a distance matrix can determine a 

protein structure much more accurately than a contact matrix. Trained by distance instead of contact 

matrices, ResNet may automatically learn more about the intrinsic properties of a protein structure 

and thus, greatly reduce the conformation space, improve folding accuracy and shorten running 

time needed for protein folding.  

Although not totally new, there were only few studies on protein distance prediction and their 

accuracy were not very satisfactory15-18. In 2012, we have employed a probabilistic neural network 

to predict inter-residue distance distribution from sequence profile and mutual information and then 

from predicted distribution derived protein-specific distance-based potential for decoy ranking19, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/624460doi: bioRxiv preprint 

https://doi.org/10.1101/624460
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

remote homology detection20 and folding simulation21. In these studies, we have shown that protein-

specific distance potential derived from machine learning performs well on decoy ranking and 

remote homology detection and comparably with other methods in folding simulation.  

Prior to CASP13, we have extended our deep ResNet to protein distance prediction and showed 

that distance-based potential predicted by ResNet may significantly improve protein threading for 

targets without good templates in PDB22. We have also implemented a simple and efficient distance 

geometry algorithm that may quickly fold a protein sequence from distance and torsion angles 

predicted by deep ResNet23. Our deep ResNet not only can predict distance matrix from sequence 

and co-evolutionary information, but also from template and alignment information. In this paper 

we describe our methods for distance prediction and distance-based protein threading and folding, 

analyze our performance in CASP13 and discuss the strengths and weaknesses of our approach. 

We will also examine a few specific targets and highlight our views on the future development and 

challenge. 

Materials and Methods 
Deep dilated ResNet for protein distance and contact prediction. We use a very similar deep 

ResNet as described in our previous paper6 to predict the Euclidean distance distribution of two 

atoms (of different residues) in a protein to be folded. Our ResNet model consists of one 1D deep 

ResNet, one 2D deep dilated ResNet and one Softmax layer (Fig. 1). The 1D and 2D ResNets 

capture long-range sequential and pairwise context, respectively. The 2D ResNet used a dilated 

instead of the traditional convolutional operation24 to yield slightly better accuracy with fewer 

model parameters. The 1D and 2D ResNets use ~7 and ~60 convolutional layers, respectively, and 

kernel size of 15 and 5×5, respectively. 

We discretize inter-atom distance into 25 bins: <4.5Å, 4.5-5Å, 5-5.5Å, …, 15-15.5Å, 15.5-16Å, 

and >16Å and treat each bin as a label for classification. The ResNet model for distance prediction 

is trained using the same procedure as before6. Contact prediction is fulfilled by summing up the 

probability of all the Cβ-Cβdistance bins falling into interval [0, 8Å]. Our distance-based contact 

prediction has 3-4% better long-range prediction precision than the ResNet model directly trained 

from contact matrices. Besides Cβ-Cβdistance distribution, we also trained individual ResNet 

models to predict distance distribution for the following atom pairs: Cα-Cα, Cα-Cg, Cg-Cg, and N-

O. Here Cg represents the first CG atom in an amino acid. When CG does not exist, OG or SG is 

used. The predicted distance of these 5 atom pairs is used together to fold a protein, which on 

average is slightly better than using the predicted Cβ-Cβdistance alone.  

Figure 1 places here 
 
In addition to distance, we have employed a 1D deep ResNet of 19 convolutional layers to predict 

3-state secondary structure and backbone torsion angles 𝜙 and 𝜓 from position specific scoring 

matrix (PSSM) generated by HHblits25. To predict a distribution function for torsion angles, we 

train our ResNet model by maximizing the following probability function. 

 𝑃(𝜙, 𝜓 | �̅�, �̅�, 𝜎1, 𝜎2, 𝜌) = 1
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In Eqn.(1), �̅�, �̅� are the mean, 𝜎1, 𝜎2 are the variance and 𝜌 is the correlation. That is, our deep 

ResNet outputs the mean and variance of the torsion angles at each residue. 

