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Abstract 
Though every outbreak of the Nipah Virus has resulted in high mortality rates (>70% 
in Southeast Asia), there are no licensed drugs against it. In this study we have 
considered all 9 Nipah proteins as potential therapeutic targets and computationally 
identified putative peptides (against G, F, and M proteins) and small molecules 
inhibitors (against F, G, M, N, and P proteins). The computations include extensive 
homology/ab initio modelling, peptide design and small molecule docking. An 
important contribution of this study is the increased structural characterization of 
Nipah proteins by approximately 90% of what is deposited in the PDB.  In addition, 
we have carried out molecular dynamics simulations on all the designed protein-
peptide complexes to check for stability and to estimate binding strengths. Details, 
including atomic coordinates of all the proteins and their ligand bound complexes, 
can be accessed at http://cospi.iiserpune.ac.in/Nipah. Our strategy was to tackle the 
development of therapeutics on a proteome wide scale and the lead compounds 
identified could be attractive starting points for drug development. To this end, we 
have designed 4 peptide inhibitors and predicted 70 small molecules (13 with high 
confidence) against 3 and 5 Nipah proteins respectively. To counter the threat of 
drug resistance, we have analyzed the sequences of the viral strains from different 
outbreaks, to check whether they would be sensitive to the binding of the proposed 
inhibitors. 
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Author Summary 
Nipah virus infections have killed 72-86% of the infected individuals in Bangladesh 
and India. The infections are spread via bodily secretions of bats, pigs and other 
infected individuals. Even though, the disease was first detected in the human 
population in 1998, there are no approved drugs/vaccines against it. In this study, we 
have tried to model the 3D structures of the Nipah virus proteins. We have then used 
these models to design/predict small inhibitory molecules that would bind them and 
prevent their function. We have also analyzed the different strains of the virus to 
identify conservation patterns of amino acids in the proteins, which in turn informs us 
of the efficacy of the drugs. The designed/docked compounds as well as the 
protein models are freely accessible for experimental validation and hypothesis 
testing. 
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Introduction 

The May 2018 outbreak of the Nipah Virus (NiV) in Kerala, India, claimed the lives of 
21 of the 23 infected people [1]. This zoonotic pathogen was first detected to infect 
humans in an outbreak in Malaysia in 1998 [2]. Since then, the mortality rate, 
especially in the Indian subcontinent has been high with Bangladesh and India 
reporting 72% and 86% fatalities respectively [3–5]. Though the overall number of 
fatalities linked with each outbreak has never been more than 105, NiV poses a 
deadly threat and could potentially become pandemic [6]. Considering its high 
mortality and transmission rates, NiV features in the WHO R&D Blueprint list of 
epidemic threats that need immediate R&D action [3]. In light of this,  the Coalition 
for Epidemic Preparedness Innovations (CEPI) has extended US$ 25 million support 
to Profectus BioSciences, Inc. and Emergent BioSolutions Inc. for the development 
of vaccines against NiV in 2018 [7]. 
NiV is currently classified as a Biosafety Level 4 (BSL-4) pathogen [8] with no 
licensed drugs or vaccines. While drugs such as ribavirin and 4’-Azidocytidine [9] 
have shown inhibitory action in vitro, their in vivo efficacy has not been reported. 
Some of these drugs target the Paramyxoviridae family, of which NiV is a member. 
The drug favipiravir [10] protects against lethal doses of NiV in hamster models and 
is in Phase II of clinical trials. However, in-vitro studies have shown the emergence 
of resistance to this drug among members of the influenza family [11]. A monoclonal 
antibody, m102.4 [12] acts against the G protein of the virus has been shown to be 
effective on animal models but human trials are yet to be conducted, though 
preliminary indications appear promising [13]. In principle, structure based rational 
design of therapeutics and drugs could help combat the disease and also address 
the concerns of drug resistance. 
In this study, we have comprehensively characterized the structural proteome of NiV 
and explored the possibility of targeting most if not all its proteins for inhibitor/drug 
discovery. The NiV genome encodes six structural proteins viz. Glycoprotein (G), 
Fusion protein (F), Matrix protein (M), Nucleoprotein (N), RNA-directed RNA 
polymerase (L), Phosphoprotein (P) and three non-structural proteins named W, C 
and V [14,15]. The G protein helps in viral attachment to host cell ephrin receptors 
and the F protein mediates its fusion [15]. The P protein binds to the N protein and 
maintains it in a soluble form and increases its specificity towards viral RNA instead 
of non-specific cellular RNA [16]. The N-P protein complex then binds to the viral 
RNA forming the nucleocapsid. This nucleocapsid coated viral RNA acts as a 
template for viral polymerase L to replicate itself and the host machinery is then 
utilized to translate its proteins [15]. After replication, the M protein enables viral 
assembly and budding/release of new viral particles [15]. The non-structural proteins 
W, V, and C act against the interferon signaling to escape the host immune response 
[15]. All these proteins are potential targets for rational drug design. 
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In this study, we have used the experimentally determined structures of the NiV 
proteins and built models for the remaining proteins to find putative lead compounds 
against the virus. Four proteins (F, G, N and P proteins) have structural data 
available in the Protein Data Bank (PDB) [17] with varying degree of structural 
coverage (Table 1). Using homology based methods; we have extended the 
structural coverage of these proteins and built models for four of the remaining 
proteins using either homology modeling or threading/ab initio methods. We 
designed peptide inhibitors targeting interacting sites on G protein-human ephrin-B2 
receptor, F protein trimer and M protein dimer. Binding stability of inhibitory peptides 
was assessed with molecular dynamics (MD) simulations. In addition, to quantify the 
binding affinities, binding free energies of the designed peptide inhibitors to their 
respective targets were also evaluated, based on configurations from MD 
simulations. We have predicted putative drug like molecules using molecular docking 
that could bind to NiV proteins. Our proposed inhibitors should potentially bind to 
viral proteins and hinder their function thereby preventing viral life-cycle progression. 
Finally, we have compared the proteomes of Malaysian, Bangladesh and Indian NiV 
isolates for sequence variations and mapped them onto their protein structures. This 
enables us to delineate the consequences (if any) of sequential variation among 
strains on the efficacy of proposed drugs.   
 

