
 1 

Title: Multi-trait genome-wide association meta-analysis of dietary intake 
identifies new loci and genetic and functional links with metabolic traits  

Short Title: Genetic determinants of dietary intake 

Authors: Jordi Merino1,2,3,4#, Hassan S. Dashti1,2,5#, Chloé Sarnowski6#, Jacqueline M. 

Lane1,2,5, Miriam S. Udler1,2,3,4, Petar V. Todorov7, Yanwei Song1,2, Heming Wang2,8,9, 

Jaegil Kim3, Chandler Tucker1, John Campbell10,11, Toshiko Tanaka12, Audrey Y. Chu13, 

Linus Tsai10, Tune H. Pers7,14, Daniel I. Chasman15,16, Josée Dupuis6, Martin K. 

Rutter17,18, Jose C. Florez1,2,3,4*, Richa Saxena1,2,5,9*. 

 

#: These authors contributed equally 

*: These authors jointly supervised the work 

1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA 

2Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT 

and Harvard, Cambridge, MA, USA 

3Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA 

4Department of Medicine, Harvard Medical School, Boston, MA, USA 

5Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General 

Hospital and Harvard Medical School, Boston, MA, USA 

6Department of Biostatistics, Boston University School of Public Health, Boston, MA, 

USA 

7Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and 

Medical Sciences, University of Copenhagen, Copenhagen, Denmark 

8Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and 

Women's Hospital, Boston, MA, USA 

9Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA 

10Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth 

Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

11Department of Biology, University of Virginia, Charlottesville, VA, USA 

12Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA 

13Merck & Co., Inc., Boston, MA, USA 

14Department of Epidemiology Research, Statens Serum Institut, Copenhagen, 

Denmark 

15Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical 

School, Boston, MA, USA 

16Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, 

Boston MA, USA 

17Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, 

Faculty of Biology, Medicine and Health, University of Manchester, UK 

18Manchester Diabetes Centre, Manchester University NHS Foundation Trust, 

Manchester Academic Health Science Centre, Manchester, UK 

 

Corresponding authors: 

Richa Saxena, Ph.D., and Jose C. Florez, M.D., Ph.D. 

Center for Genomic Medicine, Massachusetts General Hospital,  

185 Cambridge Street, CPZN 5.806 

Boston, MA, 02114, USA  

Phone Number: 617-643-7167 

E-mail: rsaxena@partners.org, jcflorez@partners.org  

Word count: 2,136 

Table count: 1 Table 

Figure count: 4 Figures 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Supplement count: 24 Supplementary Tables, 1 Supplementary Note, 4 Supplementary 

Figures  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

ABSTRACT 

Dietary intake, a major contributor to the global obesity epidemic1–5, is a 

complex phenotype partially affected by innate physiological processes.6–11 

However, previous genome-wide association studies (GWAS) have only 

implicated a few loci in variability of dietary composition.12–14 Here, we present a 

multi-trait genome-wide association meta-analysis of inter-individual variation in 

dietary intake in 283,119 European-ancestry participants from UK Biobank and 

CHARGE consortium, and identify 96 genome-wide significant loci. Dietary intake 

signals map to different brain tissues and are enriched for genes expressed in b1-

tanycytes and serotonergic and GABAergic neurons. We also find enrichment of 

biological pathways related to neurogenesis. Integration of cell-line and brain-

specific epigenomic annotations identify 15 additional loci. Clustering of genome-

wide significant variants yields three main genetic clusters with distinct 

associations with obesity and type 2 diabetes (T2D). Overall, these results 

enhance biological understanding of dietary composition, highlight neural 

mechanisms, and support functional follow-up experiments. 
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As dietary components are strongly correlated, we conducted a multi-trait genome-

wide association meta-analysis of overall variation in dietary intake among 283,119 

European-ancestry participants from the UK Biobank15 and the Cohorts for Heart and 

Aging Research in Genomic Epidemiology (CHARGE) Consortium14 (Methods; 

Supplementary Table 1). First, we conducted single-trait GWAS for the proportion of 

total energy intake from carbohydrate, fat, and protein in UK Biobank (n=192,005). 

Next, single-trait GWAS from the UK Biobank and CHARGE Consortium (n=91,114) 

were meta-analyzed and combined into a multi-trait genome-wide association meta-

analysis (Methods). An analysis overview is presented in Supplementary Fig. 1. 

We evaluated dietary intake using 24-hour web-based diet recall in the UK 

Biobank16,17 and validated food frequency questionnaires, diet history and diet records 

in the CHARGE Consortium.14 We observed strong genome-wide genetic correlations 

for nutrient estimates between the UK Biobank and CHARGE datasets (rg >0.6 for all; P 

<0.001; Supplementary Table 2). The quantile-quantile plots of single-trait and multi-trait 

meta-analyses showed moderate inflation (lGC ranging from 1.12 to 1.17) with a linkage 

disequilibrium (LD) score intercept18 of ~1 (standard error (s.e.) = 0.01), indicating that 

most inflation could be explained by polygenic signal (Supplementary Fig. 2, 

Supplementary Table 3). In single-trait meta-analyses, genome-wide SNP-based 

heritability19 was estimated at 3.9% (s.e.=0.01), 2.8% (s.e.=0.01), and 3.0% (s.e.=0.01) 

for carbohydrate, fat, and protein, respectively (Supplementary Table 3), in line with 

previous GWAS findings12,14 and other behavioral phenotypes such as tobacco or 

alcohol use.20  
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In the multi-trait meta-analysis, 156 lead variants in 96 distinct genomic loci reached 

genome-wide significance (Methods, Fig. 1a, Supplementary Dataset, Supplementary 

Tables 4,5). Single-trait meta-analyses of carbohydrate, fat, and protein intake identified 

10, 8, and 9 genome-wide significant loci, respectively (Supplementary Tables 6-8). To 

account for potential reverse causation effects, we investigated whether individuals at 

extreme quartiles of genetic risk for body mass index (BMI), T2D, or coronary artery 

disease (CAD) reported different dietary composition (Methods). We found no evidence 

of such effects, except for individuals with higher number of BMI risk alleles that 

reported higher protein intake (Supplementary Table 9). In BMI-adjusted multi-trait 

meta-analysis, 88 out of 96 identified signals retained genome-wide significance 

(Supplementary Table 10).  