Multiple sequence alignment (MSA) and input features. We generated four different MSAs by 

running HHblits25 with 3 iterations and E-value set to 0.001 and 1 and running Jackhmmer26 with 

E-value set to 0.001 and 0.00001, respectively. HHblits searches through the uniclust30 library 
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released in 2017 and Jackhmmer searches through the uniprot protein sequence database released 

in 2018. Metagenomics sequence database was not used for MSA generation. From each individual 

MSA, we derive protein sequential and pairwise features. Sequential features include sequence 

profile, secondary structure and solvent accessibility predicted by RaptorX-Property27. Pairwise 

features include standard and APC-corrected mutual information, pairwise contact potential and 

direct co-evolution strength calculated by CCMpred28. In summary, for each target we generated 4 

sets of input features and accordingly 4 different distance predictions, which are then averaged to 

obtain the final prediction.   

Training  data. We constructed our training and validation sets from PDB25 created early in 2018, 

which in total has 11410 proteins. No two proteins in this set share more than 25% sequence identity. 

We randomly selected about 900 proteins to form the validation set and used the remaining to form 

the training set. We have trained three models for each atom pair, which are then combined to form 

the final model.  

RaptorX-TBM. RaptorX-TBM used our new threading program DeepThreader22 to build 

sequence-template alignments and identify templates and then employed Rosetta-CM29 to build 3D 

models from alignment. DeepThreader greatly outperforms previous threading methods by 

integrating CNFpred30 with protein-specific distance potential predicted by our deep ResNet model. 

CNFpred is our old in-house threading program that aligns sequence to templates by integrating 

sequence profile, predicted secondary structure and solvent accessibility via Conditional Neural 

Fields31, which is a combination of shallow convolutional neural network and linear-graph-based 

Conditional Random Fields. CNFpred is on average more sensitive than HHpred32, but much worse 

than DeepThreader. RaptorX-TBM and CNFpred used PDB90 as the template database while our 

deep ResNet models for distance and angle prediction were trained by PDB25. 

RaptorX-Contact. In CASP13 we registered RaptorX-Contact for both contact prediction and 

distance-based template-free modeling. RaptorX-Contact converts predicted distance distribution, 

secondary structure and backbone torsion angles into CNS restraints and builds 3D models by 

running CNS33, a software program for experimental protein structure determination. Given a 

matrix corresponding to the distance probability distribution for each atom pair, we pick 7L (L is 

sequence length) pairs with the highest predicted likelihood (probability) having distance <15Å 

and assume that their distance is <15Å. From the predicted distance distribution of one atom pair, 

we estimate the mean distance m and standard deviation s, and then use m-s and m+s as its distance 

lower and upper bounds. We used the same method as CONFOLD34 to derive hydrogen-bond 

restraints from predicted alpha helices. Different from CONFOLD that derives torsion angles from 

predicted secondary structure, we use the mean degree and variance predicted by our 1D deep 

ResNet as torsion angle restraints. 

For each protein, we run CNS to generate 200 possible 3D models and then choose 5 with the least 

violation of distance restraints as the final models. CNS uses distance geometry to build initial 3D 

models from distance restraints and then employs simulated annealing to refine bonds and angles 

so that the resultant models are protein-like. CNS can generate a 3D model very quickly. We 

generated multiple models for a protein since the CNS solution may not be globally optimal.  

RaptorX-DeepModeller. RaptorX-DeepModeller is also a distance-based folding server, differing 

from RaptorX-Contact in that the ResNet model used by RaptorX-DeepModeller has a few 

additional input features extracted from sequence-template alignment generated by RaptroX-TBM. 

The additional features include sequence-template similarity score (e.g., amino acid similarity, 

sequence profile similarity and secondary structure similarity) and an initial distance matrix 

extracted from the weakly similar template according to the alignment. Supposing two target 

residues i and j are aligned to two template residues k and l, we assign the distance between k and 

l as the initial distance of i and j. When one target residue is not aligned, the corresponding row and 
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column in the initial distance matrix is empty.  

RaptorX-DeepModeller is developed to study if we can improve protein structure modeling by 

integrating alignment, template and co-evolutionary information through deep learning. Due to the 

limit of computing resources, RaptorX-DeepModeller used in CASP13 was trained by the training 

set described in6, which is smaller than what was used for RaptorX-Contact in CASP13.  