Methods 

1. Protein structure modeling: 

At the time of modeling, the sequence of the Indian strain was not available and so 
all the modeling was carried out using the Malaysian strain (AY029768.1) [18]. From 
our experience, using one strain over another would only minimally affect the 
computed models (Refer Results Section 4 for details on sequence conservation). 
Monomeric structures of the proteins were built using the homology modeling 
pipeline ModPipe-2.2.0 [22] and their multimeric complexes were built using 
MODELLER v9.17 [20,21]. The templates for homology modeling were identified 
using both sequence-sequence and profile-sequence search methods. Profile-
sequence search methods improve identification of distant homologs that have 
sequence identity lower than 30%. The sequence profiles of the target proteins were 
generated using PSI-BLAST [22] against the UniRef90 database [23]  with three 
iterations and an e-value threshold of 0.001. Models were built with dynamic 
Coulomb (electrostatic) restraints and were subjected to the ‘very slow’ mode of 
refinement with two rounds of optimization. The quality of the generated models was 
assessed using the Modpipe quality score, GA341, Discrete Optimized Protein 
Energy (DOPE) and Normalized DOPE scores [24]. Protein structure models were 
retained for further analyses only if they had a Normalized DOPE score less than or 
equal to zero. 
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Protein domains/regions that could not be reliably modeled by MODELLER (either 
greater than zero Normalized DOPE score or with less than 50% structural 
coverage) were rebuilt using meta-threading and ab initio methods on the I-TASSER 
web server [25]. Models built using I-TASSER were assessed with Normalized 
DOPE scores along with their C-scores, predicted TM scores and RMSD scores 
provided by the webserver [25]. 

2. Modeling inhibitory peptides against NiV proteins and 
assessing their stability: 

One peptide inhibitor was computationally designed against each of the F and M 
proteins while 2 inhibitors were designed against the G protein. Details of the 
procedure are stated in the results section. MD simulations were carried out in 
triplicates for all four predicted protein-peptide inhibitor complexes. The simulations 
were carried out using Gromacs [26,27] with the Amber99SB-ILDN force field [28]. A 
cubic water box whose sides were at a minimum distance of 1.2 nm from any protein 
atom was used for solvating each of the systems. Sodium or chloride counter ions 
were added to achieve charge neutrality. Electrostatic interactions were treated 
using the particle mesh Ewald sum method [29] and LINCS [30] was used to 
constrain hydrogen bond lengths. A time step of 2 fs was used for the integration. 
The whole system was minimized for 5000 steps or till the maximum force was less 
than 1000 kJ/mol/nm. The system was then heated to 300K in an NVT ensemble 
simulation for 100 ps using a Berendsen thermostat [31]. The pressure was 
stabilized in an NPT ensemble simulation for 100 ps using a Parrinello-Rahman 
barostat [32]. The system was simulated for a maximum of 100 ns and structures 
were stored after every 10 ps. The temperature, potential energy and kinetic energy 
were monitored during the simulation to check for anomalies. 
Free energy of binding of the putative peptide inhibitors provides an important 
quantitative description of its efficacy. In this study, the extensive MD simulations of 
protein-peptide complexes were post-processed to obtain binding free energy 
estimates using the molecular mechanics Poisson-Boltzmann surface area 
(MM/PBSA) approach [33,34]. The MM/PBSA method employs an implicit solvation 
model to estimate the free energy of binding by evaluating ensemble averaged 
classical interaction energies (MM) and continuum solvation free energies (PBSA) of 
the protein-ligand complex conformations from the MD trajectories. Snapshots of 
protein-peptide complexes were obtained at every 100 ps from the last 50 ns of the 
MD trajectories, thus totaling 500 snapshots. The last 50 ns were selected for 
MM/PBSA treatment to ensure sampling of equilibrium conformations for appropriate 
MM/PBSA energy evaluations (Supporting Figures 2, 3, 4 and 5 for RMSD and 
distance between the center of peptide and protein). The MD snapshots were energy 
minimized for 2000 steps before evaluation of interaction and solvation free 
energies. The protein and solvent were modeled with dielectric constants of ε=2 and 
ε=80, respectively. APBS suite [35] and GMXPBSA [36] were used for implicit 
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solvent calculations. In this study, we attempted to calculate the entropic estimate of 
binding using the interaction entropy formalism [37]. However, converged entropic 
values with reasonable error estimates for protein-peptide trajectories could not be 
obtained, which is often the case when evaluating entropic contributions from 
molecular simulations. We, therefore neglected entropic contributions to the binding 
free energies, which is a common practice in MM/PBSA literature [38]. The 
enthalpies of binding obtained from MM/PBSA calculations are reported as binding 
energies for the protein-peptide complexes.  

3. Prediction of putative small molecules that can bind to NiV 
proteins:        

Docking was used to identify putative small molecules that can potentially bind and 
inhibit the activities of the NiV proteins. In this exercise, NiV proteins (G, N, F, P and 
M proteins) that had structures or models with reliable quality (Normalized DOPE <= 
0) and high coverage (> 80%) were used as targets for a ligand screening. The 
screening library consisted of the 70% non-redundant set of clean drug like 
molecules of the ZINC database [39,40]. The binding pockets for docking on the 
targets were predicted using the DEPTH server [41,42]. The parameters of DEPTH 
included a minimum number of neighborhood waters set to 4 and the probability 
threshold for binding site of 0.8. Evolutionary information was also included by the 
server in cavity prediction [43]. Docking was performed using Autodock4 [44], and 
DOCK6 [45,46]. 