Functional annotation of all candidate variants in associated loci (n=12,675 variants; 

Methods) identified 67 nonsynonymous variants among them (Fig. 1, Supplementary 

Tables 5, 11), five of which were the lead variants at their respective locus (Table 1). 

Several genes in Table 1 have been previously associated with dietary phenotypes, 

neurological processes, and cardiometabolic risk factors (Supplementary Table 12). For 

example, the nonsynonymous variant rs4975017 in KLB, which encodes the β-Klotho, a 

primary ‘zip code’-like receptor for endocrine fibroblast growth factor 21 (FGF21) 

signaling, may impair the affinity between β-Klotho and FGF2121. FGF21’s relevance 

for eating behavior has enabled the development of a drug found to reduce sugar intake 

and sweet taste preference when administered to monkeys and humans with 

obesity.22,23 A common missense mutation in rs601338 results in a premature stop 

codon in the exon 2 of the fucosyltransferase 2 (FUT2) gene. FUT2 regulates 
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expression of H group antigens on the surface of epithelial cells,24 but also affects 

vitamin B12 and folate pathways,25 and is associated with multiple complex phenotypes 

such as inflammation,26,27 cognitive decline,28 and lipids levels.29
  

We next tested dietary intake signals for enrichment of gene expression in 53 tissue 

types obtained from the Genotype-Tissue Expression (GTEx) Project30 and in 10,651 

predefined gene sets derived from MSigDB31 (Methods). Signals were significantly 

enriched for genes predominantly expressed in several brain tissues including the 

cerebellum (P=1.1×10-6), frontal cortex (P=2.9×10-5), anterior cingulate cortex 

(P=1.3×10-4), nucleus accumbens (P=2.6×10-4), and hypothalamus (P=9.5×10-4) (Fig. 2, 

Supplementary Table 13). These findings support the notion that dietary intake is, at 

least, partially controlled by the central nervous system including areas that are known 

to influence energy homeostasis and appetite control. Two gene sets were significantly 

enriched for association with dietary intake including neurogenesis (P=2.6×10-7), and 

nuclear translocation (P=2.3×10-6) (Fig. 2, Supplementary Tables 14-15).  

To evaluate whether the genomic loci implicated in dietary intake map onto specific 

brain cell types, we used two independent brain single-cell RNA sequencing datasets 

(Methods).32,33 Cell-type-specific gene expression in 24 mouse-derived brain cell types 

showed a significant enrichment for dietary intake genomic loci in genes expressed in 

serotonergic (P=4.1×10-5) and embryonic GABAergic neurons (P=1.9×10-4) (Fig. 2, 

Supplementary Table 16). Given that several subtypes of serotonergic and embryonic 

GABAergic neurons have been recently identified in and around the adult mouse 

hypothalamic arcuate-median eminence complex nucleus (Arc-ME),10,32 we used cell-

type-specific gene expression in 50 transcriptionally distinct cell populations in the Arc-
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ME (Methods). We identified enrichment of dietary-linked gene expression in b1 

tanycytes (P=2.9×10-3), but not in other neuronal subpopulations (Fig. 2d, 

Supplementary Table 17). Tanycytes are a specialized type of ependymal cell lining the 

wall of the third ventricle with a variety of functions including neurogenesis or controlling 

the chemical exchange between brain parenchyma, cerebrospinal fluid, and 

bloodstream.34–36 In addition to the dietary intake associated signals, b1 tanycytes were 

enriched for the expression of genes previously associated with lipids (ABCG5, APOB) 

and growth factor (FGF18) (Supplementary Table 17).  

We next investigated whether the integration of genomic annotations from several 

cell lines and brain tissues could identify additional relevant genetic associations 

influencing dietary intake. We used fGWAS,37 a hierarchical modeling approach to re-

weight association estimates by using information from the most relevant functional 

annotations (Methods). By combining separate statistically significant annotations and 

applying model selection and cross-validation, we showed that the most relevant 

annotations for dietary intake were DNase I hypersensitivity sites in fetal brain 

(log2 enrichment of 1.22, 95%CI: 0.28 to 1.93), repressed chromatin in B cells (-0.71, 

95%CI: -1.22 to -0.17), and weak enhancers in epithelial cells (2.50, 95%CI: 1.23 to 

3.39) (Supplementary Tables 18-19). We then used parameters from this model as 

priors to re-weight the multi-trait meta-analysis, and identified 15 additional genomic 

regions with high-confidence associations (posterior probability of association [PPA] > 

0.8) only when the model incorporated information from functional annotations (Fig. 3, 

Supplementary Table 20). These additional signals comprised sub genome-wide 

signals, and underscored genetic and functional links between dietary intake and neural 
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mechanisms. For example, the model identified a rare variant in rs76094283 (MAF = 

0.0002 [imputation quality score =0.8]) as the most likely candidate to be the causal 

variant in the GDNF family receptor alpha 2 (GFRA2) locus. The variant achieved a 

PPA = 0.86 and showed suggestive evidence of association with increased fat intake 

with concomitant reduced carbohydrate and protein intake (P=4.3×10-7). The identified 

variant lies in the transcription start site of the GFRA2 gene, which encodes the 

neurturin receptor implicated in neuron differentiation and survival.38,39 GFRalpha2-

knockout mice display significant impairments in the parasympathetic and enteric 

nervous system, reduction in body weight, and memory of taste aversions, highlighting 

the importance of this molecular complex for eating behavior and nervous system 

development and function.40,41  

To group the identified genome-wide significant loci into clusters with potential 

clinical similarities, we implemented a Bayesian nonnegative matrix factorization 

