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bNeurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s
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Abstract

Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI)
tractography frequently require manual WM bundle segmentation, often called “virtual
dissection”. Human errors and personal decisions make these manual segmentations hard
to reproduce, which have not yet been quantified by the dMRI community. The contribu-
tion of this study is to provide the first large-scale, international, multi-center variability
assessment of the “virtual dissection” of the pyramidal tract (PyT). Eleven (11) experts
and thirteen (13) non-experts in neuroanatomy and “virtual dissection” were asked to per-
form 30 PyT segmentation and their results were compared using various voxel-wise and
streamline-wise measures. Overall the voxel representation is always more reproducible
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than streamlines (≈70% and ≈35% overlap respectively) and distances between segmen-
tations are also lower for voxel-wise than streamline-wise measures (≈3mm and ≈6mm
respectively). This needs to be seriously considered before using tract-based measures
(e.g. bundle volume versus streamline count) for an analysis. We show and argue that
future bundle segmentation protocols need to be designed to be more robust to hu-
man subjectivity. Coordinated efforts by the diffusion MRI tractography community are
needed to quantify and account for reproducibility of WM bundle extraction techniques
in this era of open and collaborative science.

Keywords: Diffusion MRI, White Matter, Tractography, Bundle segmentation,
Intra-rater, inter-rater, Reproducibility

1. Introduction1

DMRI tractography reconstructs streamlines modeling white matter (WM) connec-2

tivty. The set of all streamlines forms an object often called the tractogram [Jeurissen3

et al., 2017; Catani and De Schotten, 2008]. When specific hypotheses about known4

pathways, i.e. WM bundles, are investigated, neuroanatomists design “dissection plans”5

that contain anatomical landmarks and instructions to isolate the bundle of interest from6

this whole brain tractogram [Catani et al., 2002; Catani and De Schotten, 2008; Chenot7

et al., 2018; Hau et al., 2016]. Bundles can be segmented to study WM morphology,8

asymmetries, and then can be associated to specific functions [Lee Masson et al., 2017;9

Groeschel et al., 2014; Masson et al., 2018; Catani et al., 2007] with approaches similar10

to other brain structures [Lister and Barnes, 2009; Reitz et al., 2009]. Despite having11

similar anatomical definitions across publications, the absence of common segmentation12

protocols for tractography leads to differences that are for the most part unknown and13

unaccounted for. We need to know how variable our measurements are if we want to be14

able to have robust tract-based statistics in the future.15

The need for a gold standard that quantifies human variability is well-known and well-16

studied in other fields, such as automatic image segmentation, cell counting or in machine17

learning [Kleesiek et al., 2016; Entis et al., 2012; Boccardi et al., 2011; Piccinini et al.,18

2014]. For applications such as hippocampi or tumor segmentation, thorough assessments19

of reproducibility and multiple iterations of manual segmentation protocols already exist20

[Boccardi et al., 2015; Frisoni et al., 2015]. These protocols were specifically designed21

to reduce the impact of human variability and help outcome comparison in large-scale22

clinical trials across multiple centers [Gwet, 2012; Frisoni et al., 2015].23

The reproducibility of manual bundle segmentation will always be lower than manual24

image segmentation. Image segmentation in 3D requires local decision-making, and the25

decision to include voxels or not is directly done by raters. However, bundle segmenta-26

tion requires local decisions that possibly impact the whole volume as streamlines reach27

outside of the scope of decisions made by raters. Since small hand-drawn regions of inter-28

est (ROI) or spheres are used to segment bundles, small mistakes can have far-reaching29
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consequences. Even if ROIs are fairly reproducible in a strict protocol, the resulting bun-30

dles could be far from reproducible. This local-decision and global-impact conundrum31

makes the design of reproducible protocols more difficult and can potentially cause low32

agreement between raters.33

1.1. Bundle segmentation34

Bundle segmentation is the action of isolating streamlines based on neuroanatomical35

priors, using known regions where certain conditions need to be satisfied. Inclusion and36

exclusion regions-of-interests (ROIs) are drawn and defined at the voxel-level using co-37

registered structural images, and are subsequently used to select the streamlines produced38

by tractography [Catani et al., 2002; Behrens et al., 2007; Ghaziri et al., 2015; Renauld39

et al., 2016; Rozanski et al., 2017], as seen in the Figure 1. Streamlines can be included40

or discarded using inclusion ROIs where streamlines are forced to traverse, and exclusion41

ROIs that cannot be crossed. Known structures such as grey nuclei, gyri or sulci and42

recognizable signal signatures can be used as landmarks to create a plan to follow for the43

segmentation [Catani et al., 2002; Catani and De Schotten, 2008; Hau et al., 2016; Chenot44

et al., 2018]. In this work, the person performing the task of segmentation (i.e drawing45

the ROIs, following the protocol) will be referred to as rater. Manual segmentation can46

be performed in software such as, but not limited to, DTI studio [Jiang et al., 2006],47

Trackvis [Wang et al., 2007], exploreDTI [Leemans et al., 2009], MITK Diffusion [Neher48

et al., 2012], FiberNavigator [Chamberland et al., 2014], or MI-Brain [Rheault et al.,49

2016] (Figure 1).50
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Figure 1: Illustration of the dissection plan of the PyT using the MI-Brain software [Rheault et al., 2016].
3 axial inclusion ROIs (pink, green, yellow), 1 sagittal exclusion ROI (orange), 2 coronal exclusion ROIs
(light yellow) and a cerebellum exclusion ROI (red). The whole brain tractogram was segmented to
obtain the left pyramidal tract.