The target proteins were prepared for docking by Autodock4, by adding missing 
polar hydrogen atoms and Gasteiger charges. The ligand docking site, marked by 
affinity grids were generated using the Autogrid module of Autodock. The center of 
the grid, number of grid points in X, Y, Z direction and separation of grid points were 
chosen based on the predicted binding pockets using the ADT viewer from MGL 
tools [44]. The number of Genetic Algorithm runs was set to 20. The final energies 
reported by Autodock4 were used for evaluation and selection of the putative leads. 

The target proteins were prepared for docking by DOCK6.8 using Dock Prep tool 
[45] from Chimera [47]. Missing hydrogen atoms were added to the target proteins. 
Charges on atoms of the protein were determined using AMBER. Molecular surface 
of the target was generated using the DMS tool from Chimera. The sphgen program 
from DOCK6.8 was used to generate spheres from the molecular surface. The 
cluster of spheres were selected according to the binding sites predicted by DEPTH. 
The grid box and grid were created by showbox and grid programs respectively. 
Flexible ligand docking was performed using DOCK6. The final energies reported by 
DOCK6.8 were used for evaluation and selection of the putative leads. 

4. Mapping strain variants onto structure: 

Protein sequences of 15 different NiV isolates, 7 from Malaysia (AY029768.1,A 
J564621.1, AJ627196.1, AY029767.1, AJ564622.1, AJ564623.1, AF212302.2) [18], 
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3 from Bangladesh (AY988601.1, JN808857.1, AY988601.1) [48] and 5 from India 
(MH523641.1, MH523642.1, MH396625.1, MH523640.1, FJ513078.1) [49] were 
retrieved from their translated genomes deposited in the NCBI nucleotide database 
[50] and were used to identify sequence variations in proteins. We also verified that 
the translated protein sequences of the Malaysian strain matched with those of the 
protein sequences deposited in SwissProt [51]. Multiple sequence alignments of the 
sequences obtained from the 15 isolates were performed with MUSCLE [52]. 
Positions with amino acid variations were mapped onto the structures. Amino acid 
variations within 5 at inhibitor binding sites were identified.  

Results 

1. Structural coverage of the NiV proteome: 

Homology modeling the Nipah proteome: 

In this study, we first focused on characterizing the structures of the NiV proteins. 
Partial structures for 4 (F, G, N and P protein) of the 9 NiV proteins are available in 
the PDB (Table 1).  Computationally, we attempted to extend the structural coverage 
of these 4 proteins and to build models for the remaining 5 proteins using homology 
modeling (with MODELLER), ab initio modeling and threading (with I-TASSER). 
Model accuracies were carefully scrutinized before attempts to design/find inhibitors 
against all possible proteins in the proteome. In this section, we only present the 
results of homology modeling as all models built using I-TASSER resulted in 
structures that were not favorably assessed (Normalized DOPE > 0) (Supporting 
Table 1) 

Multiple models were constructed for each of the proteins using all available 
templates. All proteins, except C, had at least one model with a normalized DOPE 
score of less than or equal to zero. All models built for proteins with existing X-ray 
structure conferred additional sequence coverage except for the F protein (Table 1). 
The structural coverage of the N, P and G proteins increased by 8-13% after 
modeling (Table 1). Overall, we increased the structural coverage of the NiV 
proteome by 90%, from ~23% (1364 residues) to ~43% (2623 residues). 
 

Modeling the post-fusion F protein: 
 

For NiV to enter a host’s cell, its G protein attaches to the host ephrin receptor and 
the F protein is instrumental in fusing the viral envelope with the host cell membrane 
[53]. The F protein undergoes a conformational change from the pre-fusion to the 
post-fusion state triggered by the binding of the G protein to the ephrin receptor. 
These conformational changes are characteristic of class I viral fusion proteins [53–
58]. The structure of only the pre-fusion state of the NiV F protein has been 
determined experimentally (PDB ID: 5EVM). We modeled the post-fusion state using 
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the structure of the human Parainfluenza Virus 3 (PDB ID: 1ZTM) as a template 
since it is also a class I fusion protein. Though the NiV and human parainfluenza 
virus fusion proteins are only 26.4 % identical in sequence, their pre-fusion 
conformations take on similar folds with a structure overlap of 67% and an RMSD of 
0.2 nm (as calculated using CLICK [59]). The rationale for modelling the post-fusion 
state of NiV using the Parainfluenza virus template is further corroborated by reports 
in literature of the common mode of conformational change in post-fusion states of 
class I viral fusion proteins [53,60–64] despite their low sequence identity 
(Supporting Figure 1) leading to the formation of 6 helix bundle. The target-template 
alignment was done using CLUSTALW-1.7, and the model was constructed using 
MODELLER v9.17. It has previously been shown that Hendra virus (HeV) and NiV 
infection can be inhibited by peptides derived from the heptad repeat regions of the 
human Parainfluenza Virus 3 [65]. This occurs as a result of the inhibition of 6 helix 
bundle formation, due to interactions between the native heptad repeat regions of 
NiV/Hev and peptide heptad repeats derived from Parainfluenza virus 3. The 
interaction of the heptad repeats of the human Parainfluenza Virus 3 with those of 
NiV/HeV along with their sequence conservation (Supporting Figure 1) could be 
suggestive of similarities in the post-fusion structure of these viruses, supporting our 
choice of template for modeling the post-fusion conformation of the F protein. 

Modeling the M protein dimer: 

The M protein in NiV is crucial in initiating the budding of the virus. This protein 
homodimerizes before homo-oligomerizing and forming the viral matrix [66]. The 
crystal structure (PDB id: 4G1G) of a dimer of another Paramyxovirus, the Newcastle 
Disease Virus was used as a template for building a homology model of the M 
protein dimer. The target-template sequence identity was 19%, going up to 27% at 
the interface (29 identical residues out of 70). The model was energy minimized with 
GROMACS using the Amber99SB-ILDN force field [28] and evaluated using our 
empirical knowledge based scoring scheme, PIZSA [67]. The dimer had a PIZSA Z 
score of 1.69, well above the binding threshold of 1.50.  