Results 

Contact and distance prediction accuracy in CASP13 

RaptorX-Contact was officially ranked first among 46 human and server contact predictors, in 

terms of a combination of several metrics. When top L/5, L/2 and L long-range predicted contacts 

are evaluated, on the FM targets RaptorX-Contact has precision 70.054%, 57.787% and 44.731%, 

respectively, and F1 values 0.233, 0.362 and 0.411, respectively. The other top 4 groups (which 

also used deep ResNet) have top L/5 long-range precision 65.678%, 64.031%, 60.798% and 60.595% 

and F1 values 0.213, 0.208, 0.192 and 0.191, respectively. As a control, MetaPSICOV35 (the 

CASP11 winner built upon a shallow neural network) ran by the CASP13 organizers has top L/5 

long-range precision=25.16% and F1=0.078, respectively, and GaussDCA36 (the only DCA method 

blindly tested in CASP13) has precision=21.757% and F1=0.067, respectively. Fig. 2A and 2B 

show that the F1 value and precision of our deep ResNet method is not strongly correlated with 

MSA depth (trendline R2<0.38), which is different from the pure DCA method that heavily depends 

on MSA depth. Note that here we use the MSA depth downloaded from the CASP13 contact 

assessment web page.  

AlphaFold did not submit contact prediction, according to its presentation at the 7th CAPRI meeting, 

it has a similar F1 value as RaptorX-Contact. On the top L/5, L/2 and L long-range contacts 

predicted for the FM targets, AlphaFold has F1 values 0.227, 0.369 and 0.419, respectively. That 

is, there is almost no performance difference between the deep network architectures used by 

AlphaFold and RaptorX-Contact. 

In addition to precision and F1, entropy score is introduced by the contact prediction assessors in 

CASP12 to measure the spread-out of predicted contacts. A contact prediction with a large F1 value 

may not result in good 3D structure modeling if the predicted contacts are mainly located in a small 

contact submatrix. As reported by CASP13, when top 10, L/5 and L/2 long-range contacts are 

considered, RaptorX-Contact has entropy score 0.311, 0.643 and 1.255, respectively, much larger 

than GaussDCA36, which has entropy score 0.151, 0.332, and 0.553, respectively. Even when only 

top 10 contacts are considered, on most targets RaptorX-Contact has better entropy score than 

GaussDCA (Fig. 2C). This result indicates that contacts predicted by deep ResNet may contain 

more information content for 3D structure modeling than contacts predicted by DCA.  

Our predicted Cβ-Cβdistance on the FM targets has average error 3.76Å, precision 0.678, recall 

0.540 and F1 0.588. While evaluating distance prediction, we consider only those atom pairs with 

sequence separation at least 12 and predicted distance <15Å. Recall is calculated as the ratio of 

atom pairs with native distance <15Å that are predicted to have distance <15Å. Precision is 

calculated as the ratio of atom pairs with predicted distance <15Å that have native distance <15Å. 

Our Cβ-Cβdistance prediction error for most targets is less than 4Å (Fig. 2D) and it is not strongly 

correlated with MSA depth (coefficient=-0.45, trendline R2=0.2036). RaptorX-Contact predicted 

distance well for quite a few targets such as T0969-D1 (MSA depth>1000) and T0957s2-D1 (MSA 

depth 28), but did badly on T0953s1 and T0989-D1, both having MSA depth ~50 (SI Appendix, 

Fig. S1). RaptorX-Contact failed on T0953s1 because it has only 34 long-range residue pairs with 

native distance <15Å, which is much smaller than typical. While estimating distance bounds from 

predicted distance distribution, we assumed each target had about 7L long-range pairs with 

distance<15Å, which resulted in a big prediction error. T0989 is a 2-domain target. Its 1st domain 
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has much better co-evolution signal than the 2nd one. We did not split T0989 into 2 domains, which 

resulted in many more Cβ-Cβpairs in D1 being assumed to have distance<15Å and thus, led to a 

big prediction error. When T0989-D1 is predicted independently, its Cβ-Cβdistance error is only 

4.89Å. 

Figure 2 places here 
 

Distance-based tertiary structure modeling accuracy in CASP13 

When all the CASP13 targets are considered, RaptorX-DeepModeller has the best 3D modeling 

performance among the three RaptorX servers. When only FM targets are considered, the average 

quality (TMscore) of the first models predicted by RatporX-DeepModeller, RaptorX-Contact and 

RaptorX-TBM are 0.471, 0.474 and 0.402, respectively. When all 5 models are considered for each 

target, RatporX-DeepModeller, RaptorX-Contact and RaptorX-TBM predicted correct folds 

(TMscore>0.5) for 17, 17, and 9 targets, respectively. On FM targets RaptorX-DeepModeller has 

slightly worse accuracy than RaptorX-Contact because the former was trained by a smaller training 

set than the latter. When combined together, RaptorX-DeepModeller and RaptorX-Contact 

predicted correct folds for 18 of the 32 FM targets. 