Once a bundle of interest is segmented from a tractogram, the analysis varies ac-51

cording to the research question. It is common to report asymmetry or group difference52

in bundle volume [Catani et al., 2007; Song et al., 2014; Chenot et al., 2018], diffusion53

values within the bundle of interest (average fractional anisotropy, mean diffusivity, etc.)54

[De Erausquin and Alba-Ferrara, 2013; Kimura-Ohba et al., 2016; Ling et al., 2012; Mole55

et al., 2016] or values along the bundle (called profilometry and tractometry) [Dayan56

et al., 2016; Yeatman et al., 2012, 2018; Cousineau et al., 2017]. Spatial distribution57

of cortical terminations of streamlines can help to identify cortical regions with under-58

lying WM connections affected by a condition [Rushworth et al., 2005; Johansen-Berg59

et al., 2004; Donahue et al., 2016; Mars et al., 2011; Behrens et al., 2003]. Reporting60

the number of streamlines (e.g streamline count in connectivity matrix or density maps)61

is still very much present as a way to compare groups [Jones et al., 2013; Girard et al.,62

2014; Sotiropoulos and Zalesky, 2017], despite not being directly related to anatomy or63

connection strength [Jones, 2010; Jones et al., 2013].64
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1.2. Quantifying reproducibility in tractography65

When performing segmentation, it is crucial that raters perform the tasks as closely66

as possible to the dissection plan. Even if a single individual performs all segmentations,67

the possibility of mistakes or erroneous decisions about landmarks exists [Boccardi et al.,68

2011; Frisoni et al., 2015; Entis et al., 2012]. High reproducibility is often an assump-69

tion, if this assumption is false the consequence could lead to inconsistent outcomes and70

erroneous conclusions. To assess the level of reproducibility of raters, identical datasets71

need to be segmented blindly more than once [Gisev et al., 2013; Gwet, 2012; Frisoni72

et al., 2015]. Reproducibility of segmentations from the same individual is referred to as73

intra-rater agreement, while reproducibility of segmentation across raters is referred to74

as inter-rater agreement.75

Figure 2: Representation of the Dice Coefficient (overlap) for both the streamline and the voxel rep-
resentation. For the purpose of a didactic illustration, 4 streamlines are showed in a 2x5 voxel grid,
the red and blue streamlines are identical. Each streamline is converted to a binary mask (point-based
for simplicity) shown in a compact representation. Voxels with points from 3 different streamlines will
results in voxels with 3 different colors, this can be seen as a spatial smoothing. The matrices on the
right show values for all pairs (symmetrical). The green and yellow streamline are not identical, which
results in a streamline-wise Dice coefficient of zero. However, in the voxel representation they have 3
voxels in common and the result is ( 2∗3

5+3
= 0.75).

In the field of neuroimaging, voxels are used as the typical representation of data,76

while the available representation in tractography is in the form of streamlines (i.e. sets77

of 3D points in space). Figure 2 is a sketch of both representation. Several similarity78

measures exist to compare voxel-wise segmentations, e.g Dice Score. Most of them have79
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an equivalent formulation to compare sets of streamlines. However, resulting values can80

widely vary as the spatial distribution is not the same for both representations. Some81

measures related to streamlines require the datasets to be exactly the same, e.g Dice score,82

as streamline reconstructions are sets of discrete points with floating point coordinates83

and not discrete grids like 3D images. For this reason, comparison of streamlines is84

more challenging and datasets that do not originate from the same source distance in85

millimeters is often the only available solution [Garyfallidis et al., 2017; Maier-Hein et al.,86

2017].87

1.3. Summary of contributions of this work88

Automatic segmentation methods are becoming more widespread [Guevara et al.,89

2011; O’donnell et al., 2013; Chekir et al., 2014; Garyfallidis et al., 2017; Zhang et al.,90

2018; Wasserthal et al., 2018] and aim to simplify the work of raters. The minimal91

standard of any automatic segmentation method would be to reach the accuracy of92

raters, thus it is crucial to truly quantify human reproducibility in manual tasks.93