We also attempted to build several host-pathogen protein complexes but none of the 
models were evaluated favorably by FoldX [68] (Supporting Section 1). 

 2. Design and stability of protein peptide inhibitor complexes: 

Peptide inhibitor of the post fusion F protein: 
 

Protein F contains two helical domains identified as HRA and HRB. The HRA 
domain forms coiled-coil trimer that associates with three helices of the HRB domain 
to form a 6-helix coiled-coil bundle (sometimes referred to as 6HB) [69] (Figure 1), 
which is essential for its fusion with the host membrane. One strategy to inhibit the 
formation of this 6HB hexamer (which in turn would prevent the fusion of the host 
and viral membranes), is to design a peptide that would competitively bind to HRA 
domains, preventing its binding to the HRB helices. The 6HB forming regions of HRA 
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and HRB, have heptad repeat sequence pattern [70] of a-b-c-d-e-f-g, such that 
hydrophobic amino acids occupy positions a/d and charged amino acids occupy e/g 
positions (Figure 1-A, B). An amino acid sequence of the inhibitor 
(IKKSKSYISKAQELL) was designed to mimic the HRB domain 
(LQQSKDYIKEAQRLL) such that all hydrophobic amino acids occupy a/d heptad 
positions (Figure 1-C, D). Further, the inhibitor sequence was designed to ensure 
that the atomic density in the core was optimized, similar to that observed in other 
coiled-coil proteins (unpublished study). Effectively, this meant changing the N 
terminal Leu in HRB to Ile in the inhibitor. Other amino acid replacements were done 
to ensure salt bridging between the inhibitor and HRA domain (Figure 1-D). Amino 
acids at non a/d heptad positions of the inhibitor that are not involved in interactions 
with the HRA domains were replaced by Lys. This is to introduce interactions 
between these Lys residues of the inhibitor with the Glu residues of the HRA domain 
(Figure 1-D). All other positions without any interacting partner on the HRA domain 
were replaced by Ser, to increase solvent interactions. The thirteenth residue of the 
inhibitor was changed from Arg to Glu to increase interactions with Lys on the HRA 
domain. The heptad repeat guided alignment of the inhibitor and 6HB domain of the 
HRB was used to structurally model the inhibitor using MODELLER v9.17. 

Peptide inhibitor of the M protein dimer: 

The binding sites on a monomer of M protein were detected with DEPTH [43] using 
default parameters. The predicted binding site that overlapped with the interface of 
the M protein dimer was used to target the dimerization process. The residues 
(RRTAGSTEK) of one monomer that interact with the predicted binding site of the 
other monomer at the dimer interface were modified by manual intervention. The last 
two amino acids (Glu-Lys) of the dimer interface sequence were modified to Ile-Asn 
such that they make specific interactions with the M protein. A 2 ns simulation with 
the unmodified sequence showed high fluctuations due to bulky charged groups at 
the C terminus. The C terminal Lys of the peptide is in close proximity to an Arg 197 
on the M protein that leads to charge repulsion causing instability of the unmodified 
construct. Hence Lys was modified to Asn to reduce the size and repulsive forces. 
The penultimate residue, Glu was modified to Ile to improve hydrophobic contacts 
with its neighbors on the M protein. The modified peptide RRTAGSTIN was used as 
a putative M protein dimerization inhibitor for further analysis. Prevention of M 
protein dimerization could potentially prevent the virus from budding out of cells. 
  

Peptide Inhibitors of G protein-ephrin interaction: 

The NiV infection is initiated by the binding of the G protein to the ephrin receptors 
on the host cell [71] (PDB ID: 2VSM). Inhibiting this protein-protein interaction could 
prevent viral entry. In this study, we have tested the feasibility of using 2 peptides to 
inhibit the G-protein – ephrin interaction. One peptide (FSPNLW) is the part of the 
ephrin-B2 receptor that interacts with the G-protein [72]. The other peptide 
(LAPHPSQ) is a part of a monocolonal antibody, m102.3, that binds [73] to both NiV 
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and Hendra virus. A crystal structure of the antibody bound to Hendra virus G protein 
(PDB ID:  6CMG) was used as a template (79% target-template sequence identity) 
to construct the antibody-NiV G protein complex. 3D structural models of the 
speculated G-protein—peptide interactions were also constructed using MODELLER 
v9.17. 
 

Computational prediction of the stability of the protein-inhibitor 
complexes: 
 

Three independent MD simulations of 100 ns each were performed to assess the 
stability of each of the four protein-peptide complexes. The peptide inhibitors 
designed against F and M proteins bind a hydrophilic pocket while the binding 
interactions of the G protein to its inhibitor are predominantly hydrophobic. For each 
of the trajectories, the total potential energy, the distance between the center of the 
protein and peptide, RMSD and RMSF of the peptide after superimposition of protein 
were analyzed and found to be consistent across independent runs (Supporting 
figure 2-5 and table 2-7). The F- and M-peptide complexes are stabilized by 
hydrogen bonds. A few of them (3 and 2 hydrogen bonds in F and M complexes 
respectively) (Supporting Table 3 and 5) are retained on average in over 50% of the 
trajectories. Hydrogen bond analysis was not done for the G protein - peptide 
inhibitor complexes since their binding is mediated mainly by hydrophobic 
interactions and there were no stable hydrogen bonds. The protein-peptide complex 
was stable during the simulation as can be inferred by the peptide RMSDs, peptide 
RMSFs and the distances between the protein and peptide. The distance of the 
center of the protein to that of the peptide fluctuated with a standard deviation of 
0.03-0.09 nm (Supporting Tables 2, 4, 6, 7 and Supporting Figures 2, 3, 4, 5) around 
the average distance. For an explanation on the variations to these general 
observations, refer to Supporting Section 2. While these measures are all indicative 
of tight binding, we used the trajectories to determine the binding energy of 
association using the MM/PBSA protocol.  The inhibitors of the F and M proteins 
bind tightly (~110 kJ/mol) to their targets (Supporting Tables 2, 4, 6, 7). However, in 
case of G protein inhibitors, the inhibitors FSPNLW and LAPHPSQ bind the G 
protein with ~100 and ~60 kJ/mol, respectively, suggesting that ephrin-B2 receptor 
based design binds 40 kJ/mol stronger. This trend is also reflected in RMSD/RMSF 
values (Supporting Figures 4 and 5).  