(bNMF) clustering algorithm (Methods).42–44 We aligned variants by their alleles 

associated with increased proportion of fat intake and their respective associations with 

22 other dietary traits (Methods, Supplementary Fig. 3, Supplementary Table 21). The 

defining features of each identified cluster were determined by the most highly 

associated traits and variants after running 1,000 iterations. In 65% of the iterations, the 

data converged onto three clusters denoting different dietary composition patterns. In 

addition to increased proportion of fat intake in all clusters, cluster 1 was characterized 

by increased energy intake (“hyper caloric”), cluster 2 was driven by reduced proportion 

of protein and carbohydrate intake (“reduced carbohydrate and protein diet”), and 

cluster 3 was determined by increased proportion of protein intake (“increased protein 
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diet”). Additional traits and defining loci for each cluster are described in Supplementary 

Fig. 4 and Supplementary Tables 22-23. In exploratory analyses, when aligning dietary 

intake variants for increased proportion of carbohydrate intake instead, clusters retained 

similar overall patterns. 

We used the set of strongest-weighted variants from each cluster to generate 

partitioned polygenic scores (PPSs) (Methods). We first confirmed that PPSs were 

significantly associated with traits defining each cluster (Methods, Supplementary Fig. 3, 

Supplementary Table 24). We next assessed PPSs associations with BMI, T2D, and 

CAD in the UK Biobank. In the UK Biobank, the PPSs for clusters 2 (“reduced 

carbohydrate and protein diet”) and 3 (“increased protein diet”) were each associated 

with lower BMI with adjusted estimated effect sizes of -0.03 kg/m2 (SE=0.01, P=6.9×10-

8) and -0.03 kg/m2 (SE=0.01, P=1.2×10-16) per allele increase in the PPS, respectively 

(Fig. 4). The PPS for the “increased protein diet” was associated with lower T2D with an 

adjusted estimated odds ratio of 0.97 (95%CI: 0.96 to 0.99; P=4.0×10-4) per allele 

increase in the PPS. We detected no association with CAD. To replicate findings from 

the UK Biobank, we further used data from the Partners Healthcare Biobank (n 

=19,563), an independent hospital-based biobank (Methods).45 In the Partners 

Healthcare Biobank, we noted a similar nominal association between the “reduced 

carbohydrate and protein diet” cluster and obesity (0.97, 95%CI: 0.95 to 0.99; P=0.02) 

and between the “increased protein diet” cluster and T2D (0.95, 95%CI: 0.91 to 0.99; 

P=0.01). Overall, these findings suggest that dietary patterns characterized by 

increased fat in combination with reduced carbohydrate intake may be associated with 
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lower BMI, and that the combination of increased fat and protein intake may associated 

with lower T2D risk, but residual confounding may still exist. 

In the present study, we have expanded the genetic landscape of dietary intake by 

increasing the number of genome-wide significant loci from three to 96. Our findings 

provide insights into biological mechanisms that influence dietary intake, highlighting the 

relevance of brain-expressed genes, brain cell types, and central nervous system 

processes. Our results align with findings from tissue expression and gene-set 

enrichment analyses of BMI-associated loci that pinpoint the central nervous system as 

a critical regulator of energy homeostasis and body weight.46,47 A novel finding from this 

study is the enrichment of dietary intake associated signals for genes expressed in b1-

tanycytes. Morphological studies have mapped b1-tanycytes on the floor and ventral 

parts of the third ventricle in the median eminence complex of the hypothalamus.32,48 

Animal studies suggest that b1-tanycytes are nutrient and metabolite sensors that 

impact upon the blood-hypothalamus barrier plasticity and neuronal function.34,49,50 In 

this context, we also showed that b1-tanycytes are enriched for expression of genes 

previously associated with lipid homeostasis and growth factor, thus providing a strong 

cellular candidate for future studies. The multi-trait approach allowed us to leverage the 

observed genetic correlations among nutrients to increase power for locus discovery, as 

has been the case for other correlated traits.51–53 The bNMF clustering algorithm 

enabled us to dissect dietary intake genetic heterogeneity and identify three main 

domains of genetic variants that may have distinct impacts on obesity and T2D. Our 

findings, in line with previous evidence,54 may suggest that increasing proportion of fat 

intake in place of protein and carbohydrate associates with lower BMI. In addition, the 
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combination of increased proportion of fat and protein intake associates with lower BMI 

and lower T2D risk. These findings are likely unaffected by the possibility that 

individuals at high BMI, T2D, or CAD genetic risk may have made changes in their diet, 

yet considering the complex network of biological and non-biological determinants of 

dietary intake, caution must be exercised in drawing strong conclusions. 

Because the present study was limited to self-reported dietary intake, more precise 

measurements, including evaluating age and social, cultural, and economic factors as 

mediators or effect modifiers of a dynamic phenotype such as dietary intake may help 

refine our findings. In addition, expanding these analyses to non-European ancestries is 

warranted to determine the generalizability of the identified signals. Nonetheless, the 

present findings provide a starting point for understanding the biological variability of a 

complex and disease-relevant behavior, and provide specific supportive evidence for 

functional research that will aid in the discovery of mechanisms by which associated 

genes may affect dietary intake and related cardiometabolic risk. 
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URLs.  