The goal of this work is first to quantify human reproducibility of bundle segmen-94

tation from dMRI tractography. A measurement of rater (intra and inter) agreement is95

extremely relevant to set an appropriate threshold for statistical significance. It is also96

relevant for meta-analysis aiming to study large sets of publications and synthesize their97

outcomes. An account of human errors or other sources of variability is necessary. A98

second goal of this work is to investigate overlap, similarity measures and gold standard99

comparison designed for tractography. Development of easily interpretable measures100

for bundle comparison is necessary for large datasets. Overall the voxel representation101

is significantly more reproducible than the streamline representation. The voxel rep-102

resentation is better suited for analysis of tractography datasets (e.g reporting volume103

instead of streamline count). More details about these different representations and104

voxel/streamline-wise measures will be detailed in the Method and Results Section.105

A thorough approach for bundle comparison quantification gives insights into seg-106

mentation quality for future projects. This is needed to facilitate synthesis of findings107

and outcomes from various publications [Gwet, 2012; Frisoni et al., 2015; Wisse et al.,108

2017].109

2. Method110

2.1. Study design111

Twenty-four participants were recruited and divided into two groups: experts and112

non-experts. The division was based on their neuroanatomical educational background.113

Participants working as researchers or PhD students in neuroanatomy, neurology or with114

extended experience in the field performing “virtual dissection” as well as neurosurgeons115

were part of the experts group (11 participants). The non-experts group was composed116

of MSc, PhD student or Post-Doc in neuroimaging, but without any formal education117

in neuroanatomy (13 participants). All participants had knowledge of dMRI tractogra-118

phy in general as well as the concept of manual segmentations of tractography datasets.119

Participation was voluntary and anonymous, recruitment was done individually and par-120

ticipants from various labs in Europe and the USA were solicited. The study was per-121

formed according to the guidelines of the Internal Review Board of the Centre Hospitalier122

Universitaire de Sherbrooke (CHUS).123
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Figure 3: Representation of the study design showing N participants, each received 5 HCP datasets
(listed and color-coded) which were replicated 3 times (original, flipped, translated). All participants
had to perform the same dissection tasks, on the same anonymized datasets. Intra-rater, inter-rater
and gold standard reproducibility were computed using the deanonymized datasets. More details are
available in the supplementary materials

Five independent tractograms and their associated structural/diffusion images were124

used, each was triplicated (total of 15). One was untouched, one was flipped in the125

X axis (left/right) and one was translated. Then, all datasets were randomly named126

so the tasks could be performed blindly for each participant. Participants were not127

aware of the presence of duplicated datasets. Five tractotrams were used to obtain128

stable averages, duplicated datasets were used to score the intra-rater agreement and129

the multiple participants to evaluate inter-rater agreement. The decision to separate130

participants in two groups was made to generate additional data about reproducibility131

in real-life conditions.132

Figure 3 shows an overview of the study design. To evaluate intra-rater reproducibility133

of rater #1, each triplicate was used to compute reproducibility measures. Meaning that134

5 (A-B-C-D-E) x 3 (1-2-3) values were averaged to obtain the intra-rater “reproducibility135

score” of a single rater. To evaluate inter-rater reproducibility of rater #1, triplicates136

were fused and compared to all other raters to obtain a reproducibility measure. Meaning137

that 5 (A-B-C-D-E) x N (raters) values were averaged to obtain a single rater inter-rater138

“reproducibility score”. To evaluate reproducibility against the gold standard of rater #1139

the fused triplicates were also used. Meaning that 5 (A-B-C-D-E) x 1 (gold standard)140

values were averaged to obtain a single rater gold standard “reproducibility score”. The141

results showed in the Results Section are average values from all raters in each group.142
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All reproducibility measures were computed using the same approach.143

2.2. DWI datasets, processing and tractography144

Tractograms were generated from the preprocessed HCP [Van Essen et al., 2013]145

DWI data using three shells (1000, 2000, 3000) with 270 directions. The B0, fractional146

anisotropy (FA) and RGB (colored FA) images were computed from DWI to be used as147

anatomical reference during segmentation. Constrained spherical deconvolution (CSD)148

using a FA threshold from a tensor fit on the b=1000s/mm2 was used to obtain fiber149

orientation distribution functions (fODF) [Tournier et al., 2007; Descoteaux et al., 2007]150

(spherical harmonic order 8) from the b=2000s/mm2 and b=3000s/mm2 shells. Prob-151

abilistic particle filtering tractography [Girard et al., 2014] was subsequently computed152

at 30 seeds per voxel in the WM mask (FSL FAST [Woolrich et al., 2009]) to make sure153

sufficient density and spatial coverage were achieved.154

The CSD model was also used for bundle-specific tractography (BST) to further155

improve density and spatial coverage of the bundle of interest [Rheault et al., 2018;156

Chenot et al., 2018]. This was to ensure that the full extent of the CST was reconstructed157

and to ensure not to have criticisms from our experts in neuroanatomy complaining of158

missing CST parts. A large model that approximates the CST was used to generate159

streamlines with a strong preference for the Z axis (up-down). For BST, the same160

tractography parameters were used except for seeding, which was exclusively done from161

the precentral gyrus, postcentral gyrus and brainstem at 5 seeds per voxel.162

The whole brain tractogram and the CST-specific tractogram were fused. To accom-163

modate all participants and the wide range of computer performance, tractograms were164

compressed using a 0.2mm tolerance error [Rheault et al., 2017; Presseau et al., 2015]165

and commissural streamlines were removed and datasets split into hemispheres.166

2.3. Dissection plan and instructions167

Each participant received their randomly named datasets, a document containing168

instructions for the segmentation and a general overview of a segmentation as example169