3. Prediction of putative small molecules that can bind to NiV 
proteins: 

We used 5 proteins (G, N, P, F and M) with experimental structures or models with 
high sequence coverage (~90%) in docking studies to predict plausible small 
molecule inhibitors (drugs or drug like molecules) against them. First, we predicted 
the plausible binding pockets on each of the proteins using the DEPTH server.  A 
total of 12 binding pockets were predicted in G (2), N (4), P (2), F (1) and M (3) 
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proteins. (Supporting Table 8). Two of the predicted binding pockets, one on the M 
protein and another on the G protein, are on the dimer interface and host protein 
(ephrin receptor) binding interface respectively. As mentioned in Section 2, these 
sites are important drug targets. All 12 binding sites were used to screen 22685 drug 
like molecules from the 70% redundant ZINC database of clean drug like molecules 
using two different docking tools, DOCK6.8 and Autodock4. The docking tools 
provide a docking energy score that was used to select possible high affinity binders. 
In the absence of an objective measure or threshold to determine strong binders, we 
chose the top 100 best scoring ligands for each of the pockets from both the docking 
tools. We then compared the two lists for common molecules. 70 molecules are 
identified by both Dock6.8 and Autodock4 for G (1), N (40), P (30), F (6) and M 
(37) proteins (Supporting Table 9). The grid score for the predicted complexes range 
between -71 to -32 units for DOCK6.8. The binding free energy for the predicted 
complexes range between -14 kcal/mol to -6 kcal/mol for Autodock4 (Supporting 
Table 9). 
To corroborate our predictions, we measured the RMSD between the same ligand 
(in the common list) as docked by the two different tools (top 5 poses predicted by 
Autodock4 were compared to the top pose predicted by DOCK6.8), after 
superimposing the proteins. This measure is referred to as RMSD_lig. 10 drug-like 
molecules in N(5), P(4) and M(1) had an RMSD_lig less than 0.15 nm between 
their docked poses. In addition to conformational similarity, we also assessed the 
similarities in ligand-protein interactions, primarily hydrogen bonding (Supporting 
Table 10). Further, the hydrogen bonding interactions were ~50 % conserved in 5 of 
these complexes (with RMSD_lig < 0.15 nm). In a few instances, though the 
hydrogen bonding was not precisely the same, visual inspection of the complexes 
suggest that these bonds could be formed with small conformational changes. In 17 
of the 70 cases the ligand was bound to the same pocket (RMSD_lig less than 0.2 
nm).  
Interestingly, a known drug (ZINC04829362), an antiasthmatic and antipsoriatic 
among other uses [74], binds to a pocket of the N protein with RMSD_lig of 0.085 
nm. Another drug (ZINC12362922) used in the treatment of depression and 
Parkinson’s disease [75] also binds the N protein with RMSD_lig < 0.15 nm. The 
molecule with the best RMSD_lig (0.074 nm) from our screening, ZINC94258558 
(Figure 2-A), also binds the N protein (Supporting Table 9).   
After docking, we have shorted listed only those molecules whose RMSD_lig < 0.15 
nm. There are however a few molecules that are of interest despite their relative 
large RMSD_lig values.  The molecule ZINC91252717 is predicted as the best 
binder to P protein by Autodock4 (binding energy of -14 kcal/mol) and the second 
best binder by DOCK6.8 (grid score of -71) (Figure 2-B). These scores were among 
the best achieved during this docking exercise. Another molecule (ZINC00814199) 
was docked onto the M protein and formed 14 and 8 hydrogen bonds with Autodock 
and Dock respectively. It was also within the top 14 ranked compounds by both 
methods. By visual inspection, it is apparent that with small conformational changes, 
the Dock pose could also get 14 hydrogen bonding interactions. Lastly, the 
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hydrophobic molecule ZINC63411510 is predicted to bind the G protein on its ephrin-
B2 binding interface. Though both docking methods identify this site, the docking 
poses are different (RMSD_lig of 0.8 nm). We hypothesize that the hydrophobic 
nature of the binding pocket and its size is contributing to the difference in docked 
poses. There are also a few instances of the same drug binding different pockets, 
both within the same protein and on other proteins (Supporting Table 11).   