UK Biobank, http://www.ukbiobank.ac.uk/; CHARGE Consortium, ;BOLT-

LMM, https://data.broadinstitute.org/alkesgroup/BOLT-LMM/; 

LocusZoom, https://github.com/statgen/locuszoom-standalone/; Single-cell expression 

data, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93374; MAGMA 

software, http://ctg.cncr.nl/software/magma; MSigDB, 

http://software.broadinstitute.org/gsea/msigdb/collections.jsp; METAL software, http:// 

genome.sph.umich.edu/wiki/METAL_Program; LDSC, https:// github.com/bulik/ldsc;  

FUMA software, http://fuma.ctglab.nl/;  GTEx, https:// www.gtexportal.org/home/; 

DEPICT, https://data.broadinstitute.org/mpg/depict/; 

fGWAS, https://github.com/joepickrell/fgwas/; 

MACH, http://csg.sph.umich.edu//abecasis/MaCH/; 

SHAPEIT, https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html; DGI

db, http://dgidb.org/;  
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(http://biobank.ctsu.ox.ac.uk/). 
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Online Methods: 

Samples 

UK Biobank 

The UK Biobank is a large population-based study established primarily to allow 

detailed investigations of the genetic and lifestyle determinants of a wide range of 

phenotypes.15 Data from >500,000 participants living in the United Kingdom who were 

aged 40-69 and living <25 miles from a study center were invited to participate between 

2006-2010. We used data released in July 2017, and filtering (described below) resulted 

in a final sample size of 192,005 participants of European ancestry with dietary intake 

data. The UK Biobank received ethical approval from the National Research Ethics 

Service Committee North West Haydock (reference 11/NW/0382), and all study 

procedures were performed in accordance with the World Medical Association for 

medical research. The current study was conducted under UK Biobank application 

27892. 

CHARGE Consortium 

The CHARGE Consortium was formed to facilitate GWAS among multiple large 

cohort studies.55 We used summary statistics of dietary composition from the CHARGE 

dietary composition GWAS (CHARGE; see URLs (to be added when available)) on 24 

discovery cohorts which included up to 91,114 participants of European ancestry.14 All 

included studies were approved by local ethic committees, and informed consent was 

obtained from all the participants. 

Dietary intake assessment 
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UK Biobank 

In the UK Biobank, dietary data were collected from 211,036 participants using the 

Oxford WebQ, a web-based 24-hr diet recall that asks participants to self-report on the 

frequency of intake of about 200 commonly consumed foods and drinks from the 

preceding 24 hours.16,17 The recall was administered at baseline visits in-person at 

assessment centers (towards the end of recruitment for the last 70,000 participants), 

and later administered electronically by email on four separate occasions over a 16-

month period (Feb 2011 - April 2012) to ~320,000 participants with known email 

addresses. Email invitations were sent on variable days of the week in order to capture 

variability in daily dietary intake. Daily nutrient composition was estimated by multiplying 

the quantity consumed of each food or drink by the known nutrient composition as 

derived from the UK food composition database McCance and Widdowson’s The 

Composition of Foods and its supplements.56 The following analysis was limited to total 

energy (f.100002) and macronutrients intake (in grams per day; excluding supplements) 

of carbohydrate (f.100005), total fat (f.100004), and protein (f.100003). Recalls with 

improbable estimated total energy <500 or >4,000 kcal per day were excluded. For 

~66% of the 211,036 participants who completed more than one recall, averages of 

each macronutrient were calculated as suggested elsewhere.57  

CHARGE Consortium 

As described in the CHARGE Consortium GWAS publication, assessment tools to 

estimate habitual dietary intake in the participating cohorts including validated cohort-

specific food frequency questionnaires, diet history and diet records. Based on the 

responses to each dietary assessment tool and study-specific nutrient databases, 
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habitual nutrient consumption was estimated. Over-reporters and under-reporters were 

excluded by standard cut-offs determined by each study cohort as part of quality 

control.12  

Genotyping and quality control 

UK Biobank 

We used genotype data released by the UK Biobank in July 2017. The genotype 

data collection, quality control, and imputation procedures are described elsewhere.58 In 

short, 489,212 participants were genotyped on two customized genetic arrays (the UK 

BiLEVE Axiom array [n = 50,520] and the UK Biobank Axiom array [n = 438,692]) 

covering 812,428 unique genetic markers (95% overlap in variant content). Quality 

control procedures were conducted by the UK Biobank. Samples were removed for high 

missingness or heterozygosity (968 samples) and sex chromosome abnormalities (652 

samples). Variants were tested for batch effects (197 variants/batch), plate effects (284 

variants/batch), Hardy-Weinberg equilibrium (572 variants/batch), sex effects (45 

variants/batch), array effects (5,417 genetic variants), and discordance across control 

replicates (622 on UK BiLEVE Axiom array and 632 UK Biobank Axiom array) (P<10-12 

or <95% for all tests). For each batch (106 batches total) markers that failed at least one 

test were set to missing. Before imputation, 488,377 individuals and 805,426 SNPs 

pass QC in at least one batch (>99% of the array content). Genotypes were phased and 

imputed by the coordinating team to approximately 96 million genetic variants by using 

a combined reference panel, including the Haplotype Reference Consortium and the 

UK10K haplotype panel. Imputed and quality-controlled genotype data were available 

for 487,422 individuals and 92,693,895 genetic variants. Population structure was 
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captured by principal component analysis on the samples using a subset of high quality 

(missingness <1.5%), high frequency variants (>2.5%) (~100,000 genetic variants) and 

identified the sub-sample of white British descent. We further clustered participants into 

four ancestry clusters using K-means clustering on the principal components, identifying 

453,964 participants of European ancestry included in the present analysis, of which 

192,005 had available dietary intake data and thus remained in the final analysis. 

CHARGE Consortium 

Genotyping and quality control methods for the CHARGE Consortium dietary intake 

GWAS has been detailed elsewhere.14 In brief, each participating cohort performed 

quality control for genotyped variants based on minor allele frequency (MAF), call rate, 

and departure from Hardy-Weinberg Equilibrium. Phased haplotypes from 1000G were 

used to impute ~38 million autosomal variants using a Hidden Markov Model algorithm 

implemented in MACH/minimac59,60 or SHAPEIT/IMPUTE.61,62 Variants with low minor 

allele count (MAC<20) in the meta-analysis and low imputation quality (<0.4) were 

removed. The number of autosomal genetic variants analyzed in this study was ~11.8 

million. 