(see supplementary materials). The segmentation task consisted in 15 segmentations of170

the pyramidal tract (left and right). Segmentation involved using 3 WM inclusion ROIs171

(Internal capsule, Midbrain and Medulla Oblongata) and 2 exclusion ROIs (one plane172

anterior to the precentral gyrus and one plane posterior to the postcentral gyrus). The173

detailed segmentation plan is available in the supplementary materials [Chenot et al.,174

2018].175

Participants had to perform the segmentation plans, following the instructions as176

closely as possible. The dataset order was provided in a spreadsheet file. Participants had177

to choose between two software; Trackvis [Wang et al., 2007] or MI-Brain [Rheault et al.,178

2016]. This decision was made to guarantee that the data received from all participants179

was compatible with the analysis.180

Metadata such as date, starting time and duration had to be noted in the spreadsheet181

file. Upon completion, the participants had to send back the same 15 folders with two182

tractography files in each, the left and right pyramidal tract (PyT).183
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2.4. Bundles analysis184

Once returned by all participants, datasets were de-randomized to match triplicates185

across participants. The duplicates (flipped and translated) were reverted back to their186

native space and all datasets (images and tractograms) were warped to a common space187

(MNI152c 2009 nonlinear symmetrical) using the Ants registration library [Fonov et al.,188

2011; Avants et al., 2008] to simplify the analysis. With all datasets having a uniform189

naming convention and in a common space, the intra-rater and inter-rater reproducibility190

can be assessed.191

Individual measures192

Reproducibility can be assessed using various measures. Volume and streamline count193

are the main attributes obtained directly from files. They do not provide direct insight194

about reproducibility, but one could expect that very similar segmentations should have195

very similar values. However, this does not provide any nuance or specific information196

about difference. In this work results for the left and right PyT are averaged together197

without distinction, they are considered the same bundle during the analysis.198
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Figure 4: Comparison of bundles and the impacts of spurious streamlines on the reproducibility measure-
ments. Each block shows streamlines on the left and the voxel representation on the right (isosurface).
Block 2a and 3a shows the core (green/orange) and spurious (red/pink) portion of the bundle. Block 2b
and 3b only shows the core portion of the bundle.

1-2a 1-2b 1-3a 1-3b

Dice score
VOX 0.77 0.81 0.81 0.85
STR 0.47 0.48 0.62 0.63

Bundle adjacency (mm)
VOX 2.66 2.64 2.04 1.82
STR 4.41 3.54 4.63 3.24

Correlation of the density map VOX 0.90 0.91 0.93 0.94

Figure 5: Table showing the reproducibility “score” between bundles, VOX marks voxel-wise measures
and STR marks streamline-wise measures.

Intra-rater and inter-rater199

Each participant performed the same tasks on each triplicate. The goal of this trip-200

lication is to evaluate intra-rater reproducibility. Since all participants had access to the201

same datasets, inter-rater reproducibility can be assessed too.202

Computing the average value from all pairwise combinations provides an estimate of203

the agreement between multiple segmentations of a same bundle. The deviation can also204

provide insights about the consistency of these segmentations. Measurement values can205

be between 0 and 1, such as Dice and Jaccard [Dice, 1945], meaning they are independent206

of the size. An alternative to overlap measures are similarity measures, which can provide207

insights about the distance between two segmentations (in millimeter). Even when spatial208

overlap between two segmentations is low, both can be very similar in shape [Descoteaux209

et al., 2004; Garyfallidis et al., 2010]. Figure 5 shows bundles and how to interpret210

these measures. Pearson’s correlation coefficient obtained from density maps provides211
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insight into the statistical relationship and spatial agreement between two segmentations212

[Hyde and Jesmanowicz, 2012]. More details on available measures for tractography are213

available in the supplementary materials.214

The most insightful measures are represented by the overlap (Dice coefficient), dis-215

tance (bundle adjacency) and density and spatial coherence (density correlation). Each216

measure provides a way to interpret the data at hand, but there is no single true measure217

to summarize intra-rater and inter-rater agreement. Multiple measures were computed218

and are all available in the supplementary materials along more detailed description for219

each of them.220

Gold standard221

When multiple raters provide segmentations from an identical dataset, it is of interest222

to produce a gold standard. For a voxel representation, a probability map can be con-223

structed, where each voxel value represents the number of raters that counted the voxel224

as part of their segmentation [Frisoni et al., 2015; Iglesias and Sabuncu, 2015; Langerak225

et al., 2015; Pipitone et al., 2014]. This can be normalized and then thresholded to obtain226

a binary mask representing whether or not the voxel was segmented by enough rater. A227

threshold above 0.5 is often referred to as a majority vote. The same logic can be applied228

to streamlines, each streamline can be assigned a value based on the number of raters229

that considered it part of their segmentation.230

This can be seen in Figure 6 where increasing the minimal vote threshold reduces the231

number of outliers and overall size. In this work, the gold standard does not represent232

the true anatomy and should not be interpreted as such. It simply represents the average233

segmentation obtained from a tractogram.234
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Figure 6: Gold standard obtained from 7 segmentations, first row shows the streamline representation
and the second row shows the voxel represented as a smooth isosurface. From left to right, multiple
voting ratios were used ( 1