4. Sequence variations in NiV isolates: 

At the time of modelling the NiV proteins, the sequence data from the 2018 outbreak 
was not available [49]. Hence, all the modelling was done by considering that 
sequence of the Malaysian strain. We rationalized that as the Malaysian and 
Bangladeshi/Indian strains shared a high degree (79-99 %) of sequence similarity, 
structural models using sequences of one strain would be applicable to the other, 
which is the basis of comparative modeling. However, we wanted to assess whether 
the efficacy of the designed/proposed therapeutic molecules would be affected by 
observed sequence variations between the different strains (7 Malaysian, 3 
Bangladeshi and 5 Indian) of NiV.   
The amino acid variations (Supporting Table 12) were mapped onto their respective 
structures. All protein sequences are of equal length except the V protein whose 
lengths vary between the different strains. The V and W protein have the least 
sequence conservation (~79%) while the M protein is the most conserved (98.6%). A 
general observation is that the Bangladeshi and Indian strains are more similar to 
one another than they are to the Malaysian sequences (Supporting Figure 6). 
We mapped the sequence variations onto all the protein structures/models that were 
used for peptide inhibitor design and drug docking. No variations in the sequence 
were found close to the peptide inhibitor binding sites on the F, M and G proteins. 
We found 1 (Lys236Arg), 2 (Asp188Glu, Gln211Arg), 1 (Asp252Gly) and 1 
(Ile331Val) variations close to the docking sites on G, N, F and M protein 
respectively. ZINC63411510, ZINC63411510 (bound to G protein), ZINC20163996 
(bound to F protein) and ZINC72131030 (bound to M protein) and all the small 
molecules bound to PN4 binding site of N were within 0.5 nm of the mutated amino 
acids. All the mutations (except for Asp252Gly on F protein) on the binding site were 
conservative (similar physico-chemical properties and BLOSUM62 score >= 0) and 
hence are conjectured not to affect the interactions between the protein and the 
inhibitor. Though there is a non-conservative change (ASP252Gly) in one of the 
drug/inhibitor binding sites of the F protein, this position is not involved in H-bonding 
with the ligand. Hence the binding of the inhibitor to the protein is probably not going 
to be affected. No single sequence variant we have studied appears to show that the 
drug binding would be directly affected. 
 

5. Web service and Database 
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We have archived all structures/models of NiV proteins and their inhibitor bound 
complexes in a consolidated database at http://cospi.iiserpune.ac.in/Nipah. The data 
at this site lists details of modeling, docking features and multiple sequence 
alignment (between the various NiV strains) such as template PDB code, target-
template sequence identity, model quality assessment score, docking energies, 
docking rank and the RMSD_lig between the docking poses 

Discussions 
NiV is a deadly zoonotic virus with a mortality rate of 72% and 86% in Bangladesh 
and India respectively. There is no known drugs/therapeutics against NiV. The 
overarching aim of this study is to computationally design inhibitors and predict small 
molecule drugs against NiV proteins. To design/predict therapeutic molecules to act 
against NiV, we characterized all of its proteins. As a part of this effort, we 
constructed partial models of 5 NiV proteins viz., M, L, V, W proteins along with the 
post fusion conformation of the F protein. The structure of the post-fusion 
conformation of the F protein is modeled for the first time in this study. Our model is 
based on the post-fusion structures of another class I fusion protein from Human 
Parainfluenza virus 3.  
Our efforts have increased the coverage of existing structures of the G, N and P 
proteins (by 13%, 8% and 8% respectively) by modeling a fraction of their 
unresolved residues. No reliable models could be generated for the C protein. 
Effectively, we doubled the number of amino acids in the NiV proteome that were 
structurally characterized. While our aim is to use these models to predict/design 
inhibitors, we believe that many of our models are by themselves quite insightful. 
They could serve as templates for future structure-guided drug designing efforts 
against members of the Paramyxoviridae family. We attempted to build complexes of 
the viral and host protein (host cathepsin-L with NiV F protein and host AP3-B1 with 
NiV M protein) to target the interactions for inhibitor design. However, we were 
unsuccessful in making reliable models of host-pathogen protein-protein interaction 
complexes. With improvements to protein-protein docking methods, the quality of 
such models of complexes could be improved, which in turn would help in better 
targeting host-viral interactions.  
We next used these models to design 4 peptide inhibitors against the F, M and G 
proteins. The inhibitor against F protein would putatively prevent the pre to post 
fusion transition of the F protein, a crucial step for viral entry. Our model of the post 
fusion conformation of the F protein was crucial in designing this inhibitor. Another 
inhibitor against the M protein was designed such that it would prevent the 
dimerization of the protein, hence preventing the budding process. The two inhibitors 
against the G proteins were selected such that they bind to the ephrin receptor 
binding pocket, preventing viral attachment to the host cell. The peptides here mimic 
the ephrin-B2 protein and an antibody (m102.3) that are bound at the same site. We 
conjectured that these peptides would competitively inhibit the G protein from binding 
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the host ephrin receptors. All of these protein-peptide systems were subjected to 
triplicate runs of 100 ns MD simulations to assess interaction strengths. The distance 
of the center of the inhibitor and the peptide fluctuates with a standard deviation of 
0.03-0.09 nm from the mean distance, indicative of the inhibitor remaining in the 
binding pocket. The inhibitors against the F and M proteins also had stable hydrogen 
bond associations in the MD trajectories. Binding affinity calculations suggest that 
three of the designed putative inhibitors bind tightly (~100 kJ/mol) to their targets, 
making them promising leads against NiV proteins.  
We screened a set of drug like molecules in a docking exercise to identify potential 
small molecule inhibitors of NiV. The screen consisted of 22685 compounds of the 
70% non-redundant set of clean drug like molecules of the ZINC library. The docking 
onto the NiV proteins was done using two different docking programs, Autodock4 
and Dock6.8. Empirically, we chose the top 100 ligands from each of the two 
methods and selected those that were common between them. This resulted in 70 
compounds that bound the G, N, P, F and M proteins of NiV. As a more stringent 
test, we whittled down this list to only include those molecules that were docked in 
similar poses (empirically chosen RMSD of 0.15 nm or smaller) on the same binding 
site. Hence, we predicted 10 compounds that would inhibit the N (5), P (4) and M (1) 
proteins of NiV. In addition we also included 3 drugs to the list that did not clear the 
criteria explained above. These drugs include one that binds the G protein on its 
ephrin binding interface and two others which bind to P and M proteins. The most 
important aspect of the docking study is that the molecular screen consists of known 
drugs or drug like compounds. The implication is that a few of our proposed 
inhibitors could be readily tested and repurposed.  For instance, we have 
identified Cyclopent-1-ene-1,2-dicarboxylic acid (ZINC04829362) as an inhibitor of 
the NiV N protein. This compound is a known drug prescribed for antiasthmatic and 
antopsoriatic among other disorders. Another example is Bicyclo[2.2.1]hepta-2,5-
diene-2,3-dicarboxylic acid (ZINC12362922) that we propose also inhibits the N 
protein, is a drug prescribed against depression and Parkinson’s disease. We cannot 
overemphasize the importance of these computational predictions, especially for 
swift acting potent viruses as NiV where mortality rates are high.  
Finally, we assessed the how effective our proposed inhibitors would be against 
different strains of the virus and assess the risk of the virus getting drug resistant. 
For this, we studied 3 Bangladeshi, 7 Malaysian and 5 Indian strains and inferred the 
variations between the various strains from their multiple sequences alignment. 
Further, we investigated whether such changes would affect inhibitor binding. Here, 
we narrowed the changes only to those residues that were in direct contact (< 0.5 
nm) from the inhibitors. We precluded the possibility of allosteric interactions. None 
of the residues contacting the peptide inhibitors showed any variations in their 
sequence. Only 5 residue positions that were involved in binding the drug like 
inhibitors were changed between the different strains. 4 of these changes are 
conservative substitutions where the nature of the mutated residue is not deemed to 
change the binding property of the protein to its inhibitor.  Only 1 amino acid change 
of Asp252Gly of the F protein is a non-conservative change, however the Asp is not 
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involved in hydrogen bonding with the ligand. We conclude that it is likely that the 
proposed inhibitors would be potent against all strains of the virus 
Nipah and other zoonotic virus pose a serious epidemic threat. Computational 
approaches can help identify/design inhibitors that could be rapidly tested or even 
deployed as they may be drugs previously licensed for other uses. Our study also 
has connotations for related viruses such as Hendra and other Paramyxoviruses. 
Importantly, our models and the web pages we have created could be modified to 
serve as portal to study the epidemiology of the virus should there be further 
outbreaks. 
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Figure 1- A) Heptad repeat representation of the 6-HB domain formed by HRA 
(purple circles) and HRB domain (yellow circles). Helices are represented as circles 
with an anticlockwise or clockwise spiral at the center showing the handedness of 
the helix. Amino acid heptad repeat positions are labeled with letters a through to g 
with hydrophobic amino acids occupying a and d positions. B) Heptad repeat 
assignment of HRA and HRB domain helices along with the designed inhibitor. 
Inhibitor heptad positions were assigned identical to the HRB domain. C) Heptad 
repeat representation of HRA (purple circles) domain and bound inhibitor (pink 
circles) replacing HRB domain. D) Salt bridges (green dotted lines) and interactions 
(gray bar) between the residues of the inhibitor and the HRA domain.  
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Figure 2-The docked poses of ZINC94258558 bound to N protein (A) and 
ZINC91252717 bound to P protein (B) as predicted by Autodock (green sticks with 
surface mesh) and Dock (lilac sticks with surface mesh). The protein is represented 
in white ribbons with the residues interacting with ligand shown in stick 
representation. Hydrogen bonds (only displayed in A) are shown as dashed lines.  
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/623603doi: bioRxiv preprint 