Single-trait and multi-trait genome-wide association meta-analysis 

In the UK Biobank, genetic association analyses were performed separately for 

carbohydrate, fat, and protein as percentages of total energy in 192,005 participants 

using BOLT-LMM linear mixed models and an additive genetic model adjusted for age, 

sex, 10 principal components of ancestry, genotyping array and genetic correlation 

matrix [jl2] with a maximum per SNP missingness of 10% and per sample missingness 

of 40%.19 We used a minor allele frequency threshold of 0.001. In a second model, BMI 
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was added to the covariates to account for genetic effects mediated through body 

composition. 

To maximize the statistical power, we meta-analyzed the dietary intake GWAS in UK 

Biobank and the CHARGE Consortium. Meta-analysis was performed using METAL by 

weighting effect size estimates using the inverse of the corresponding standard errors 

squared (version - released March 25 2011).63 The genetic signals correlated strongly 

between the two samples supporting the meta-analysis genome-wide (rg>0.6 all P 

<0.001; Supplementary Table 2). We assessed heterogeneity in genetic effects across 

studies using the I2 heterogeneity index.64 

Single-trait estimates for carbohydrate, fat, and protein from the meta-analyses were 

combined in a multi-trait analysis using the cross-phenotype association software 

(CPASSOC).65 In brief, CPASSOC uses summary-level data from single variant-trait 

associations from GWAS to boost the statistical power for locus discovery by leveraging 

the observed genetic correlation between traits. The joint analysis of multiple 

phenotypes using CPASSOC provides two statistics, SHom and SHet. SHom is similar to 

statistics generated by the fixed-effects meta-analysis method, but uses the sample size 

for a trait as a weight instead of the variance and accounts for the correlation of 

summary statistics among traits and studies induced by correlated traits, potential 

overlapping or related samples. SHet is an extension of SHom that improves power when 

the genetic effect sizes vary for different traits. The distribution of SHet values under the 

null hypothesis of no association was obtained through an estimated beta distribution. In 

a recent comparison of statistical power of 19 multivariate genome-wide association 

methods, it was shown that SHet seems to benefit from the presence of opposite effect 
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estimates, which is relevant for dietary composition. In addition, Shet performed slightly 

better when applied to highly correlated traits.66 

Heritability and genetic correlation 

Trait SNP-based heritability was calculated as the proportion of trait variance due to 

additive genetic factors using BOLT-REML.19 Genomic control lambda (λGC) values 

were calculated using GenABEL in R67 using post-quality control GWAS results. LD 

Score regression was used to estimate the cross-cohort genetic correlations.18 

Calculated linkage disequilibrium (LD) scores from 1000G European reference 

population were obtained online (see URLs). 

Genomic risk loci definition 

Distinct associated loci from the meta- analysis were defined using the Functional 

Mapping and Annotation FUMA platform68 (see URLs). We first defined distinct 

significant genetic variants, which had a genome-wide significant P-value (P<5×10−8) 

and were in low LD (r2<0.6). These variants were further represented by lead genetic 

variants, which are a subset of the distinct significant variants that are in approximate 

LD with each other at r2<0.1 (based on LD information from UK Biobank genotype data). 

Subsequently, genomic risk loci were defined by merging lead variants that physically 

overlapped or for which LD blocks were less than 250 kb apart. Borders of the 

associated genomic loci were defined by identifying all variants in LD (r2≥0.6) with one 

of the distinct significant variants in the locus, and a region containing all of these 

candidate variants was considered to be a single distinct genomic locus.  

Genetic risk for cardiometabolic diseases and dietary intake composition 
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To assess whether our findings were influenced by the possibility that individuals at 

high metabolic risk had made changes to their diet (reverse causation), we investigated 

the associations of polygenic risk scores (PRS) for BMI, T2D, and CAD with 

macronutrient intake. Individual-level data from the UK Biobank were used to create 

individual participant scores by summing the number of alleles at each genetic variant 

weighted by the respective effect sizes on BMI, T2D, and CAD based on estimated 

effect sizes from published meta-analyses of GWAS for BMI (n=339,224 individuals),46 

T2D (n=74,124 T2D cases and 824,006 controls),69 and CAD (60,801 cases and 

123,504 controls).70 We compared mean proportion of total energy intake from 

carbohydrate, fat, and protein among quartiles of each PRS using analysis of variance. 

Gene mapping and functional annotation  

All genetic variants in the meta-analysis results that were in LD (r2>0.6) with one of 

the distinct significant variant and that had P<5×10−8 and MAF > 0.0001 were mapped 

to genes in FUMA using positional mapping, expression quantitative trait loci (eQTL) 

mapping, and chromatin interaction mapping. Predicted functional consequences for 

identified variants were obtained from databases containing known functional 

annotations, including ANNOVAR categories,71 Combined Annotation Dependent 

Depletion (CADD) scores,72 RegulomeDB scores,73 and chromatin states.74,75 

ANNOVAR categories identify the variants’ genic position and associated function. 

CADD scores predict how deleterious the effect of a variant is likely to be for protein 

structure/function, with higher scores referring to higher deleteriousness. The 

RegulomeDB score is a categorical score based on information from eQTLs and 

chromatin marks, ranging from 1 to 7, with lower scores indicating an increased 
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likelihood of having a regulatory function. The chromatin state represents the 

accessibility of genomic regions with 15 categorical states predicted by a hidden Markov 

model based on 5 chromatin marks for 127 epigenomes in the Roadmap Epigenomics 

Project.75 A lower state indicates higher accessibility, with states 1-7 referring to open 

chromatin states.  