7
, 3
7
, 5
7
, 7
7

), each time reducing the number of streamlines and voxels consider
part of the average segmentation. A minimal vote set at 1 out of 7 (left) is equivalent to a union
of all segmentations while a vote set at 7 out of 7 (right) is equivalent to an intersection between all
segmentations.

All elements that are not in a gold standard are true negatives and all the ones present235

are true positives. By construction, the gold standard does not contain false positives236

or false negatives. Binary classification measures are available such as sensitivity or237

specificity. However, several other measures are available and each are a piece of the238

puzzle leading to a more accurate interpretation [Garyfallidis et al., 2017; Chang et al.,239

2009; Schilling et al., 2018].240

To produce our gold standard a majority vote approach was used from the segmen-241

tations of the experts group, as their knowledge of anatomy was needed to represent an242

average version of the bundle of interest. The vote was set at 6 out of 11 and each of the243

5 datasets got its own left and right gold standard. Since the representation at hand is244

streamlines (which can be converted to voxels), a streamline-wise and a voxel-wise gold245

standard were created.246
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3. Results247

On average, experts produce “smaller” bundles than non-experts, their volume and248

streamline count is lower than non-experts, as it can be observed in Table 1 and Figure 7.249

This difference between groups is statically significant (p− value < 0.01). In the follow-250

ing sections, all explicit comparisons between groups are statistically significant using251

a standard Welch’s t-test for the means of two independent samples, which does not252

assume equal population variance (p − value < 0.01). The range of values for segmen-253

tation measures is wider for non-experts, meaning that either intra-rater or inter-rater254

variability is higher. As mentioned earlier, this is useful insight about reproducibility,255

but lacks nuance and context.256

Figure 7: Boxplots and scatter plots showing distribution of the 3 measurements related to individual
files for both groups.

Expert Non-experts
Mean STD Mean STD

Volume (mm3) VOX 34835 12625 51146 20966

Streamline count STR 4331 4457 12489 11091

Mean length (mm) STR 140.33 7.81 138.70 11.29

Table 1: Table showing main values from boxplots of the 3 measurements related to individual files for
both groups. The columns show the average value and the standard deviation for each group. VOX
marks voxel-wise measures and STR marks streamline-wise measures. Rows shown in bold mean that
the two groups (experts and non-experts) do not have the same distribution.

3.1. Intra-rater evaluation257

All reported values can be seen in Table 2 and in Figure 8. The average intra-rater258

overlap is represented by the voxel-wise Dice coefficient and is on average 0.72 for experts259

and 0.78 for non-experts. Streamline-wise Dice coefficient is much lower at 0.31 and 0.52260

for both groups respectively. A higher Dice score value means that participants of a261

group are, on average, more reproducible with themselves. Non-overlapping voxels are262

on average at a distance 2.13mm for experts and 2.58mm for non-experts (lower Mean263

value represent higher similarity). Streamline-wise distance is lower in the experts group264

at 5.27mm while the non-experts group is at 6.12mm. The average density correlation is265

equal for both group at 0.82 and 0.82 for the experts and non-experts group respectively266

(p− value > 0.01).267
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Figure 8: Boxplots and scatter plots showing distribution of the 3 measurements related to pairwise
comparison measures for intra-rater segmentations.

Expert Non-experts
Mean STD Mean STD

Dice score
VOX 0.72 0.16 0.78 0.12
STR 0.31 0.30 0.52 0.28

Bundle adjacency (mm)
VOX 2.13 0.66 2.58 1.53
STR 5.27 1.26 6.12 1.89

Correlation of density map VOX 0.82 0.20 0.82 0.18

Table 2: Table showing main values from boxplots of the 3 measurements related to pairwise comparison
measures for intra-rater segmentations. Voxel and streamline values of the same measures are in the
same cell. Rows shown in bold mean that the two groups (experts and non-experts) do not have the
same distribution.

3.2. Inter-rater evaluation268

To minimize the influence of intra-rater reproducibility during the evaluation of inter-269

rater reproducibility, the triplicate datasets were fused into a single bundle. This was270

performed to approximate the results as if participant segmentations had no intra-rater271

variability. This lead to a underestimation of inter-rater variability, but necessary to272

separate source of variability later in the analysis. Voxel-wise Dice coefficient is on273

average higher between experts than between non-experts, at 0.75 and 0.67 respectively.274

Streamline-wise Dice coefficient is not statistically different (p − value > 0.01) at 0.34275

and 0.32. Voxel-wise distance is on average lower for the experts group than non-experts,276

2.74mm and 3.85mm respectively. The average density correlation is higher between277

experts at 0.88 while non-experts are at 0.71. The standard deviation is higher for the278

non-experts group, meaning that the similarity among non-experts is not only lower on279

average, but widely varies. All reported values can be seen in Table 3 and in Figure 9.280
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Figure 9: Boxplots and scatter plots showing distribution of the 3 measurements related to pairwise
comparison measures for inter-rater segmentations.