Fig. 3 compares the performance of the three RaptorX servers and an old in-house threading 

program CNFpred on the FM targets. RaptorX-DeepModeller modeling accuracy is highly 

correlated with RaptorX-Contact (Fig. 3A) and RaptorX-TBM (Fig. 3B) since they mainly depend 

on pairwise distance information predicted by deep ResNet. Although both used the same template 

database, RaptorX-TBM performs much better than CNFpred (Fig. 3D) since RaptorX-TBM can 

recognize structurally similar templates even if they are not evolutionarily related to a target. This 

indicates the importance of pairwise distance in protein threading with remotely related templates. 

We did not have a contact-based threading program, but Zhang’s CEthreader is such a program and 

was tested in CASP13. RaptorX-TBM outperformed CEthreader by about 14% in terms of the 

TMscore of the first models on hard targets. This may suggest that predicted distance is much more 

informative than contacts for template-based modeling. 

RaptorX-DeepModeller and RaptorX-Contact clearly outperform RaptorX-TBM (Fig. 3C), which 

implies that for FM targets template-based modeling is insufficient even if predicted distance 

information is used to align sequence to templates and to select templates. For easier targets, 

RaptorX-DeepModeller has a larger advantage over both RaptorX-Contact and RaptorX-TBM. For 

example, among the 13 FM/TBM targets, RaptorX-DeepModeller predicted better models for 8 of 

them than RaptorX-Contact and RaptorX-TBM combined (Table 1). This may suggest that it is 

useful to integrate template and co-evolutionary information for structure modeling. 

 
Figure 3 places here 
Table 1 places here 

 

Progress in contact prediction and 3D structure modeling 

We did not keep our old ResNet models developed in 2016, so cannot measure their performance 

on the CASP13 FM targets. Here we measure our progress using the 37 CASP12 FM targets. We 

compare contact prediction and folding accuracy of the two old versions of our ResNet model 

(denoted as CASP12-submit and CASP12-postdict) and the version trained right before CASP13 

(denoted as CASP13-submit). CASP12-submit represents our model used during CASP12 in 2016. 

As explained before9, our ResNet method was under development during CASP12 and CASP12-

submit was updated from time to time, so CASP12-submit is not a single complete version of our 

ResNet model. CASP12-postdict was trained right after CASP12, representing a full 
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implementation of our deep ResNet method described in6. CASP13-submit was trained right before 

CASP13, improving over CASP12-postdict in the following aspects: 1) dilated convolution is used 

in CASP13-submit; and 2) 25 discrete distance bins are used in CASP13-submit as labels while 3 

distance bins (0-8Å, 8-15Å and >15Å) are used in CASP12-postdict. To compare these three 

versions of our method, we use the same input features for the 37 CASP12 FM targets, which were 

generated in CASP12. Note that here for fair comparison, both CASP12-postdict and CASP13-

submit were trained by the same set of ~10,000 training proteins. Nevertheless, while used in 

CASP13, CASP13-submit was trained by a slightly larger set of 11410 training proteins. 

CASP12-postdict yields much better contact prediction and structure modeling than CASP12-

submit because the former is a complete implementation of our ResNet method while the latter is 

not (Table 2). The results of both CASP12-postdict and CASP12-submit are taken from Tables 1 

and 3 of our previous paper9. For contact prediction, on average CASP13-submit outperforms 

CASP12-postdict by about 6-7%. That is, compared to our CASP12 submission, we have greatly 

improved contact prediction, but compared to the ResNet model we have fully implemented in 

2016, the improvement is only 6-7%. The major improvement of our CASP13 method over 

CASP12-postdict lies in 3D structure modeling. Table 2 shows that by using distance-based instead 

of contact-based folding, we may improve 3D structure model quality by 0.1 in terms of TMscore. 

For most targets, distance-based folding generated better 3D models than contact-based folding 

(Fig. 4). 

Table 2 places here 
Figure 4 places here 

 

Case Study 

In this section, we study the models predicted by our servers for the three largest CASP13 FM 

targets: T0950-D1, T0969-D1 and T1000-D2. They have 342, 354, and 368 residues with valid 

coordinates, respectively, and MSA depth 103, 1132 and 877, respectively. Our servers predicted 

correct folds for all three targets and the best models for T0950-D1 and T0969-D1 among all human 

and server groups. In contrast, AlphaFold predicted correct folds for two of them, although on 

average AlphaFold has better modeling accuracy on all the FM targets.  