Tissue and gene-set enrichment analyses 

We used multi-trait meta-analysis P-values as input for an enrichment analysis in 53 

tissue types obtained from the Gene-Tissue Expression Project (GTEx)30 and 10,651 

predefined gene-sets derived from MSigDB31 in MAGMA.76 For tissue enrichment 

analyses, gene expression values are log2 transformed average RPKM per tissue type 

after winsorized at 50 based on GTEx RNA-seq data. MAGMA was performed using the 

result of gene analysis (gene-based P-value) and tested for one side (greater) with 

conditioning on average expression across all tissue types. For gene-set enrichment we 

tested for association in types of predefined gene sets representing known biological 

functions and metabolic pathways derived from MSigDB. 

Brain single-cell-expression analyses 

To connect genomic loci implicated in dietary composition with the specific brain cell 

types defined by gene expression profiles, we used two independent brain single-cell 

RNA sequencing datasets. We first used information from 24 level 1 brain cell types 

(level 1 clusters were characterized based on expression of known marker genes) and 

149 level 2 brain cell types (subtypes of a level 1 grouping (for example, medium spiny 

neurons expressing Drd1 or Drd2) from Skene et al.33 In brief, brain-cell-type expression 

data were drawn from single-cell RNA-seq data from mouse brains. For each gene, the 
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value for each cell type was calculated by dividing the mean unique molecular identifier 

(UMI) counts for the given cell type by the summed mean UMI counts across all cell 

types. Single-cell gene sets were derived by grouping genes into 40 equal bins by 

specificity of expression. These gene sets were tested for association with gene-based 

test statistics using MAGMA.76  

Given the relevance of the hypothalamic Arc-ME in energy homeostasis and 

appetite control,10,32 we used Drop-seq data from 50 transcriptionally distinct Arc-ME 

cell populations described in Campbell et al.32  Drop-seq data of mouse Arc-ME 

(GSE93374) were averaged using the Seurat Average Expression function. Two 

different levels of clustering were used: a coarser clustering across all identified cell 

types shown and a finer-grained clustering limited to neuronal cell types as described.32 

To account for droplet-specific differences in mRNA captures rates, we log-normalized 

the averaged counts using the default Seurat “logNormalize” method. This divides each 

observed expression value by the sum for that gene, multiplies by a scaling factor (here 

the default, 10000), adds 1, and takes the natural log. Genes were mapped from mouse 

gene symbols to mouse Ensembl gene identifiers (using Ensembl version 83) and to the 

human Ensembl gene identifiers (using Ensembl version 82). Mouse gene identifiers 

mapping to several mouse Ensembl identifiers were discarded and the human gene 

with the highest degree of mouse homology was retained in instances where a mouse 

gene mapped to several human genes. Expression levels of mouse genes mapped to 

the same human gene were averaged. A two-step z-score procedure was applied such 

that the expression levels for each gene were transformed to standard normal 

distributions and the expression levels for each cell cluster were transformed to 
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standard normal distributions. The resulting matrices were used to run DEPICT77 

vs1.194 (https://github.com/perslab/depict/) to prioritize cell clusters on the basis of 

summary statistics for multi-trait, carbohydrate, protein, fat intake (GWAS association P-

value cutoff <10-5). DEPICT cell type enrichment P-values were adjusted for the number 

of cell types tested for enrichment for each trait, but not for the overall number of traits 

tested. Code to construct the average cell type expression and the DEPICT 

configuration file can be found at https://github.com/perslab/dietpref_merino. 

Joint analysis of functional genomic annotations 

We used fGWAS,37 a hierarchical modeling approach that incorporates multiple 

types of genetic annotations to re-weight association measures by using information 

from the most relevant annotations. The main sources of genomic annotation were 

elements of gene structures, outputs from genome segmentation of the six main 

ENCODE cell lines, and 13 maps of DNase-I hypersensitivity from primary fetal brain 

cell types and cell lines. Details of the generation of these annotations have been 

described elsewhere.78 

We first tested each of the genomic annotations individually and estimated the 

degree of enrichment of each specific annotation with loci that influence dietary intake. 

The annotation with the most significant enrichment was retained and tested jointly with 

each remaining annotation. If the most significant two annotation model improved the 

model likelihood, then the two annotations in the model were retained and the process 

continued until the model likelihood cannot be improved. This process resulted in the 

“best joint model”. By default, fGWAS partitions the genome into “blocks” of 5,000 

genetic variants. We used a modified approach by delineating 1Mb windows comprising 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

all genetic variants within 500 kb of the index variant and partitioned the intervening 

regions into ~1Mb windows. For non-genome-wide significance regions, we used the 

default approach. These windows were given as input into fGWAS using the --bed 

command and a separate fGWAS analysis was performed using only the set of 

annotations remaining in the “best joint model”. The genome-wide enrichments were 

used as priors in a Bayesian fine-mapping analysis implemented in fGWAS to calculate 

posterior probabilities for each region and each genetic variant in the designated 

windows. 

Bayesian nonnegative matrix factorization (bNMF) algorithm  

We applied the bNMF clustering algorithm42–44 with the aim of grouping identified 

dietary intake genetic loci into subgroups of variants based on potential similarities 

across diverse dietary intake traits. The main input for the bNMF algorithm was the set 

of the 96-dietary intake associated variants identified in this study. We restricted the 

analysis to the 79 variants that showed at least nominal significant association with fat 

intake. Given that C/G and A/T alleles are ambiguous and can lead to errors in aligning 

alleles across GWAS, we avoided inclusion of ambiguous alleles, choosing proxies 

instead. Next, publicly available summary association statistics for 22 dietary intake 

traits from the UK Biobank79 were aggregated for each dietary intake variant 

(Supplementary Table 21). For the 79-dietary intake associated variants, the fat intake–

increasing alleles were identified and all future analyses used the aligned fat intake–

increasing alleles. We aligned for fat intake as opposed to other macronutrients since 

we had the highest confidence in determining allele association directionality. We 

generated standardized effect sizes for variant trait associations from GWAS by dividing 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/623728doi: bioRxiv preprint 

https://doi.org/10.1101/623728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

the estimated regression coefficient by the standard error, using the UK Biobank 

summary statistic results (variant-trait association matrix (96 by 22)). To enable an 

inference for latent overlapping modules or clusters embedded in variant-trait 

associations, we modified the existing bNMF algorithm to explicitly account for both 

positive and negative associations as was done previously.43,44 The defining features of 

each cluster were determined by the most highly associated traits, which is a natural 

output of the bNMF approach. bNMF algorithm was performed in R for 1,000 iterations 

with different initial conditions, and the maximum posterior solution at the most probable 

number of clusters was selected for downstream analysis.  

