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Abstract

Noise in gene expression is one of the hallmarks of life at the molecular scale. Here we de-
rive analytical solutions to a set ofmodels describing themolecularmechanismsunderlying
transcription of DNA into RNA. Our Ansatz allows us to incorporate the effects of extrinsic

noise – encompassing factors external to the transcription of the individual gene – and discuss the
ramifications for heterogeneity in gene product abundance that has beenwidely observed in single
cell data. Crucially,weare able to showthatheavy-taileddistributionsofRNAcopynumbers cannot
result from the intrinsic stochasticity in gene expression alone, but must instead reflect extrinsic
sources of variability.

Trancription is one of the canonical examples of a stochastic process in biology; and as the first step in the
central dogma, is of fundamental phenotypic importance. Recent single-cell analysismethodsnowallow this
heterogeneity to be observed in terms of distributions of transcript copy numbers across ensembles of cells.
Conveniently, the process is also amenable to the application of elegant mathematical models reminiscent of
those in statistical physics Benecke (2008); Schnoerr et al. (2017).

The Telegraph process is widely used to model stochastic RNA transcription initiation, originally detailed in
Peccoud and Ycart (1995) and discussed in recent reviews Munsky et al. (2012); Jones and Elf (2018). In the
slightly generalised form we consider here, the gene is either active or inactive: when active, mRNA is tran-
scribed as a Poisson process with rate K1, while when inactive, basal transcription may still occur at lower
rate, K0. The mRNA degradation is modelled by a first-order Poissonian degradation process with rate, δ,
while switching between the two states occurs at rates ν0 (turn off) and ν1 (turn on), as shown schematically
in Fig. 1(a). This leads to a Markov process for the copy number n of the mRNA molecules at time t and gene
state i, with an associated master equation for the probability pi(n, t),

(∀n ≥ 1) ∂tpi(n, t) =− (νi′ + Ki + δn)pi(n, t)

+ δ(n + 1)pi(n + 1, t)

+ Kipi(n − 1, t)

+ νipi′(n, t), (1)

where i ∈ {0, 1}, and i′ = 1− i. For, n = 0 terms involving n − 1 are set to 0.

The master equation Eq. (1) for this “leaky gene” model coincides with (Kepler and Elston, 2001, Eq.’s (2),(3)),
thoughasteadystate solution isnotgiven there. WhenK0 = 0, theequationreduces to thatgiven in (Peccoud
and Ycart, 1995, Eq. (5)). Following the approach of Peccoud and Ycart (1995), generating functions yield an
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Figure 1: (a) A schematic of the leaky Telegraph model. (b) A comparison of the analytical solution Eq. (3) and a prob-
ability mass function from simulated data.

exact solution for the probability generating function (pgf) for the mRNA copy number 1:

g(z) = eK1(z−1)
1F1 (ν0, ν0 + ν1, w(z − 1)) , (2)

where w := K1 − K0 and rates are scaled so that δ = 1. The probability mass function (pmf) is then
recovered as p̃(n) = 1

n!g
(n)(0), which by the general Leibniz rule gives

p̃(n) =
1

n!

n∑
r=0

[(
n
r

)
Kn−r
1 e−K1wr ν

(r)
0

(ν0 + ν1)(r)

1F1(ν0 + r, ν0 + ν1 + r,−w)
]

, (3)

where, for real number x and positive integer n, the notation x(n) abbreviates the rising factorial of x.

A useful limiting case of this generalized model is obtained when the active transcription is sufficiently rare
so that transcription can be considered to occur in instantaneous bursts (ν0 ≫ ν1), and the degradation
rate is sufficiently small (ν0 ≫ δ). This model simultaneously encompasses the two well-known extremes
of bursty transcription and constitutive transcription, as we now show.

Under theassumptionsν0 ≫ δ, ν1, theburst size is geometricallydistributed, as is alreadyunderstoodPauls-
son and Ehrenberg (2000); Ingram et al. (2008):

G(M; r) = r(1− r)M, (4)

where r = ν0/(ν0 + K1). The master equation Eq. (1) may then be rewritten as,

∂tp(n, t) =− (ν1(1− r) + K0 + δn)p(n, t)

+ ν1

n∑
j=1

G(j; r)p(n − j, t)

+ δ(n + 1)p(n + 1, t)

+ K0p(n − 1, t). (5)

The steady-state solution is again obtained using generating functions, with the exact expression for the pgf
given by

g(z) =
(

r
1− z(1− r)

)ν1/δ

exp
(

K0

δ
(z − 1)

)
, (6)

1See Supplementary Material at [URL] for derivations of the steady-state solutions to the leaky gene model, Eq. 3, and its limiting
case, Eq. 7, the derivation of the Fano factor under extrinsic noise, Eq. 13, and a proof of the inequality, Eq. 16, used in the arguments
for heavy tailed-ness of copy number distributions under extrinsic noise. Includes Refs. Peccoud and Ycart (1995); Grima et al. (2012);
Olver et al. (2010); Paulsson and Ehrenberg (2000); Ingram et al. (2008).
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Figure 2: Time series and corresponding probability distributions for (a) constitutive and (b) bursty transcription.

which is the product of the pgf for the negative binomial distribution NegBin(ν1/δ, r) and the Poisson dis-
tribution Pois(K0/δ). Thus ?,

p̃(n) =
1

n!

n∑
i=0

[(
n
s

)
Γ(ν1/δ + (n − s))
Γ(ν1/δ)(n − s)!