T0950-D1. This is a very hard target and the ratio between its MSA depth and sequence length is 

only ~0.3. Among all the 3D models accepted by CASP13, only seven have a correct fold (i.e., 

TMscore>0.5), including 5 models generated by RaptorX-DeepModeller, one by Zhang’s 

QUARK37 and one by Cheng’s human group MULTICOM. The best model was generated by 

RaptorX-DeepModeller, which has TMscore=0.589 (Fig. 5). MULTICOM’s best model is a copy 

of RaptorX-DeepModeller’s first model with TMscore=0.564. Zhang’s and AlphaFold’s best 

models have TMscore 0.506 and 0.443, respectively. Note that although this is a server-only target, 

some human groups such as AlphaFold and MULTICOM still submitted their predictions. 

Structure alignment by DeepAlign shows that the most similar training protein in our training set 

has TMscore=0.542 with this target. The template-based models predicted by RaptorX-TBM and 

CNFpred have TMscore=0.437 and 0.173, respectively, much worse than RaptorX-DeepModeller 

models. This implies that RaptorX-DeepModeller predicted models for this target not by only 

copying from a single template, although RaptorX-DeepModeller used alignments generated by 

RaptorX-TBM as input. That is, RaptorX-DeepModeller is able to generate better models than both 

RaptorX-Contact and RaptorX-TBM by combining alignment, template and co-evolution 

information. 

T0969-D1. This target has the largest MSA depth among all CASP13 FM targets. Quite a few 

groups predicted models with a correct fold. RaptorX-Contact predicted a model with 

TMscore=0.796 (Fig. 5), better than all the other server models and all but 4 human models 
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(MESHI, MUFold, Seder3mm and Elofsson), which have similar quality as the RaptorX-Contact 

model simply because they are derived from this server model. For this target, AlphaFold’s and 

Zhang’s best models have TMscore=0.730 and 0.680, respectively. The most similar training 

protein in our training set has TMscore=0.452 with this target. The template-based models 

predicted by RaptorX-TBM and CNFpred have TMscore=0.549 and 0.357, respectively. This 

implies that our server model is not copied from individual proteins in our training set or template 

database.   

T1000-D2. This is a very large protein domain with MSA depth being 877. Quite a few groups 

predicted models of a correct fold. In particular, AlphaFold and Zhang predicted very good models 

with TMscore=0.880 and 0.851, respectively. Our servers have also predicted a correct fold (Fig. 

5), but with much lower model quality (TMscore=0.680). The most similar training protein in our 

training set has TMscore=0.347 with the target. The template-based models predicted by RaptorX-

TBM and CNFpred have TMscore=0.387 and 0.233, respectively. That is, our server model is not 

copied from individual proteins in our training set or template database. For this target, our contact 

prediction is ranked very top, better than Zhang’s contact prediction regardless of ranking metrics, 

but our 3D modeling has much lower quality than Zhang’s. This may indicate that we did not do a 

good job in building 3D model from predicted distance distribution. 

Discussion and Conclusion 
Our CASP13 result confirms that by using deep ResNet to predict inter-atom or inter-residue 

distance, we may fold proteins much more accurately than ever before on a Linux workstation of 

20 CPUs within minutes to hours. In particular, our distance-based folding algorithm predicted the 

best models for two of the three largest FM targets with ~350 residues. Our analysis shows that 

predicted distance is useful for both template-free and template-based modeling, and that protein 

modeling can be further improved by combining template and co-evolutionary information.  

What went right? 

The CASP13 result is consistent with our previous findings: (1) protein distance matrix can be 

predicted very well by a deep and global ResNet; (2) predicted distance can greatly improve both 

template-based and template free modeling; (3) predicted distance is more informative than 

contacts for protein structure modeling; (4) protein structure modeling can be further improved by 

integrating template and co-evolutionary information. Our protocol for contact prediction works 

very well even if we did not use as many layers as AlphaFold or as many input features as other 

top groups. Our distance geometry method for building 3D models from predicted distance works 

fine on very large targets even without time-consuming conformation sampling.  

What went wrong? 

Although our protocol for predicting contacts from predicted distance distribution worked very 

well, our protocol for building 3D models from predicted distance distribution was not optimal. 