https://doi.org/10.1101/623603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1- List of NiV proteins with their lengths, PDB codes of crystal structures, 
coverage of crystal structures, coverage of models, additional coverage obtained by 
the models and the overall sequence coverage. In cases where models have 
increased the coverage over existing crystal structures, the original coverage is in 
parentheses.  

 
Sr. 
no. 

Protein Length 
X-ray 
structures 

X-ray 
coverage 

Model 
coverage 

Additional 
coverage 

Overall 
coverage (%) 

1 

Pre fusion F 
protein 

546 

5EVM, 
1WP7, 
3N27 

27 - 482 27 - 482 0 84 

Post fusion F 
protein 

- - 72-418 347 64 

2 G protein 602 

2VSM, 
2VWD, 
3D11, 
3D12 

176 - 602 98 - 597 79 71 (84) 

3 N protein 532 4CO6 32 - 371 39 - 414 44 64 (72) 

4 P protein 709 
4CO6, 
4GJW 

1 - 38 
655 - 709 55 20 (28) 

471 - 573 

5 M protein 352 - - 45 - 352 308 88 

6 L protein 2244 - - 1814 - 2024 210 9 

7 V protein 456 - - 

1 - 38 

297 65 87 - 243 

313 - 414 

8 W protein 450 - - 

1 - 38 

266 59 87 - 243 

321 - 391 

9 C protein 166 - - - - - 
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Supporting Information 
 

Supporting table 1- Model quality evaluation of the protein structures built using I-
TASSER web server. The best model predicted by I-TASSER (based on their C-
Score) have their Normalized DOPE scores and C-scores in bold. TM-scores and 
RMSDs are only calculated for the best models. L protein was divided into three 
domains, indicated by their residue numbers in parentheses, and modeled 
separately. 

 
Supporting Table 2- Mean and standard deviation of the energy, distance of the 
center of the inhibitor with the center of the F protein, number of hydrogen bonds 
between the inhibitor and the protein, RMSD of the inhibitor and the protein-peptide 
binding energies obtained from the three 100ns MD simulations of F protein-inhibitor 
complex. 

 
Supporting Table 3- Percentage of the snapshots with hydrogen bonds between the 
chain D of inhibitor with chain C and E of the F protein.  

 
Supporting Table 4- Mean and standard deviation of the energy, distance of the 
center of the inhibitor with the center of the M protein, number of hydrogen bonds 
between the inhibitor and the M protein, RMSD of the inhibitor and the protein-
peptide binding energies obtained from the three 100ns MD simulations of the M 
protein-inhibitor complex. 
 
Supporting Table 5- Percentage of snapshots with hydrogen bonds between chain B 
of the inhibitor and chain A of the M protein. 