Expert Non-experts
Mean STD Mean STD

Dice score
VOX 0.75 0.06 0.67 0.14
STR 0.34 0.13 0.32 0.18

Bundle adjacency (mm)
VOX 2.74 0.80 3.85 1.24
STR 5.52 0.91 8.07 2.16

Correlation of density map VOX 0.88 0.10 0.71 0.24

Table 3: Table showing main values from boxplots of the 3 measurements related to pairwise comparison
measures for inter-rater segmentations. Voxel and streamline values of the same measures are in the
same cell. Rows shown in bold mean that the two groups (experts and non-experts) do not have the
same distribution.

3.3. Gold standard evaluation281

All reported values can be seen in Table 4, 5 and in Figure 10, 11. Comparisons282

to the computed gold standard shows that on average experts and non-experts obtain283

segmentation roughly similar to the average segmentation. However, all measures show284

that segmentations from experts are on average closer to the gold standard than those of285

non-experts. This was expected as the gold standard was produced using segmentations286

from the experts group. Values for streamline-wise measures are lower for Dice coefficient287

and density correlation and higher for bundle adjacency, meaning that reproducibility is288

harder to achieve using the streamline representation. This was a similar trend observed289

in intra-rater and inter-rater values.290
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Figure 10: Boxplots and scatter plots showing distribution of the 3 measurements related to pairwise
comparison measures against the gold standard.

Expert Non-experts
Mean STD Mean STD

Dice score
VOX 0.82 0.05 0.74 0.10
STR 0.53 0.14 0.42 0.17

Bundle adjacency (mm)
VOX 2.35 0.66 2.88 0.99
STR 5.50 1.00 6.82 1.89

Correlation of density map VOX 0.92 0.07 0.83 0.15

Table 4: Table showing main values from boxplots of the 3 measurements related to pairwise comparison
measures against the gold standard. Voxel and streamline values of the same measures are in the same
cell. Rows shown in bold mean that the two groups (experts and non-experts) do not have the same
distribution.

Specificity and accuracy reach above the 95% for both groups both for streamlines291

or voxels. Meaning that experts and non-experts alike classified the vast majority of292

true negatives correctly. Since specificity is near a value of 1.0, the Youden score is293

almost equal to sensitivity. All 3 measures take into account the true negatives, which294

far outweigh the true positives, in our datasets, for this reason they were removed from295

Figure 11 and shown only in the supplementary materials. Sensitivity is much lower at296

0.59 and 0.71 for experts and non-experts respectively, as both groups partially capture297

the gold standard. Precision is higher for experts than for non-experts, meaning that298

experts were providing segmentations approximately the same size as the gold standard299

while non-experts were providing much bigger segmentations (that generally encompass300

the gold standard). This explains the higher sensitivity and lower specificity of non-301

experts. The average Kappa and Dice score is lower for experts at 0.67 and 0.72 while302
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the non-experts average is 0.69 and 0.73, respectively. The Kappa score takes into ac-303

count overlap with the probability of randomly obtaining the right segmentation. Given304

the dimensionality of our data, getting the right segmentation by accident is very low,305

explaining why the Kappa and Dice score are very similar. It is important to consider306

that the ratio of true negatives to true positives is not the same for both representations307

(voxels vs. streamlines).308

Figure 11: Boxplots and scatter plots showing distribution of the 6 measurements related to binary
classification measures against the gold standard.
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Expert Non-experts
Mean STD Mean STD

Kappa
VOX 0.80 0.06 0.73 0.12
STR 0.60 0.16 0.56 0.24

Precision
VOX 0.90 0.07 0.75 0.14
STR 0.79 0.12 0.54 0.23

Sensitivity
VOX 0.78 0.12 0.85 0.13
STR 0.54 0.23 0.71 0.27

Table 5: Table showing main values from boxplots of the 3 measurements related to binary classification
measures against the gold standard. Rows shown in bold mean that the two groups (experts and non-
experts) do not have the same distribution.