(1− r)(n−s)rν1/δ

e−K0/δKs
0

δs

]
. (7)

When K0 = 0, corresponding to bursty gene expression, Eq. (S.23) is the pgf for NegBin(ν1/δ, r), agreeing
with the solution of Paulsson and Ehrenberg (2000). Alternatively, use Eq. (7), using 00 := 1. When K1 = 0
(or indeed is kept constant and ν0 → ∞) the burst height parameter r = ν0/(ν0 + K1) becomes 1, and the
steady state solution Eq. (7) agrees with the solution for constitutive gene expression, namely the Pois(K0/δ)
distribution; see Fig. 2 for the pdfs of both of these.

Similarly, when K0 = 0, the generating function Eq. (S.13) for the leaky gene model reduces to the solution
forg(z) in (PeccoudandYcart, 1995, Eq. 20)bywayofKummer’s transformation (Olver et al., 2010, §13.2.39).
This then yields the following well-known analytical expression for the Telegraph model Peccoud and Ycart
(1995); Raj et al. (2006)

p̃(n) =
Kn
1ν

(n)
1

n!(ν0 + ν1)(n)
1F1(ν1 + n, ν0 + ν1 + n,−K1). (8)

The standard Telegraph model for transcription describes the effect of intrinsic noise at the level of a single
gene, yet the process will often also be influenced by other sources of variability. Such extrinsic noise has
been widely observed experimentally Elowitz (2002); Swain et al. (2002); Raser and O’Shea (2004); Gasch
et al. (2017), and considered theoretically Dattani and Barahona (2016); Fu and Pachter (2016); Bressloff
and Levien (2019); Thomas (2019), but incorporating these effects into the Master equations has generally
proven challenging. The approach we take in the context of the Telegraph model is to consider the model pa-
rameters themselves to vary between cells, and therefore to be drawn from probability distributions Lenive
et al. (2016). The mRNA copy number then follows a compound distribution,

q̃(n; η) =
∫

p̃(n; θ)f(θ; η) dθ, (9)

where θ is the vector of parameters [ν0, ν1, K0, K1] and the distribution f is a multivariate distribution for
θ with hyperparameters η. This model is valid provided that parameter values are static for individual cells
but vary across an ensemble of cells according to f, or if the parameter values are dynamic, but change at
substantially slower timescales (adiabatically) relative to the transcriptional dynamics. An example of the
latter is variation in upstream biological drivers, which is a special case of the extrinsic noise considered
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Figure 3: In figures (a) and (b), the parameters are E(K) = K = 54, ν1 = 0.83 and δ = 1. (a) The Fano factor of the
compound distribution as a function of the mean mRNA copy number (given by Eq. (15)), varied by tuning
the parameter ν0. Different values of c are plotted against the universal noise scaling curve (intrinsic noise
only) given in So et al. (2011). Data is the Plac promoter also from So et al. (2011). (b) The squared coefficient
of variation as a function of the mean copy number for intrinsic and extrinsic noise c = 1.2. (c) The effect of
lognormal extrinsic noise on K on the copy number distribution, with K = 60, ν0 = 4, ν1 = 2 and δ = 1.

in Dattani and Barahona (2016). For the remainder of the paper, when it is clear from the context that only
one rate of transcription is being considered, we will use K in place of K0 or K1.

An interesting example arises from Eq. (8) when K is Gamma(α,β) distributed. In this case, the compound
distribution q̃(n;α,β) can be shown to be

q̃(n;α,β) =
α(n)ν

(n)
1

n!βn(ν0 + ν1)(n)

(
1

1 + β

)n(
β

1 + β

)ν1

2F1

(
ν1 + n, ν0 + ν1 − α, ν0 + ν1 + n,

1

1 + β

)
. (10)

Rather intriguingly, thisdistribution is also the steady-stateproteinnumberdistribution found inShahrezaei
and Swain (2008). Gene expression there is modelled as a three-stage stochastic process, but the model can
be considered as Telegraph noise, with distribution Eq. (8), on the rate parameter of a Poissonian process. It
is surprising that the resultant steady-state distribution coincides with that of Gamma-distributed noise on
a Telegraph process.