Polygenic risk scores for trait and outcome association with each cluster  

The results of the bNMF algorithm provide cluster-specific weights for each variant 

and trait. Variants and traits defining each cluster were based on a cut-off of weighting 

of 1.09 which was determined by the optimal threshold to define the beginning of the 

long-tail of the distribution of cluster’s weights across all clusters (top 5% were 

considered to be significant). Polygenic risk scores (PRSs) were created by summing 

the number of alleles at each genetic variant weighted by the respective effect sizes on 

cluster pertinence. To confirm that cluster-specific PRSs mirrored traits defining each 

cluster, we tested for associations of PRS with each GWAS dietary trait using inverse-

variance weighted fixed effects meta-analysis. A conservative significance threshold 

was set at 7.6×10−4 (0.05/66; 22 traits and 3 clusters). 

Next, individual-level data from the UK Biobank were used to create individual 

participant scores by summing the number of alleles at each genetic variant weighted 

by the respective effect sizes on cluster pertinence. Scaling of the individual PRS was 
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performed to allow interpretation of the effects as a per-1 risk allele increase in the PRS 

for each trait (division by twice the sum of the effect sizes and multiplication by twice the 

square of the SNP count representing the maximum number of risk alleles). We tested 

the association of each cluster-specific PRS with BMI (n=453,111), T2D (n=16,890 

cases and 436,226 controls), and CAD (n=28,419 cases and 424,694 controls) 

adjusting for age, sex, 10 principal components, genotyping array, and BMI (only in 

analyses for CAD and T2D). We next used individual-level data from the Partners 

Healthcare Biobank (n =19,596)45 to investigate the extent to which UK Biobank 

associations replicated in an independent dataset. A detailed description of the Partners 

Healthcare Biobank is provided below. Disease prevalence for obesity (n=5,039 cases 

and 14,557 controls), T2D (n=1,497 cases and 18,099 controls), and CAD (n=2,673 

cases and 16,293 controls) were determined from electronic medical records using both 

structured and unstructured data. Logistic regression models were adjusted for age, 

sex, 5 principal components, and obesity (only in analyses for CAD and T2D). PRS 

associations with cardiometabolic phenotypes were considered significant at Bonferroni 

corrected threshold of significance at P<5.6×10-3 (0.05/9; 3 cluster and 3 traits). 

Partners Healthcare Biobank 

The Partners HealthCare Biobank maintains blood and DNA samples from more 

than 60,000 consented patients seen at Partners HealthCare hospitals.45 Patients are 

recruited in the context of clinical care appointments and also electronically through the 

patient portal at Partners HealthCare. Genomic data for 19,596 participants of European 

ancestry were generated with the Illumina Multi-Ethnic Genotyping Array. The 

genotyping data were harmonized, and quality controlled with a three-step protocol, 
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including two stages of genetic variant removal and an intermediate stage of sample 

exclusion. The exclusion criteria for variants were: 1) missing call rate ≥0.05, 2) MAF 

<0.001, and 3) deviation from Hardy-Weinberg equilibrium (P < 10-6). The exclusion 

criteria for samples were: 1) sex discordances between the reported and genetically 

predicted sex, 2) missing call rates per sample ³0.02, 3) subject relatedness (pairs with 

estimated identity-by-descent ≥0.125, from which we removed the individual with the 

highest proportion of missingness), and 4) population structure showing more than four 

standard deviations within the distribution of the study population, according to the first 

four principal components. Phasing was performed with SHAPEIT280 and then then 

imputations were performed with the Haplotype Consortium Reference Panel81 using 

the Michigan Imputation Server.82 Written consent was provided by all study 

participants. Approval for analysis of Biobank data was obtained by Partners IRB, 

protocol # 2018P002276. 
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Fig. 1 | SNP-based association with dietary composition in the multi-trait genome-wide association meta-analysis 
of 283,119 individuals. a) Manhattan plot shows the -log10 P values (y-axis) for all genotyped and imputed SNPs passing 
quality control in each GWAS, plotted by chromosome (x-axis). Horizontal line denotes genome-wide significance (P =5 x 
10-8). Red denotes previously identified variants, and blue novel variants. b) Distribution of the functional consequences of 
SNPs in genomic risk loci in the meta-analysis. c) Distribution of the RegulomeDB scores for each SNP in genomic risk 
loci, with a low score indication a higher likelihood of the SNP having a regulatory function (Methods). d) The minimum 
chromatin state across 127 tissues and cell types for SNPs in genomic risk loci, with states 1-7 referring to open 
chromatin states (Methods).  
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Fig 2 | Implicated tissue, pathways, and cell expression profiles for dietary intake in the multi-trait genome-wide 
association meta-analysis of 283,119 individuals. a) MAGMA tissue expression enrichment analysis using gene 
expression per tissue based on GTEx RNA-seq data for 53 specific tissue types for multiple-trait macronutrient intake. 
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Expression values (Reads Per Kilobase Million – RPKM) were log2 transformed with winsorization at 50 and averaged per 
tissue (Methods). The dashed line indicates the threshold for significance (P<0.05/53). b) Gene set enrichment analysis in 
10,651 curated gene sets representing known biological functions and metabolic pathways derived from MSigDB. Only 
shown the top 10 findings. The dashed line indicates the threshold for significance (P<0.05/10,651 gene sets). c) Single-
cell expression analysis of genes related to dietary intake in 24 cell types from mouse brain (Methods). The x axis shows 
the –log10 transformed two-tailed P value of association of multi-trait genome-wide association meta-analysis statistics 
with cell-specific gene-expression levels in a linear model. The dashed grey line indicates the Bonferroni-corrected 
significance threshold (P<0.05/24 level 1 + 149 level 2 annotations). d) Single-cell expression analysis of genes related to 
dietary intake using Drop-seq data from 20,921 individual cells in and around the adult mouse Arc-ME (Methods). The x 
axis shows the –log10 transformed two-tailed P value of association of multi-trait genome-wide association meta-analysis 
statistics with cell-specific gene-expression levels in a linear model. The dashed grey line denotes FDR=0.05 derived by 
DEPICT. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3 | Joint analysis of functional genomic annotations and multi-trait genome-wide association meta-analysis.  
Reweighted multi-trait genome-wide association meta-analysis for dietary intake using fGWAS. Single significant 
annotations were combined using a hierarchical modeling approach based on penalized likelihood (Methods). The model 
identified DNase I hypersensitivity sites in fetal brain, weak enhancers in HeLa cells, and repressed chromatin in B cell as 
the most relevant annotations (Supplementary Table 14). Each point represents a region of the genome, and shown are 
the posterior probabilities of association (PPAs) of the regions in the models with and without the annotations. 
 