Our contact prediction has similar F1 value as AlphaFold, but our 3D modeling protocol 

underperformed AlphaFold on quite a few FM targets even if on very large targets our method has 

favorable performance. This may imply that for many FM targets we did not do a good job in 

deriving distance bounds from predicted distance distribution. One possible issue is that while 

estimating mean distance and standard deviation from predicted distance distribution, we simply 

ignored the predicted probability of distance >16Å for those atom pairs which are likely to have 

native distance less than 15Å. The other possible issue is that we assumed that each target has at 

least 7L Cβ-Cβ pairs with native distance less than 15Å. Such an assumption leads to a big distance 

prediction error for T0953s1, which has only a small number of Cβ-Cβ pairs with native distance 

<15Å.  

We did not handle some multi-domain targets very well, especially when domains have very 
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different MSA depth. In this case some domains of a target may have much stronger co-evolution 

signal than the others. Since we did not split a multi-domain target into domains when none of them 

have reasonable templates, the atom pairs chosen by us to build 3D models may not spread 

uniformly across different domains or segments. As such, some domains (or segments) may be 

covered by very few selected atom pairs while others may be covered by many more selected atom 

pairs. Both scenarios may lead to bad 3D modeling.   

Our current folding protocol does not use fragment assembly, sophisticated energy functions or 

time-consuming conformation sampling, which may prevent us from generating high-resolution 

good models. For example, some of our models for beta sheets do not form very good hydrogen-

bonding since our folding method does not have any energy terms promoting the formation of beta 

sheet. Finally, we have not used the metagenomics sequence database for MSA generation, which 

may be helpful for few targets.  

Why did deep learning perform much better in CASP13 than before? 

Deep learning such as Deep Belief Networks (DBN) has been attempted for protein contact 

prediction in 201238, 39, but it drew little attention from the community. This is mainly because that 

the DBN method has almost the same performance as traditional machine learning methods such 

as Random Forests, as reported by the developers38, 39, who have tested this method in CASP10, 

CASP11 and CASP12. In CASP11 and CASP12, the DBN method even underperformed 

MetaPSICOV, a traditional neural network method. The main reason why deep learning becomes 

effective for protein folding in the past couple of years is not the enlargement of protein sequence 

databases, but the introduction of a totally new formulation of contact prediction (i.e., simultaneous 

prediction of all contacts in a protein) and new network architecture (i.e., deep and global ResNet). 

In fact, the CASP13 FM targets have similar MSA depth as the CASP12 FM targets, but the contact 

prediction and folding accuracy on CASP13 FM targets is much higher due to community-wide 

adoption of deep and global ResNet for contact and distance prediction.  

The deep ResNet method is not simply an enhancement of the DBN method. Their difference is 

analogous to that between DCA (direct coupling analysis) and mutual information. Both DCA and 

deep ResNet are global methods while mutual information and DBN are local methods. While 

predicting the label (i.e., contact or distance) of two residues, global methods look at the labels of 

all other residue pairs, but local methods do not. By applying a global convolutional operation to 

the whole contact/distance matrix, deep ResNet may learn protein structure patterns easily and yield 

much better contact/distance prediction. As pointed out by us before9, when one contact is predicted 

independent of the others, even if ResNet is applied, the resultant contact prediction accuracy is not 

very good. Further, it is much easier to build a very deep ResNet than a very deep DBN, which 

limits the performance of DBN.  

Our ResNet method for contact prediction (i.e., RaptorX-Contact) was not fully implemented 

during CASP12, not to mention the folding protocol. Because of this, our CASP12 contact 

prediction accuracy is not much higher than the other groups, although RaptorX-Contact was still 

ranked first in CASP12. As shown in Table 2 and previous blind CAMEO test40, a full 

implementation of our ResNet method right after CASP12 has much better contact prediction and 

folding accuracy. 