Another striking example arises by way of constitutive transcription (p̃(n) = Pois(K/δ)) again with K ∼
Gamma(α,β). In this case, the compound distribution yields the negative binomial distribution,

q̃(n;α,β) = NegBin
(
α,

β

1 + β

)
. (11)

Thus the copy number distribution alone cannot distinguish constitutive expression with extrinsic noise,
fromaburstyexpressionwithout extrinsicnoise, whichhasdistributionNegBin (ν1/δ, r). A similar example
is given in Dattani and Barahona (2016), where constitutive expression with Beta-distributed K is shown to
agree with the solution of the Telegraph model, Eq. (8).

Whether or not the moments of compound distributions converge is a problem of considerable practical
importance Willinger et al. (2004). We can provide simple formulæ for all moments of the copy number dis-
tribution Eq. (8) under extrinsic noise on the transcription rate K. Noise in K is of particular relevance, as
will become apparent in due course. Let X = XK denote a random variable from p̃(n;K) (from Eq. (8)) and
Y = Yη a random variable from the compound distribution q̃(n;K) (from Eq. (9)). It can be shown that the
nth moment of Y is given by

E(Yn) =
n∑

i=1

ν
(i)δ
1

δi(ν0 + ν1)(i)δ
S(n, i)E(Ki), (12)

where S(n, i) is a Stirling number of the second kind; the notation x(n)y abbreviates x(x+y) . . . (x+y(n−1))
for real numbers x, y and positive integer, n. It follows from Eq. (S.31) that if the first two moments of the
compounding distribution f(K; η) are known, then the mean, variance and Fano factor of the compound
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distribution q̃(n; η) can be easily calculated. From Eq. (S.31), and noting that S(1, 1) = S(2, 1) = S(2, 2) =
1, the Fano factor of q̃(n; η) is given by

FF(Y) = 1− ν1
δ(ν0 + ν1)

E(K) +
ν1 + δ

δ(ν0 + ν1 + δ)

E(K2)

E(K)
. (13)

It is also possible to obtain formulæ for the nth moments and Fano factor in the case for constitutive expres-
sion with extrinsic noise on K, as well as in the case for bursty expression with extrinsic noise on K. In the
former, we can alternatively obtain a formula for the Fano factor from Eq. (13) by taking ν1

ν0+ν1
= 1 (corre-

sponding to ν1 → ∞, or ν0 → 0). This gives

FF(Y) = 1 +
1

δ

Var(K)
E(K)

. (14)

It has previously been suggested that heterogeneity in mRNA copy numbers and a universal scaling between
the mean and Fano factor is attributable primarily to intrinsic noise, as opposed to extrinsic noise So et al.
(2011). The purported observational evidence for these claims is: (i) in the limit of low mean mRNA copy
number, the Fano factor is approximately one; (ii) at the other extreme of high mean mRNA copy number,
the Fano factor decreases sharply rather than approaching a plateau; (iii) the square of the coefficient of
variation decreases monotonically with the mean.

These claims do not stand up against the analytical solutions for the Fano factor obtained above. From
Eq. (13), the Fano factor of the compound distribution q̃(n;K) depends only on E(K) and Var(K) (or equiv-
alently E(K2)) and the values of the parameters ν0, ν1, δ. Throughout we let c denote the coefficient of vari-
ation, σ(K)/ E(K), for the noise distribution, f(K; η). Noting that E(K2)/ E(K) = (1 + c2) E(K), Eq. (13)
becomes

1 − ν1
δ(ν0 + ν1)

E(K) +
ν1 + δ

δ(ν0 + ν1 + δ)
(1 + c2) E(K). (15)

The situation E(Y) → 0 corresponds to ν0 → ∞, which from Eq. (15) easily gives FF(Y) → 1. Thus, item (i)
holds true for all values of c, and therefore for any extrinsic noise distribution on K, provided that the second
moment exists.

Figure 3(a) shows qualitatively identical behaviour of the Fano factor as a function of the mean mRNA copy
number for values of c close to 1, even for the same parameter values of ν1, δ, E(K) = K. We remark that, as
in So et al. (2011), the mean is varied by regulating ν0 only. Values of c below 0.6 have been omitted, as they
are visually indistinguishable from the intrinsic noise case at the present resolution.

Finally, we consider the squared coefficient of variation as a function of the mean copy number for different
values of c; see Fig. 3(b), and note that values of c smaller than c = 1.2 are again visually (and practically)
indistinguishable from intrinsic noise and so are omitted. We see that the behaviour is effectively identical
to that of intrinsic noise only. Even for unrealistic values of c (for example c = 200, 000), the squared noise
curve continues to satisfy (iii).