 



 

 
 
Fig 4 | Association of cluster-specific polygenic risk scores and cardiometabolic phenotypes. Cluster-specific 
polygenic risk scores were defined by the top set of strongest-weighted variants for each cluster using a cutoff weighting 
of 1.09 (Methods). Individual participant scores were created by summing the number of alleles at each genetic variant 
weighted by the respective effect sizes on cluster pertinence. a). Individual-level data from the UK Biobank was used to 
test the association of cluster specific polygenic risk scores with BMI n=453,111), T2D (n=16,890 cases and 436,226 
controls), and CAD (n=28,419 cases and 424,694 controls) after adjusting for age, sex, principal components, genotyping 
array, and BMI (only in analyses for CAD and T2D) (Methods). b) Individual-level data from the Partners Healthcare 
Biobank was used to investigate the extent to which previous observed associations replicated in an independent dataset. 
Sample size in Partners Healthcare Biobank was obesity (n=5,039 cases and 14,557 controls), T2D (n=1,497 cases and 
18,099 controls), and CAD (n=2,673 cases and 16,293 controls) (Methods). Estimated effect sizes provided by one allele 
increase in the PRS. PRS associations were considered significant at Bonferroni corrected threshold of significance 
(0.05/12 (3 cluster and 3 outcomes) P<5.56×10-3). * P<0.05, ** P<0.01, ***P<<5.56×10-3 
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Table 1. Non-synonymous lead variants associated with dietary intake in a multi-trait meta-analysis of dietary 
intake in 283,119 individuals. 
 

 
 
Note: The lead variants in approximately 5% of loci were non-synonymous. Shown here are all non-synonymous variants, 
and selected non-synonymous variants in high LD with a lead variant for a given genomic loci (The complete list of 67 
non-synonymous variants (38 reaching genome-wide significance) is detailed in Supplementary Table 6). a These variants 
were not themselves lead variants, but were in high LD with a sentinel variant (r2>0.8 from the 1000 Genomes European 
population). Pmulti-trait value derived from the multi-trait genome-wide association meta-analysis. Effect sizes (β and SE) 
derived from single-trait GWAS meta-analysis for each respective macronutrient. CHO, carbohydrate; PROT, protein. * 
P<5×10-05, ** P<5.00×10-8 in the single-trait genome-wide association meta-analysis. CHR, chromosome; BP, Base Pair 
based on Hg 19; EA, Effect Allele; NEA, Non-Effect Allele; EAF, Effect Allele Frequency. 
 
 
 

Locus CHR BP SNP Gene AA change EA NEA EAF Pmulti-triat CHO  
β (SE) % 

FAT  
β (SE) %

PROT  
β (SE) %

7 2 27851918 rs3749147 GPN1 Arg12Lys A G 0.25 5.55E-11 0.02(0.02) 0.07 (0.02) 0.04 (0.01) 
24 4 39450229 rs4975017 KLB Gln1020Lys A C 0.33 8.61E-11 0.07 (0.02) 0.01 (0.02) 0.03 (0.01) 
27 4 100239319 rs1229984 ADH1B His8Pro T C 0.04 1.23E-56 0.11 (0.07) 0.54 (0.05)** 0.19 (0.03)** 
28 4 103188709 rs13107325a SLC39A8 Ala391Thr T C 0.08 2.54E-19 0.13 (0.04) -0.07 (0.03) 0.10 (0.02)** 
38 7 73012042 rs35332062a MLXIPL Ala358Val A G 0.13 6.03E-09 0.12 (0.03) -0.10 (0.03) -0.06 (0.01)* 
64 11 47701528 rs12286721a AGBL2 Met615Ile A C 0.55 7.28E-09 0.07 (0.02) -0.01 (0.01) 0.03 (0.01) 
73 14 60903757 rs1254319 C14orf39 Leu524Phe A G 0.30 4.77E-09 0.09 (0.02) -0.09 (0.02)* 0.02 (0.01) 
82 17 44060775 rs63750417a MAPT Pro202Leu T C 0.22 1.29E-08 0.17 (0.03)* 0.07 (0.01) -0.04 (0.01) 
87 19 45411941 rs429358 APOE Cys130Arg T C 0.85 4.48E-15 -0.20 (0.03)** 0.15 (0.03)** 0.02 (0.01) 
88 19 49206674 rs601338a FUT2 Trp154Ter A G 0.49 2.12E-30 0.15 (0.02)** -0.16 (0.02)** -0.06 (0.01)** 
96 22 41604353 rs20551a EP300 Ile971Val A G 0.72 1.91E-8 -0.09 (0.02)* 0.06 (0.02) -0.02 (0.01) 
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