 

Supporting Table 6- Mean and standard deviation of the energy, distance of the 
center of the FSPNLW inhibitor with the center of the G protein, RMSD of the 
inhibitor and the protein-peptide binding energies obtained from the three 100 ns MD 
simulations of G protein-FSPNLW inhibitor complex. 
 
Supporting Table 7- Mean and standard deviation of the energy, distance of the 
center of the LAPHPSQ inhibitor with the center of the G protein, RMSD of the 
inhibitor and the protein-peptide binding energies obtained from the three 100 ns MD 
simulations of G protein-LAPHPSQ inhibitor complex. 
 
Supporting Table 8- List of pocket lining residues for each pocket of NiV Proteins. 
The residue name is followed by the residue number. The chain id has been 
depicted after the dot. 
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Supporting Table 9- List of the ranks and energy values of the small drug like 
molecules that were predicted in the top 100 by both DOCK6.8 and Autodock4. 
RMSD_1 – RMSD_5 are the RMSDs of the 5 best Autodock4 poses with the best 
scoring Dock6.8 pose. The least RMSD is depicted in bold. Cells highlighted in 
yellow have RMSDs better than 0.15 nm. Pocket number indicates pockets from 
Autodock. Some of the Autodock pockets have been subdivided by DOCK, which 
indicates the subsections in each pocket. 
 
Supporting Table 10- Number of Hydrogen bonds that are formed between the 
selected pose for DOCK6.8 and Autodock4 with the protein. Number of common 
Hydrogen bonds indicates the number of hydrogen bonds that are common between 
the predicted poses of the ligand from Autodock4 and DOCK6.8. 
 
Supporting Table 11 – Same drug like molecule predicted to bind different pockets of 
the same or different protein. The binding pocket has been mentioned in 
parenthesis. 
Supporting Table 12 – The sequence variations between the 15 NiV strains. The 
mutations are mentioned by the residue number followed by the amino acids present 
in different strains. 
 
Supporting figure 1 - Conformational change of the human Parainfluenza Virus 3 
(HPIV3) fusion protein and its sequence conservation with Nipah Virus (NiV) and 
Hendra Virus (HeV). The fusion protein undergoes a large conformational change 
from the pre-fusion state (A, PDB id: 6MJZ) to post-fusion state (B, PDB id: 1ZTM) to 
form the 6 helix bundle by interactions between the HRA domain (Salmon ribbon) 
and HRB domain (Cyan ribbon) heptad repeat regions. (C) Alignment of the heptad 
repeat regions between fusion protein sequences of the three viruses (Uniprot ids - 
HPIV3: P06828, NiV: Q9IH63, HeV: O89342). The alignment is color coded based 
on ClustalX. 
 
Supporting Figure 2- A) Energy of the F protein-inhibitor complex during 100 ns of 
MD simulation B) Distance of the center of the inhibitor from the center of the F 
protein during the simulation C) Number of hydrogen bonds between the F protein-
inhibitor complex during the simulations D) Plot showing the formation of hydrogen 
bonds between inhibitor and F protein over 100 ns trajectories. Y axis shows the 11 
different hydrogen bonds identified as numbered index (Supporting Table 3). X axis 
labels time instant during simulation. Each rectangular color box represent presence 
of hydrogen bond for a particular run. E) Root mean square deviation (RMSD) # of 
the designed inhibitor during the simulations F) Root mean square fluctuation 
(RMSF) # of the inhibitory peptide during the simulations. Each of the simulations 
were run in triplicate, with each run being color coded as red, green and blue. 
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Supporting Figure 3- A) Energy of the M protein-inhibitor complex during 100 ns of 
MD simulation B) Distance of the center of the inhibitor from the center of the M 
protein during the simulation C) Number of hydrogen bonds between the M protein-
inhibitor complex during the simulations D) Plot showing the formation of hydrogen 
bonds between inhibitor and M protein over 100 ns trajectories. Y axis shows the 8 
different hydrogen bonds identified as numbered index (Supporting table 5). X axis 
labels time instant during simulation. Each rectangular color box represents 
presence of hydrogen bond for a particular run. E) RMSD # of the designed inhibitor 
during the simulations F) RMSF # of the inhibitory peptide during the simulations. 
Each of the simulations were run in triplicate, with each run being color coded as red, 
green and blue. 
 
Supporting Figure 4- A) Energy of the G protein-FSPNLW inhibitor complex during 
100 ns of MD simulation B) Distance of the center of the inhibitor from the center of 
the G protein during the simulation C) RMSD # of the designed inhibitor during the 
simulation D) RMSF # of the inhibitory peptide during the simulation. Each of the 
simulation were run in triplicate, each run being color coded as red, green and blue. 
 
Supporting Figure 5- A) Energy of the G protein-LAPHPSQ inhibitor complex during 
100 ns of MD simulation B) Distance of the center of the inhibitor from the center of 
the G protein during the simulation * C) RMSD # of the designed inhibitor during the 
simulation D) RMSF # of the inhibitory peptide during the simulation. Each of the 
simulation were run in triplicate, each run being color coded as red, green and blue.   
 
Supporting Figure 6 – Heatmap showing the sequence conservation between the 
different strains of NiV for (A) C protein (B) F protein (C) G protein (D) L protein (E) 
M protein (F) N protein (G) P protein (H) V protein (I) W protein. The color gradient 
represents sequence conservation where white indicates 100% conservation and 
redder shades indicate lesser sequence conservation. The labelling convention is 
Protein_Country_Genome-accession code.  
 
Supporting Section 1 – Modeling of host-pathogen interactions 
 
Supporting Section 2 – Molecular dynamics simulations of protein-peptide inhibitor 
complexes 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/623603doi: bioRxiv preprint 

https://doi.org/10.1101/623603
http://creativecommons.org/licenses/by-nc-nd/4.0/