We next examine the effect of extrinsic noise on the noise scaling curve in the case for constitutive transcrip-
tion, again considering only noise on K. In this case, it can be easily shown that the mean copy number E(Y)
is equal to E(K). Thus, from Eq. (14), scaling the Fano factor with mean copy number is dependent only on
the noise distribution of K. If the coefficient of variation is fixed at c as the noise distribution on K is var-
ied, then the Fano factor is given by 1 + c2 E(K), which is linear in E(Y) = E(K). On semilogarithmic axes
and plotted as a function of the mean copy number, this yields the same qualitative behaviour as that found
in (Jones et al., 2014, Fig. 2B). The observations after Eq. (11) are pertinent here: with c = 1/

√
ν1, identi-

cal noise scaling behaviour arises from the two extremes—constitutive expression with extrinsic noise and
bursty expression without noise.

Thus far, extrinsic noise, as modelled by the compound distribution, exhibits behaviours that are similar
to intrinsic noise alone. We now present a potential qualitative identifier for extrinsic noise: we show that
contrary to previous claims Iyer-Biswas et al. (2009), intrinsic noise alone never leads to a heavy-tailed copy
number distribution, but find many cases in which extrinsic noise does so. Formally, we take heavy tailed to
mean that the moment generating function (mgf) is undefined for positive t, which implies that the tail of
the distribution decays more slowly than that of the exponential distribution.
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If K and δ are fixed, then the copy number is maximized when the gene remains permanently active, which
has distribution Poisson(K/δ) and is not heavy tailed. Intuitively then, no compounding of ν0 and ν1 alone
results in a heavy tailed distribution. A more robust argument is obtained by establishing the following in-
equality for the Telegraph model ?: for all positive t,

M
Pois

(
ν1

ν0+ν1

K
δ

)(t) ≤ Mp̃(t) ≤ MPois( K
δ )
(t), (16)

where Mg denotes the mgf for distribution g. In particular, Mp̃(t) is bounded above by a Poissonian mgf
that does not depend on ν0 or ν1. Thus p̃(n) itself is not heavy tailed, and we require compounding of K or

δ to make it so. On the other hand, any extrinsic noise on K or δ that renders the mgf for Pois
(

ν1

ν0+ν1

K
δ

)
undefined, will also result in Mp̃(t) being undefined and the resulting compound distribution will be heavy
tailed. We now demonstrate this for K ∼ LogNormal(µ,σ). The result relies on the following well-known
property of mixture distributions, here interpreted in the context of Eq. (9):

Mq̃(t) = Eθ(Mp̃( ;θ)(t)). (17)

It follows from this and Eq. (16) that the compounding integrand is bounded below by

exp
(

ν1
ν1 + ν0

K
δ
(et − 1)

)
1√
σ2πK

exp
(
− ln2(K − υ)

2σ2

)
(18)

which diverges to infinity as K → ∞ provided t > 0. Thus log-normal extrinsic noise on K renders the com-
pound distribution q̃(n;µ,σ) heavy tailed; cf. Fig. 3 (c). These results extend to the leaky gene model, with
log-normal noise on K1 (conditional on K0 < K1), as it is trivial that K0 > 0 only increases the probability
of large copy number in comparison to the standard Telegraph model.

From Eq. (16) we see that when ν1

ν0+ν1
= 1 (that is, ν1 → ∞, or ν0 → 0) we obtain the constitutive distri-

bution, Poisson(K/δ). When K is subject to log-normal noise, the argument using Eq. (18) carries through
unchanged.

For bursty expression we require ν0 >> ν1, δ so consider extrinsic noise on K only. The effect of extrinsic
noise here is qualitatively different to the other cases: we observe that the mgf for the negative binomial
distribution is given by,

Mnb(t) =
(

r
1− (1− r)et

)ν1/δ

,

for t < − ln(1− r) = − ln(K/(K+ν0)), and is infinite otherwise, where r = ν0/(ν0+K). Thus, the range
of positive t for which Mnb(t) is finite approaches 0 as K → ∞, implying that any unbounded distribution
f(K; η) results in the moment generating function of the compound distribution

Mq̃(t) =
∫ ∞

0

Mnb(t)f(K, η) dK

undefined for positive t. Now in contrast to the previous result, Eq. (11), Gamma distributed noise on K yields
a heavy-tailed distribution.

In summary, our approach has provided a range of new analytical solutions to long-standing problems in
gene expression modelling. Crucially, we have been able to include extrinsic noise and found that this alone
provides complementary and alternative explanations for many empirical observations So et al. (2011). Fur-
ther to this, we have demonstrated that extrinsic noise can explain observations of heavy-tailed distributions
Bengtsson (2005), which intrinsic noise alone cannot. Given the notoriously noisy environment within cells
and the intricate organisation of gene regulatory networks, noise extrinsic to a given gene (or gene model) is
almost certainly ubiquitous. The framework and results provided here allow us to get a better, more detailed
handle on the origins and implications of noise in molecular systems and beyond.
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A The leaky genemodel

A.1 Steady-state solution

In this section, we provide a full derivation of the steady-state solution to the leaky gene model described by
the following master equation, given as Eq. 1 in the main text.