The major difference among top groups in CASP13 

Many CASP13 groups have incorporated deep convolutional neural network into their structure 

prediction pipelines. A nature question to ask is what are their major difference? Here we analyze 

4 representative groups: AlphaFold, Zhang, RaptorX and Baker41. We do not consider some top 

human groups such as Cheng’s MULTICOM since they heavily relied on consensus analysis of 

server models, and it is unclear if there are any major methods underlying their results other than 

consensus analysis.  
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AlphaFold used deep ResNet to predict inter-residue distance distribution, converted this 

distribution to protein-specific distance potential and then minimized it by conformation sampling 

and gradient-based methods to build 3D models. Zhang used ResNet to predict inter-residue 

contacts and then used them to guide folding simulation. RaptorX used ResNet to predict inter-

atom distance distribution, converted it to mean distance and deviation and then used this as 

distance bounds to build 3D models by CNS. Baker used DCA to predict contacts for some targets 

and then conducted contact-assisted folding simulation. On average Baker’s Rosetta 

underperformed the other three groups because of lack of the deep learning module, although 

Rosetta can do extensive conformation sampling. AlphaFold and RaptorX have a similar contact 

prediction performance, which is slightly better than Zhang. In terms of 3D modeling, RaptorX has 

similar performance as Zhang’s servers, although their methods seem to be different. For 3D 

modeling, RaptorX’s strength lies in distance prediction, which provides more informative than 

contact prediction, but Zhang made it up by incorporating predicted contacts into a well-developed 

folding engine. Compared to RaptorX, AlphaFold has a much better folding protocol, i.e., building 

3D models by conformation sampling and gradient-based optimization methods. Compared to 

Zhang, AlphaFold has more informative distance prediction. In summary, AlphaFold did well in 

both the deep learning and model building steps while the other three groups did well in only one 

of them, which is why AlphaFold stands out in modeling FM targets. 

Author Contributions 
JX conceived, designed and implemented the major algorithms and wrote the paper. SW built the 

initial pipeline for MSA generation and template-based modeling and helped draw Figure 1.  
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Table 1. The accuracy (TMscore) of the first models generated by RaptorX-DeepModeller, 

RaptorX-Contact and RaptorX-TBM on the 13 FM/TBM models. 

 

 

 

 

 

 

 

 

 

 

Table 2. Progress in terms of long-range contact prediction precision and 3D structure modeling on 

the 37 CASP12 FM targets. 

 Long-range contact precision (%) Folding accuracy (TMscore) 

 L L/2 L/5 L/10 Top 1 Top 5 

CASP12-submit 28.63 36.42 46.76 51.50 0.274 0.307 

CASP12-postdict 40.18 50.20 58.87 63.93 0.354 0.397 

CASP13-submit 43.10 56.90 66.90 73.80 0.466 0.476 

 

  

Target Length DeepModeller RX-Contact RX-TBM 

T0949-D1 129 0.687 0.631 0.685 

T0953s2-D1 44 0.180 0.166 0.155 

T0955-D1 41 0.589 0.344 0.688 

T0958-D1 77 0.657 0.554 0.609 

T0970-D1 85 0.535 0.547 0.458 

T0978-D1 413 0.701 0.583 0.680 

T0981-D3 203 0.650 0.545 0.637 

T0986s1-D1 92 0.689 0.655 0.654 

T0992-D1 107 0.745 0.745 0.712 

T0997-D1 185 0.774 0.757 0.577 

T1005-D1 326 0.705 0.641 0.677 

T1008-D1 77 0.280 0.276 0.278 

T1019s1-D1 58 0.376 0.441 0.327 
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Figure Legends 

Figure 1. The overall architecture of deep dilated ResNet used in CASP13.  

Figure 2. Contact and distance prediction analysis. (A) relationship between contact prediction F1 

value and MSA depth; (B) relationship between contact prediction precision and MSA depth; (C) 

Entropy score of top 10 long-range contacts predicted by our method vs. GaussDCA; (D) 

relationship between Cb-Cb distance prediction error and MSA depth.  

Figure 3. Comparison of 3D structure modeling accuracy of three RaptorX servers (RaptorX-

DeepModeller, RaptorX-Contact and RaptorX-TBM) and an old in-housing threading program 

CNFpred.  

Figure 4. Distance-based folding accuracy vs. contact-based folding accuracy, measured on the 37 

CASP12 FM targets.  

Figure 5. Superimposition between the best 3D models (blue) predicted by our servers and the 

native structure (red) for three largest CASP13 FM targets (T0950-D1, T0969-D1 and T1000-D2). 
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Figure 1 
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Figure 3 
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Figure 4 
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Figure 5 
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Supporting Information 
 

 

Figure S1. Native (lower triangle) and predicted (upper triangle) distance matrices of 4 CASP13 

hard targets: T0969-D1, T0957s2-D1, T0953s1-D1 and T0989-D1. 
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