The computation of inter-rater reproducibility was performed using the fused tripli-309

cate to minimize the influence of intra-rater reproducibility. The approach to fuse the310

triplicate is simply an approximation, producing more than 3 segmentations of the same311

datasets would be necessary to perfectly evaluate intra-rater reproducibility. However,312

the 5 datasets used for this study represent sufficiently similar tasks to consider our ap-313

proximation adequate for this work. Preliminary analysis showed low correlation values,314

between a participant “score” for intra-rater reproducibility and inter-rater reproducibil-315

ity. Correlation was between 0.2 and 0.4 for all measures, this indicates that there is316

no clear link between the reproducibility of a participant’s own segmentations and the317

agreement with other participants.318

4. Discussion319

4.1. Evaluation of protocols320

This work illustrates that intra-rater and inter-rater agreement is far from perfect321

even when following a strict and “simple” segmentation protocol. The intra-rater and322

inter-rater agreement must be taken into account when researchers compare bundles ob-323

tained from manual segmentations. When human expertise is required for a project, it324

is crucial that people involved in the manual segmentation process evaluate their own325

reproducibility, even if they have sufficient neuroanatomy knowledge and extensive expe-326

rience in manual segmentation. This measure of error will likely increase the threshold327

for statistical significance. In such case, either more datasets will be needed, or a better328

protocol for segmentation needs to be designed [Gwet, 2012; Boccardi et al., 2015]. The329

similarity between both groups indicates that with the right protocol, it would be pos-330

sible to train people without anatomical background to perform tasks with results and331

quality similar to experts.332

Without such evaluation it is impossible for experts and non-experts alike to know333

how reproducible they are beforehand. Since their “scores” vary with the protocol, the334

bundle of interest and possibly other factors, it is important to consider an evaluation335

before performing large-scale segmentation procedure [Frisoni et al., 2015]. An alternative336

to guarantee more reproducible results is to design an appropriate protocol for non-337

experts and to perform tasks blindly more than once. The results can then be averaged,338

which will make outliers and errors easier to be identified.339
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This study did not allow for collaboration and did not micro-manage participants,340

meaning they were left with the instructions without further intervention from the organ-341

isers. In a situation where a segmentation plan can be defined in groups and techniques342

can be improved along iterations of the plan, the intra-rater and inter-rater agreement343

would likely go up. This study aimed at the evaluation of participants following in-344

structions from a protocol, similar to the ones present in books, publications or online345

examples.346

4.2. Measures and representations347

In this work the intra-rater agreement was higher for non-experts than experts, with-348

out more information we could have concluded that non-experts were more meticulous349

when they were performing their manual segmentations. However, by looking at sensi-350

tivity and precision we can see than non-experts had “bigger” segmentations. Experts351

are likely stricter in their decision-making process, this could amplify the local-decision352

and global-impact conundrum mentioned earlier. A more liberal, less rigid, segmentation353

likely makes it easier to be reproducible, but does not necessarily make it valid. This is354

an example showing the importance of having more than one type of measure to obtain355

a complete picture.356

In tractography, it is common to use a single measure to portray a complex phe-357

nomenon. Most measures used are simplified to have easily interpretable results. The358

previous example shows the importance of using more than one type of measurements359

to obtain a complete picture of the reproducibility. Reproducibility “scores” are likely360

to vary with the project and the bundle of interest. This needs to be addressed as a361

community. The discrepancy between protocol quality, reproducibility and conclusion362

put forward in the literature can be problematic.363

For binary measures (accuracy and specificity), scores were both above 95% as it364

is easy to discard true negatives, and consequently did not provide much insight. Sim-365

ilarly to the curse of dimensionality in machine learning [Verleysen and François, 2005;366

Ceotto et al., 2011], our datasets typically contain millions of voxels (or streamlines), of367

which only a few thousands true positives are considered during segmentation. Thus,368

the vast majority of true negatives are rapidly discarded resulting in both accuracy and369

specificity almost reaching 100%. Sensitivity provides more information, as true posi-370

tives are more difficult to get, since they are rarer in the tractograms (few thousands371

out of millions) [Maier-Hein et al., 2017]. This needs to be taken into account using372

precision, as in some cases, strict segmentation is encouraged because false positives are373

more problematic than false negatives. Streamline-wise measures show lower agreement,374

meaning that reproducible results are likely more difficult to achieve with the streamlines375

representation.376

More complex measures need to be designed to fully capture the complexity of377

tractography datasets and compare them, even across datasets or for longitudinal studies.378

Currently, more advanced measures that capture fanning, spatial coherence, localized379

curvature and torsion or spectral analysis are still rare, despite being used in other380

neuroimaging fields [Esmaeil-Zadeh et al., 2010; Lombaert et al., 2012; Glozman et al.,381

2018; Cheng and Basser, 2018].382
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4.3. Tractography algorithms383

Iterative tracotography algorithms are commonly divided in two categories: Deter-384

ministic or probabilistic [Tournier et al., 2012; Garyfallidis et al., 2014]. The most striking385

difference between both approaches is that probabilistic pathways cover more volume, as386

they can easily curve and explore more ground. On the other hand, deterministic will387

be more conservative due to curvature restrictions, thus leading to less exploration and388

therefore smaller volume [Maier-Hein et al., 2017].389

Manual segmentation of deterministic tractograms is likely more reproducible, since390

small differences in ROI placement will have a smaller impact on the resulting bundle.391

The local-decision and global-impact conundrum mentioned earlier is more obvious with392

probabilistic tractography. Other tractography algorithms, such as global tractography393