(∀n ≥ 1) ∂tpi(n, t) = −(νi′ +Ki + δn)pi(n, t)+ δ(n+1)pi(n+1, t)+Kipi(n− 1, t)+ νipi′(n, t), (S.1)

where i ∈ {0, 1}, and i′ = 1−i. Forn = 0, terms involvingn−1are set to0. Asmentioned, thedevelopment
closely follows Peccoud and Ycart (1995). Letting pi(n) denote the steady-state probability of copy number
n in state i ∈ {0, 1}, we introduce the following generating functions:

g0(z) =
∞∑

n=0

znp0,n; g1(z) =
∞∑

n=0

znp1,n. (S.2)

Multiplying Equation (S.1) through by zn and then summing these over n from 0 to∞ gives rise to the follow-
ing pair of symmetric first-order differential equations:

δ(z − 1)g′0(z) = −(ν1 + K0(1− z))g0(z) + ν0g1(z), (S.3)

and
δ(z − 1)g′1(z) = −(ν0 + K1(1− z))g1(z) + ν1g0(z). (S.4)

By differentiation, then back substitution, we arrive at the following symmetric pair of second-order differ-
ential equations:

δ2(z−1)g′′0(z)+δ(δ+ν0+ν1−(K0+K1)(z−1))g′0(z)−(K0δ+ν0K0+ν1K1−K0K1(z−1))g0(z) = 0 (S.5)

and

δ2(z−1)g′′1(z)+δ(δ+ν0+ν1−(K0+K1)(z−1))g′1(z)−(K1δ+ν0K0+ν1K1−K0K1(z−1))g1(z) = 0.
(S.6)

As in Peccoud and Ycart (1995), the substitution x = 1 − z and defining hi(x) = gi(1 − x), for i ∈ {0, 1},
leads to conceptually simpler equations

δ2xh′′
0(x) + δ(δ + ν0 + ν1 + (K0 + K1)x)h′

0(x) + (K0δ + ν0K0 + ν1K1 + K0K1x)h0(x) = 0 (S.7)

and

δ2xh′′
1(x) + δ(δ + ν0 + ν1 + (K0 + K1)x)h′

1(x) + (K1δ + ν0K0 + ν1K1 + K0K1x)h1(x) = 0. (S.8)

In comparison to Peccoud and Ycart (1995), these equations have an extra term in the hi(z) coefficient which
makes the solution more complicated. Nevertheless, both (S.7) and (S.8) can be represented as extended
confluent hypergeometric equations and so have a known general solution. At this point it is notationally
convenient to set δ = 1, which is equivalent to scaling time by δ and there is no loss of generality in doing
this. Let

C = ν0 + ν1 + 1; D = K0 + K1; Ei = ν0K0 + ν1K1 + Ki for i ∈ {0, 1}; F = K0K1.

Then from (S.7) and (S.8), we obtain the equations

xh′′
i (x) + (C + Dx)h′

i(x) + (E + Fx)hi(x) = 0. (S.9)

Given the initial conditions h0(0) = ν0/(ν0 + ν1) and h1(0) = ν1/(ν0 + ν1), these can be solved as

hi(x) =
ν0

ν0 + ν1
exp
(
− x

2

(
D +

√
D2 − 4F

))
1F1

(
CD + C

√
D2 − 4F − 2Ei

2
√

D2 − 4F
, C, x

√
D2 − 4F

)
. (S.10)
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Note that (S.7) and (S.8) have a second solution in terms of Kummer’s second hypergeometric function, how-
ever this is not defined at the initial conditions and fails other physical properties of the system; this is de-
tailed also in Grima et al. (2012). We observe that this solution uses the assumption K0 ̸= K1, however the
special case of K0 = K1 is a degenerate form of the system (a standard birth-death model). Thus we as-
sume now that K0 < K1, while the opposite case K1 < K0 follows by symmetry. This assumption leads to
enormous simplification, because

√
D2 − 4F = |K0 − K1| and then D +

√
D2 − 4F = 2K1. After further

cancelling in (S.10), and replacing x by 1− z we obtain

g0(z) =
ν0eK1(z−1)

ν0 + ν1
1F1 (ν0 + 1, ν0 + ν1 + 1, w(z − 1)) , (S.11)

and

g1(z) =
ν1eK1(z−1)

ν0 + ν1
1F1 (ν0, ν0 + ν1 + 1, w(z − 1)) , (S.12)

where w denotes K0 − K1. For the copy number itself, we want g(z) = g0(z) + g1(z). Using the functional
identity (Olver et al., 2010, §13.3.3) for the confluent hypergeometric function

(a − b + 1)1F1(a, b, z)− a1F1(a + 1, b, z)− (1− b)1F1(a, b − 1, z) = 0

we obtain
g(z) = eK1(z−1)

1F1 (ν0, ν0 + ν1, w(z − 1)) . (S.13)

The probability mass function is then recovered by way of p̃(n) = 1
n!g

(n)(0). The general Leibniz rule now
gives

p̃(n) =
1

n!

n∑
r=0

[(
n
r

)
Kn−r
1 e−K1wr ν

(r)
0

(ν0 + ν1)(r)
1F1(ν0 + r, ν0 + ν1 + r,−w)

]
(S.14)

A.2 A special case

We now provide a full derivation of the solution to the limiting case of the leaky gene model; refer to the mas-
ter equation Eq. 5 in the main article, or alternatively see (S.20) below. Recall that this model is justified only
when the active transcription is rare enough to be considered instantaneous (ν0 ≫ ν1) and the degradation
rate is sufficiently small (ν0 ≫ δ). Consider then an interval of length T in which the gene is active at the
higher rate K1 and in which no degradation occurs. The probability of transcribing M mRNA molecules is
given by a Poisson distribution as,

p(M;T, K1) =
(K1T)Me−K1T

M!
. (S.15)

The time period T is itself exponentially distributed according to,

p(T; ν0) = ν0e−ν0T. (S.16)

Marginalising (S.15) over T leads to,

p(M;K1, ν0) =
ν0KM

1

M!

∫ ∞

0

TMe−(ν0+K1)T dT, (S.17)

which with the substitution u = (ν0 + K1)T can be solved to yield,

p(M;K1, ν) =
ν0KM

1

(ν0 + K1)M+1
. (S.18)

As is already understood, this is the geometric distribution Paulsson and Ehrenberg (2000); Ingram et al.
(2008),

G(M; r) = r(1− r)M, (S.19)
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where r = ν0/(ν0 + K1). Given instantaneous geometric bursts of transcription, the master equation (S.1)
may then be rewritten as,

∂tp(n, t) = −(ν1(1−r)+K0+δn)p(n, t)+ν1

n∑
j=1

G(j; r)p(n− j, t)+δ(n+1)p(n+1, t)+K0p(n−1, t).

(S.20)
The first term in this equation gives fluxes away from p(n), occurring due to bursts of non-zero size or degra-
dationofa singlemRNA.Thesecond termgives the totalprobabilityof aburstoccurringat any lowermolecule
number and raising the number to n, while the third term gives the probability of degradation reducing the
molecule number from n + 1. The fourth term is the probability of raising the number to n when inactive.
To solve this system in the steady state we introduce the following generating function:

g(z) =
∞∑

n=0

znp(n) (S.21)

Multiplying (S.20) through by zn and summing over n from 0 to∞ gives the following equation:

δ(z − 1)g′(z) = ν1

( ∞∑
n=0

(
zn

n∑
j=0

G(j; r)p(n − j)
)
−

∞∑
n=0

znp(n)
)
+ K0(z − 1)g(z).

which after regrouping becomes

δ(z − 1)g′(z) = ν1

(
g(z)

( ∞∑
n=0

G(n; r)zn
)
− g(z)

)
+ K0(z − 1)g(z).

The term
∑∞

n=0 G(n; r)zn is the probability generating function for the geometric distribution, which can
be written as r

1−z(1−r) . Thus we obtain the first-order differential equation

g′(z) =
ν1

δ(z − 1)

(
r

1− z(1− r)
− 1

)
g(z) +

K0

δ
g(z)

which simplifies to

g′(z) =
[
ν1
δ

(
(1− r)

1− z(1− r)

)
+

K0

δ

]
g(z). (S.22)

As previously mentioned, this is routinely solved by the integrating factor method (using the initial condition
g(1) = 1) to give

g(z) =
(

r
1− z(1− r)

)ν1/δ

exp
(

K0

δ
(z − 1)

)
(S.23)

which is theproductof theprobabilitygenerating function for thenegativebinomialdistributionNegBin(ν1/δ, r)
and the Poisson distribution Pois(K0/δ). This gives the following analytical expression for the steady-state
solution, presented as Eq. 7 in the main article:

p̃(n) =
1

n!

n∑
i=0

[(
n
s

)
Γ(ν1/δ + (n − s))
Γ(ν1/δ)(n − s)!