[Kreher et al., 2008; Mangin et al., 2013; Christiaens et al., 2015; Neher et al., 2012],394

are likely to have different reproducibility “scores”, even with the same segmentation395

protocol. Any change to the preprocessing could lead to unexpected change in the repro-396

ducibility “scores”. Using the same datasets and tractography algorithm, but increasing397

or decreasing the number of streamlines could also change the reproducibility “scores”.398

Investigations of other bundles of interest would likely lead to different reproducibility399

“scores”, using another anatomical definition of the PyT or even having the anatomi-400

cal definition taught to participants would have the same effect. However, the general401

conclusion remains that reproducibility needs to be quantified for specific projects and402

protocols. Reproducibility “scores” cannot be generalized and any attempt would be403

futile.404

4.4. Impact on analysis405

If variability needs to be minimized further than the defined protocol, a simple rec-406

ommendation is to have a single rater perform each task multiple times or multiple raters407

perform each task multiple times (or a subset of tasks). This way, it is guaranteed that408

each dataset is segmented more than once, decreasing the error risk. Regardless of the409

decision made, it is of great importance to quantify the reproducibility of manual segmen-410

tation of raters involved in the project before doing any statistics or group comparisons.411

This could drastically change the statistical significance of results. As of now, to the412

best of our knowledge, human variability and errors are rarely considered. Sources of413

variability needs to be accounted to truly enable synthesis of work across multiple cen-414

ters. Even when automatic or semi-automatic methods are used, they first need to be415

evaluated with agreed upon measures and reach or surpass human standards.416

The extension to other bundles of interest or other segmentation plans is not trivial417

and the only conclusion that stands is that agreement is never 100% and that a unique418

measure is not enough to represent the whole picture for tractography segmentation. The419

desire to simplify measures or have only one value to describe quality or reproducibility420

of segmentations needs to be discouraged. The nature of our datasets makes this task421

much more complex to interpret than 2D or 3D images, and it is imperative that the field422

comes to understand and agree on measures to report. This is more relevant than ever as423

the field grows and now that open science is becoming more popular and reproducibility424

studies are encouraged. Similarly to other neuroimaging fields, such as hippocampi425

segmentation, standardized protocols need to be developed and designed to be used426

across multiple centers without active collaboration or micromanagement.427
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4.5. Future work428

Future work includes the creation of a database containing bundle segmentations and429

metadata from participants that will be available online so further analysis can be done.430

As for now, a preliminary upload of the participants segmentation is available on Zenodo431

(https://doi.org/10.5281/zenodo.2547025), which will be updated. In this work,432

metadata was not used to evaluate duration as a variable influencing reproducibility.433

Investigating the relationship between variability and duration of a task or looking for bias434

(inter-hemispheric or software influence). An online platform similar to the Tractometer435

[Côté et al., 2013] or a Nextflow pipeline [Di Tommaso et al., 2017] is planned to be436

released. Such a tool would be designed for researchers to quickly submit data that is437

expected to have some level of agreement and obtain their “reproducibility score”. This438

way protocols can be improved and reproducibility can be taken into account in the439

analysis.440

Protocols for many bundles need to be developed for various purposes, such as441

clinical practice, synthesis of findings, building training sets for machine learning, etc.442

The segmentation plan and instructions need to be defined clearly by panels of experts,443

and agreed upon terminology [Mandonnet et al., 2018], to optimize reproducibility and444

anatomical validity. The field of manual tractography segmentation is decades behind445

fields such as grey nuclei or hippocampi manual segmentation on this matter. The latter446

has been refining segmentation protocols for the past decade and has already reached447

the state harmonized segmentation protocol and was evaluated with reproducibility in448

various settings [Boccardi et al., 2011, 2015; Frisoni et al., 2015; Apostolova et al., 2015;449

Wisse et al., 2017].450

5. Conclusion451

When trying to understand how similar WM bundles from dMRI tractography are, at452

least 3 values need to be taken into consideration: Dice coefficient of voxels showing how453

well the overall volume overlaps, bundle adjacency of voxels showing how far are voxels454

that do not overlap and correlation of density map showing if the streamlines are spatially455

distributed in a similar way. Results from our work on the pyramidal tract revealed that456

rater overlap is higher for voxel-wise measures (approximately 70%) than streamline-wise457

measures (approximately 35%). Distance between segmentations is lower for voxel-wise458

measures than streamline-wise measures, approximately 3mm and 6mm respectively. In459

comparison to the group average, the results depict an ease to identify true negatives, an460

adequate amount of true positives, while having a low amount of false positives. The voxel461

and streamline representations do not produce equal levels of reproducibility. Studies462

reporting bundle asymmetry in term of streamline count (streamline-based) will require463

a larger group difference than those reporting volume difference (voxel-based). This464

indicates a strong need for clear protocols for each bundle or at least detailed documents465

included with publications that used manual segmentation. Reproducibility of results is466

needed and goes hand-in-hand with the open science movement. A collaborative effort467

to evaluate and quantify human variability is needed.468
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