(1− r)(n−s)rν1/δ
e−K0/δKs

0

δs

]
. (S.24)

B Incorporating extrinsic noise

As mentioned in the main article, an interesting compound distribution arises from Eq. 8 when K is dis-
tributed according to the distribution Gamma(α,β); see Eq. 10. We now provide the missing details of its
derivation. From Eq. 9, the compound distribution q̃(n;α,β) is given by

q̃(n;α,β) =
∫ ∞

0

Kn
1ν

(n)
1

n!(ν0 + ν1)(n)
1F1(ν1 + n, ν0 + ν1 + n,−K1)

βα

Γ(α)
Kα−1e−βK dK. (S.25)
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Using the Laplace transformation (Olver et al., 2010, §13.10.3),∫ ∞

0

tb−1e−zt
1F1 (a, c,−t) dt = z−bΓ(b) 2F1

(
a, b, c,

−1

z

)
,

the Eq. (S.25) becomes

q̃(n;α,β) =
α(n)ν

(n)
1

n!βn(ν0 + ν1)(n)
2F1

(
ν1 + n,α+ n, ν0 + ν1 + n,

−1

β

)
. (S.26)

Now applying the linear transformation (Olver et al., 2010, §15.8.1)

2F1 (a, b, c, z) = (1− z)−a
2F1

(
a, c − b, c,

z
z − 1

)
to (S.26), we obtain

q̃(n;α,β) =
α(n)ν

(n)
1

n!βn(ν0 + ν1)(n)

(
1

1 + β

)n(
β

1 + β

)a

2F1

(
ν1 + n, ν0 + ν1 − α, ν0 + ν1 + n,

1

1 + β

)
,

(S.27)

C Existence ofmoments under extrinsic noise

In the main article we provide simple formulæ for the nth moments of copy number distributions under ex-
trinsic noise on the rate parameter K. The following three subsections are dedicated to obtaining these: the
first covers theTelegraphmodelunderextrinsicnoise, and the secondand thirdcover constitutiveandbursty
expression under extrinsic noise, respectively. Throughout, we let f(K; η) denote the compounding distribu-
tion of K.

C.1 Telegraphmodel

Let X = XK denote a random variable with distribution p̃(n;K) (from Eq. 8) and Y = Yη a random variable
with the compound distribution q̃(n;K) (from Eq. 9). In the following it will be useful to recall that, for real
numbers x, y and positive integer n, the notation x(n)y abbreviates x(x + y) . . . (x + y(n − 1)), the rising
factorial of x with respect to δ. The notation x(n) abbreviates x(x− 1) . . . (x− (n− 1)), the falling factorial
of x. Our results rely on the following property of mixture distributions.

E(Yn) = EK(E(Xn)) (S.28)

The proof of (S.28) is straightforward, relying only on switching the order of integration/sum. Following
Peccoud and Ycart Peccoud and Ycart (1995), we let

en := E(X(X − 1)(X − 2) . . . (X − n + 1)) (S.29)

and obtain directly from the generating function (Peccoud and Ycart, 1995, Equation 20),

en =
Kn

δn

ν
(n)δ
1

(ν0 + ν1)(n)δ
.

Before we continue, we recall that Stirling numbers of the first and second kind relate expansions of the
falling factorial x(n) := x(x − 1) . . . (x − n + 1) to conventional powers of x. Stirling numbers of the
first kind are the coefficients in the expansion of x(n), and Stirling numbers of the second kind arise as the
coefficients when xn is written as a linear combination of x(1), . . . , x(n). Thus, from (S.29) we have that en =∑n

k=0 s(n, k)E(Xk), where s(n, k) are Stirling numbers of the first kind. We obtain

E(Xn) = en −
n−1∑
k=0

s(n, k) E(Xk) =
Kn

δn

ν
(n)δ
1

(ν0 + ν1)(n)δ
−

n−1∑
k=0

s(n, k) E(Xk).
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Thus E(Xn), as a function of K, is a polynomial of degree n, which we can write as

E(Xn) =
n∑

i=1

S(n, i) ei

=
n∑

i=1

S(n, i)
ν
(i)δ
1

δi(ν0 + ν1)(i)δ
Ki, (S.30)

where S(n, i) is a Stirling number of the second kind. Returning to (S.28), we obtain

E(Yn) =
n∑

i=1

S(n, i)
ν
(i)δ
1

δi(ν0 + ν1)(i)δ
E(Ki). (S.31)

Noting that S(1, 1) = S(2, 1) = S(2, 2) = 1, it follows from (S.31) that

E(Y) =
ν1

δ(ν0 + ν1)
E(K) and

Var(Y) =
ν1(ν1 + δ)

δ2(ν0 + ν1)(ν0 + ν1 + δ)
E(K2) +

ν1
δ(ν0 + ν1)

E(K)−
(

ν1
δ(ν0 + ν1)

E(K)
)2

.

This then yields the following formula for the Fano factor of q̃(n;K):

FF(Y) = 1− ν1
δ(ν0 + ν1)

E(K) +
ν1 + δ

δ(ν0 + ν1 + δ)

E(K2)

E(K)
, (S.32)

which is presented as Eq. 13 in the main article.

C.2 Constitutive expression

In a similar way to the Telegraph model, we can obtain closed-form formulæ for the nth moments and Fano
factor in the case for constitutive expression with extrinsic noise on K. Let X = Xk be a random variable
with distribution Pois(K/δ) distribution, let q̃Pois(n; η) denote the compound distribution obtained by com-
pounding Pois(K/δ) by f(K; η), and let Y = Yη denote a random variable for q̃Pois(n; η). The nth moments of
a Pois(K/δ) random variable are given by

E(Xn) =
n∑

k=1

S(n, k)
(

K
δ

)k

, (S.33)

where S(n, k) is a Stirling number of the second kind. From (S.28), it follows immediately that

E(Yn) =
n∑

k=1

S(n, k)
δk E(Kk). (S.34)

Thus,

E(Y) =
E(K)
δ

,

Var(Y) =
E(K)
δ

+
E(K2)

δ2
−
(

E(K)
δ

)2

, and

FF(Y) = 1 +
1

δ

Var(K)
E(K)

. (S.35)

C.3 Bursty expression

Let X = XK denote a random variable with distribution the NegBin(ν1/δ, r) distribution, where r is equal to
ν0/(ν0+K). Let q̃nb(n; η)denote the compound distribution obtained by compounding NegBin(ν1/δ, r) by
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f(K; η), and let Y = Yη denote a random variable for q̃nb(n; η). Recall that the moment generating function
for the NegBin(ν1/δ, r) distribution is given by

Mnb(t) =
(

r
1− (1− r)et

)ν1/δ

for t < − ln(1− r) = − ln(K/(K + ν0)), and is infinite otherwise. Using the recurrence relation,

S(n + 1, k) = kS(n, k) + S(n, k − 1) (S.36)

a straightforward proof by induction on the number n of derivatives of Mnb(t) with respect to t (with base
case n = 0 given by Mnb(t)) shows that

dn Mnb(t)
dtn = r

ν1
δ

n∑
k=1

S(n, k)
(ν1
δ

)(k)
qk(1− qet)

ν1
δ −kekt, (S.37)

where q = 1− r. By substituting t = 0 into (S.37), we immediately obtain

E(Xn) =
n∑

k=1

S(n, k)
(ν1
δ

)(k) (q
r

)k
,

which simplifies to

E(Xn) =
n∑

k=1

S(n, k)
(ν1
δ

)(k)( K
ν0

)k

. (S.38)

It then follows from (S.28) that

E(Yn) =

n∑
k=1

S(n, k)
(ν1
δ

)(k)
ν−k
0 E(Kk), (S.39)

which gives the following formula for the Fano factor of q̃nb(n; η):

FF(Y) = 1− ν1
δν0

E(K) +
1

ν0

(
ν1
δ

+ 1

)
E(K2)

E(K)
. (S.40)

D Heavy-tailedness of the compound distribution

In the final section of the main article we showed that heavy-tailedness in the copy number distribution is
a potential qualitative identifier of extrinsic noise. The arguments rely on the following inequality for the
Telegraph model, given as Eq. 16 in the main article: for all positive t,

M
Pois

(
ν1

ν0+ν1

K
δ

)(t) ≤ Mp̃(t) ≤ MPois( K
δ )
(t), (S.41)

where Mg denotes the mgf for distribution g. We now give a detailed proof of this result. In the following, let

X1 ∼ Poisson
(

ν1

ν0+ν1

K
δ

)
, let X2 ∼ Poisson(K

δ ), and let X3 ∼ p̃(n) (from Eq. 8). For n ∈ N, we have

E(Xn
1) =

n∑
i=1

S(n, i)
( ν1
ν0 + ν1

)i(K
δ

)i

≤
n∑

i=1

S(n, i)

(
ν
(i)δ
1

(ν0 + ν1)(i)δ

)(
K
δ

)i

as
ν1 + iδ

ν1 + ν0 + iδ
≤ ν1

ν0 + ν1
(∀i)

= E(Xn
3) (from (S.30))

≤
n∑

i=1

S(n, i)
(

K
δ

)i

as
ν
(i)δ
1

(ν0 + ν1)(i)δ
≤ 1 (∀i)

= E(Xn
2)
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As each moment E(Xn
3) is sandwiched between two Poissonian nth moments, it immediately follows from

the least upper bound property that the mgf for the copy number distribution p̃(n) is bounded below by the

mgf for the Pois
(

ν1

ν0+ν1

K
δ

)
distribution and bounded above by the mgf for the Pois(K

δ ) distribution. Thus,
Equation (S.41) holds.
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